PHY101 Electricity and Magnetism I
 Example Calculation (from lecture)

A rod of length L carries a charge Q distributed uniformly along its length. If it is centred on the origin and oriented along the y-axis, what is the resulting electric field at points on the x-axis?

The linear charge density along the rod is $\lambda=Q / L$.
To calculate the overall field at a point on the x-axis, we divide the rod into infinitesimal slices $\mathrm{d} y$, find the contribution to E from each of these, and sum (integrate) using the principle of superposition.

Charge in slice $\mathrm{d} y$ is $\lambda \mathrm{d} y$.

$$
\mathrm{d} E \text { due to } \mathrm{d} y=\frac{\lambda \mathrm{d} y}{4 \pi \varepsilon_{0} r^{2}} \text {. }
$$

By symmetry, the overall E field on the x-axis must be parallel to x. (Contributions in the negative y direction due to slices above the x-axis as shown will be cancelled by those in the positive y direction due to slices below the x-axis.)

$$
\begin{equation*}
\mathrm{d} E_{x}=\frac{\lambda \mathrm{d} y \cos \theta}{4 \pi \varepsilon_{0} r^{2}} \quad \Rightarrow \quad E=\int_{-L / 2}^{L / 2} \frac{\lambda \mathrm{~d} y \cos \theta}{4 \pi \varepsilon_{0} r^{2}} \tag{1}
\end{equation*}
$$

We have now done all the physics, but have some work to do on the maths! The integral contains three variables, y, r and θ, which are all interdependent. There is also no explicit dependence on x, though we want to find the field a distance x from the origin. We must therefore change variables.

$$
\begin{array}{ll}
x=r \cos \theta & \Rightarrow r=x / \cos \theta \\
y=x \tan \theta & \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} \theta}=x \sec ^{2} \theta={\frac{x}{\cos ^{2} \theta}}^{(*)} \quad \text { or } \mathrm{d} y=\frac{x}{\cos ^{2} \theta} \mathrm{~d} \theta
\end{array}
$$

Substitute these into (1):
$\Rightarrow E=\frac{\lambda}{4 \pi \varepsilon_{0}} \int \frac{\cos ^{2} \theta}{x^{2}} \cos \theta \frac{x \mathrm{~d} \theta}{\cos ^{2} \theta}=\frac{\lambda}{4 \pi \varepsilon_{0} x} \int \cos \theta \mathrm{~d} \theta=\frac{\lambda}{4 \pi \varepsilon_{0} x}[\sin \theta]$.
We now need to put in the correct limits. When $y=L / 2, \sin \theta=\frac{L / 2}{\sqrt{x^{2}+(L / 2)^{2}}}$, and when $y=-L / 2, \sin \theta=\frac{-L / 2}{\sqrt{x^{2}+(L / 2)^{2}}}$.

So $E=\frac{\lambda}{4 \pi \varepsilon_{0} x}\left(\frac{L / 2}{\sqrt{x^{2}+(L / 2)^{2}}}-\frac{-L / 2}{\sqrt{x^{2}+(L / 2)^{2}}}\right)=\frac{Q}{4 \pi \varepsilon_{0} x \sqrt{x^{2}+(L / 2)^{2}}}$

$$
\text { The total electric field is } E=\frac{Q}{4 \pi \varepsilon_{0} x \sqrt{x^{2}+(L / 2)^{2}}} \text { in the } x \text { direction. }
$$

It is always useful to apply a "sanity check" (where this does not involve too much work!). The electric field at a large distance from the rod should not depend on the exact arrangement of the charge. If we consider the limit of the above expression when $x \gg L$, we obtain $E \rightarrow \frac{Q}{4 \pi \varepsilon_{0} x^{2}}$, exactly as expected!
${ }^{(*)}$ If you have forgotten that $\frac{d \tan \theta}{d \theta}=\sec ^{2} \theta$, you can easily derive this using the identity $\tan \theta=\frac{\sin \theta}{\cos \theta}$ together with the quotient rule for differentiation.

For further calculations of electric field due to extended charge distributions, see the application section of the handout.

