PHY101 Electricity and Magnetism |
Topic 2 (Lectures 2 & 3) — Electric Fields

In this topic, we will cover:

1) Electric Fields

2) Field Lines

3) Electric Fields and Conductors

4) Electric Dipoles in an Electric Field

Introduction

We have seen that Coulomb’s law, like Newton’s lafagravitation, involvesaction at a
distance — one charge is affected by another with no playsiontact between them. One way to
envisage how this occurs is to consider that ormegehmodifies the properties of the space around
it, and the other charge then responds to theseficaitbns. This modification of the space is
known as an electric field.

The Electric Field

Consider the electric field surrounding a statimpcehargeQ. The field at a given position
can be defined by the force produced®wn a small test chargg at that point. The electric field
strengthE is equal to the force per unit charge at thatipoin

F
=— [1]
o
From this definition, we can see that the S.I. daitelectric field strength is Newton per
Coulomb (N C%). Note thatE is a vector, with direction given by the force esipnced by the
(positive) test charge. Applying Coulomb’s law #opoint charg€) (see previous topic)

F=_ % ; 2]
4TE 1

We obtain the electric field about a point charge

=._0Q

- 2
4T I

f [3]

Equation [3] is only valid for a point charge. Fosystem of point charges, we can apply the
principle of linear superposition as we did befaralculating a resultant field strength which is
equal to the vector sum of the field strengthstdueach of the individual charges.

E=E,+E,+E,+-+E =3 E 4]

Once the resultant field strength is known, thedoon any chargg can be found from the
definition of E given in [1], so

F=qE. 5]

Note thatE is the field strength calculated from aiher charges present, not includiggtself! If g
is positive, the direction of the force is thattlo¢ field strength; ifj is negative, the direction of the
force is opposite to the field.

Field Linesor Lines of Force

We can represent an electric field diagrammaticjlydrawingfield lines or lines of force.
These represent the direction of the electric feslcdeach point in space, so show the direction a
(small) free charge would tend to follow. Fieldds obey the following rules:
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1) Electrostatic field lines always start on
positive charges and end on negative
charges.

2) The number of lines originating from,
or terminating on, a charge is
proportional to the magnitude of the
charge.

3) The direction of the field at a point is
given by the tangent to the field line at
that point.

4) The field strength is equal to the Opposite charges Like charges

density of lines, that is the number of
lines per unit area (where the area is on
a surface normal to the field).

5) Lines of field never cross (since the directiorfate on a test charge would be ill-defined at a
point where lines crossed).

The diagram shows field lines around pairs of kel opposite charges.

Electric Field and Conductors
When a conductor is placed in a region of eledieid, the Eext
free electrons within it respond to the force oairtl{negative) >
charge. If the applied external fieldksy, the electrons move in
a direction opposite t&eyx, as shown in the sketch. As they do
so, they leave unbalanced positive charges beland, these
charges in the metal generate an internal figlg opposite in
direction toEex. The electrons will continue to move urki); =
Eex; Once this condition is met, the net electricdighside the
conductor is zero, and no further charge flows.

Under static conditions, the net eectric field within the material of a conductor is zero.

Note that the resulting field just outside the aactdr will be the resultant of that due to the
applied field and the displaced charges. Consadesulting field at an angle to the surface of the
conductor. We can resolve this into componentaljghito and perpendicular to the local surface.
The free electrons at the surface of the condwetibmove in response to the component parallel to
the surface, and quickly reduce this componenteto.z Therefore the resulting field can only be
perpendicular to the surface.

Under static conditions, the electric field at all points on the surface of a conductor isnormal to
that surface.

We shall shortly also show one other fact aboutlootors and electric charge:

Under static conditions, all the (unbalanced) e ectric charge resides on the surface of the
conductor.

Continuous Charge Distributions

In the last lecture, we saw how the force, andeloee the field, due to a number @dint
charges can be evaluated using superposition. rderao find the field due to aontinuous
distribution, we must consider the charge dividedinto infinitesimal elementsgdwhich may be
considered as point charges. The infinitesimakrdaution to the total field produced by such an
element is

dE=—d9 ¢
4TE 1

[6]
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wherer is the vector from the charge element to the puihere the field is considered. To
determine the total field due to the distributedrge, the vector sum over the whole distribution of
all such contributions must be evaluated by me#&as integral:

dg .
E= r. 7
J.4T[azor2 L7]

In practice, to evaluate the integral it is necessaexpress @in terms ofr, as we will illustrate in
the examples. We often need to consider chargeibdited along a line, over a surface or
throughout a volume. This leads to the concept wdriety ofcharge densities.

1) Volume charge density (or simplycharge density) p. Units C m>. dg=p dV where & is an
element of volume.

2) Surface charge density 6. Units C m° dq =0 dA where d\ is an element of area.

3) Linear chargedensity A. Units C m%. dg=A\ dl where dlis an element of length.

Electric Dipoles

A pair of equal and opposite charges separatedome sdistance is known as atectric
dipole. If the charges have a magnitu@eand their separation @& their dipole momenp is given
by:

p=Qd [8]

whered is a vector pointing from the negative to the pesicharge (s@ points in the same
direction).

When a dipole is placed in a uniform electric field it Eext
experiences no net force, as the two charges fgedleand
opposite forces. However, since the two forcesndbd act
through the same point, there is a moment or toagtieag on the
dipole. Consider the positive charge. It exper@sna force
F =QE. The negative charge experiences an equal anosi@p -

force, so the torque is given by one force multiplied by their Fe—O
perpendicular separation,= Fd sin@ = QEd sind = pE sirb.

The vector expression for the torque is thus
T=pXE [9]

The dipole tends to align itself with an appliedezral electric field. This means that it takegkvo
(provided by an opposing torque or pair of fordeshotate the dipole against the field, resulting i
an increasing potential energy of the dipole. Biafy this potential energy as zero whens
perpendicular t&, we can see that in rotating to an arjes shown the dipole does work given by

forcexdisplacement =F%cose against the applied force feach charge, so its potential energy is

reduced by this amount. The overall potential gnei the dipole is thus
U =-pEcost=—-plE [10]
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Putting What You Have Learnt Into Practice

Question 1

One point charg®; = 20uC is placed at @ 0) and y4

anotherQ, = —10uC at (4d, 0) as shown. Find the bTE

resulting field strength at a point with coordirsate 7 VB

(xy), whered = 1.0 m ank =y = 2 m. rp.--=—
7T Ty |

Solution o _ Q<-10, Q. N0y

The charges, electric field vectors and coordinates & @) g

are shown opposite. d

By Pythagoras’ theorem

n=y(x+d)’+y? =J13=36 1 r,=y(x-d)’+y? ={65=22m

The magnitudes of the electric fields are therefore

.- Q _ 2x10° E = R _ 1x10°

AT 4mx 8.85¢ 10%x 1. ? 4AtE,r,?  4mx8.85¢ 10Mx E
=1.4x1d NC* =1.8x10 NC*

The components of the resulting field strend@ths E; + E,, are

E, =E +Ey =E;c0s8,-E, cod, Ey =Ey +Ey, = E;sinB;-E,sind ,.

From the diagramsin®; ==, sin6, =l, cosb; = x+d , C0sB, = x—d :

f r2 n 2
Hence
E =1.4x10 > - 1.8 16~ E, =1.4x 102 - 1.8 1602
3.6 2.2 3.6 2.2
=3.5x1¢ NC*! =-8.6x1¢ NC*

So E=3.5x1Ci- 8.6« 1§f NC!

Question 2

A rod of lengthl has a total charg® distributed dx I

uniformly along its length. Calculate the elecfredd > a

at a point P located along the long axis of theand a > X

distancea from one end. Ex' : P

Solution

Assume the rod is lying along tlkeaxis as shown, running from= 0 tox =1. The charge density

is given byA :lg, and if an element has lengtkiticarries an elemental charge® = A dx.

The distance from this element to point P is gibyr(a+| - x), so the field at P due to the element
is in thex-direction, with a magnitude
4 = dg = Adx Ny
are, (a+l-x)" 4, (a+l-X)
Since the field due to all other elements liedhm $ame direction, the total field at P is given by
integrating over the length of the rod:
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ey " )
2 4tE, (a+1-x)°  4TE,[a+]-x],

A (1_ 1 j: A atl-a_ Al
4TE, a+l) 4 a(a+l) 4ea(a+l)

Exploiting the fact thakl =Q, this can then be written as
E — Q

~amega(a+)

[ We can check that this answer is reasonable as follows. If a>1, the rod will behave as a point

Q

ok

charge. The expression above then reducesto E = > asexpected.]

Question 3
A chargeQ is uniformly distributed along the circumferenceaof z
thin ring of radiuR. What is the electric field at points along the

axis of the ring? dE

Solution
Consider the ring to be made up of infinitesimaélsegmentssd )
as shown. Each of these, distributed around thg, rwill \r
contribute to the field at the point on the axi¥V/e can use \
symmetry to determine the direction of the resulfesid; it must : >
be parallel to the-axis, as the horizontal component due to any R~ X
point on the ring will be exactly balanced by tHae to the point Vi * ds
diametrically opposite on the ring.

N_¥
@

The charge per unit length along the circumferaac@/2nR; hence the charge on the line segment

dsis dQ = ds%. At a heightz above the plane of the ring, the electric fiel@ ¢ this element of

charge has magnitude

_dQ _ 1 Q& 1
dE = 5= -
4Teyrc 4Ty 2MR z°+R

Thez-component of this is
1 Qds co¥ = 1 Qd z

dE. = =
© 4Ty 2R 22+ R? 4T ZHR(

312
2+ R2)

sincecos = > 5
VZZ+R

The overall electric field is therefore

I z ds
4T'E0 z + R2)3/2

The integrand has a constant value for all poirdsirad the ring, and so can be taken outside the

integral, andj ds is just the length of the circumferenceR2



We therefore arrive at a resultant field

1 Qz
= 3z K
41 (22 + Rz)
[Once again, we can perform a couple of checks. For z=0, E= 0, as it clearly must do by
symmetry. For z> R, E= 2 Q 5 k aswould be expected when the distribution can be treated as
TE(Z
a point charge]
Question 4
What is the electric field generated by a discagliusR carrying
a uniform charge density C ni?, at a point a distanagfrom the 4dE
disc and on the axis of the disc? A
Solution
Consider the disc to be made up of concentric rinfghickness dr
dr, one of which is shown. The charg® dn this ring is equal to %
. : . . R .
O x its area, o2rrodr . As proved in the previous question, the - X
contribution to the field at P due to one ring adliusr is = R
4E = dQz _ rozar
- 5 9\3/27 5 9\3/2°
4T[EO(Z +r ) 2&0(2 +r )
¢ d
The total field E= j rozer i
0 2&0 z +r2

This is easiest done by making the substitutioh=u = 2r dr = du

R Umax
E= rozdr _ ozdu where u.. =R
3/2 - 5 3/2 max —
0280 z%+1? 0 4eo(z +u)
B Umax
_0oz| 2 _ oz 1 N 1
- 172 - B 72",
4eg (22 +u) 2% (22+R2) z
L 0

[Qu4




Question 5
What is the electric field generated by a largeesharrying a uniform charge densityC ni??

Solution
We can make use of the solution to the previoustiueby considering the field due to a disc in
the limit that its radiu® goes to infinity. In that case, the above expoesgu4] reduces to

o

2go |

The electric field is therefore constant, and naykr depends on (This expression fdg will
appear later when we look at capacitors.)



