Example of Use of Kirchhoff's Rules

What is the effective resistance of the network above? When connected to a source of EMF as shown, what are the potentials at points $A \& B$ (with respect to the negative side of the battery)?

Use the following component values: $\mathcal{E}=3 \mathrm{~V}, R_{1}=3 \Omega, R_{2}=4 \Omega, R_{3}=10 \Omega, R_{4}=7 \Omega$, $R_{5}=4 \Omega$.
$\begin{array}{ll}\text { Applying Kirchhoff's junction rule at A: } & I_{1}-I_{3}-I_{4}=0 \\ \text { Applying Kirchhoff's junction rule at B: } & I_{2}+I_{3}-I_{5}=0\end{array}$
Applying Kirchhoff's loop rule: clockwise, upper loop:

$$
\begin{equation*}
-I_{2} R_{2}+I_{3} R_{3}+I_{1} R_{1}=0 \tag{3}
\end{equation*}
$$

Applying Kirchhoff's loop rule: clockwise, lower loop:

$$
\begin{equation*}
-I_{5} R_{5}+I_{4} R_{4}-I_{3} R_{3}=0 \tag{4}
\end{equation*}
$$

Applying Kirchhoff's loop rule: clockwise, left loop:

$$
\begin{equation*}
\mathcal{E}-I_{1} R_{1}-I_{4} R_{4}=0 \tag{5}
\end{equation*}
$$

(Note: we have 5 unknowns - the 5 currents - so require 5 independent equations.)
(1) \Rightarrow

$$
\begin{equation*}
I_{3}=I_{1}-I_{4} \tag{1’}
\end{equation*}
$$

(2) \Rightarrow

$$
I_{3}=I_{5}-I_{2}
$$

$$
\begin{equation*}
\Rightarrow \quad I_{5}-I_{2}=I_{1}-I_{4} \tag{2’}
\end{equation*}
$$

(3) $\Rightarrow \quad-I_{2} R_{2}+\left(I_{1}-I_{4}\right) R_{3}+I_{1} R_{1}=0$
(4) $\Rightarrow \quad-I_{5} R_{5}+I_{4} R_{4}-\left(I_{1}-I_{4}\right) R_{3}=0$
$(6) \times R_{5}-(7) \times R_{2} \Rightarrow \quad-I_{2} R_{2} R_{5}+\left(I_{1}-I_{4}\right) R_{3} R_{5}+I_{1} R_{1} R_{5}-\left(-I_{5} R_{2} R_{5}+I_{4} R_{2} R_{4}-\left(I_{1}-I_{4}\right) R_{2} R_{3}\right)=0$

$$
\Rightarrow \quad\left(I_{5}-I_{2}\right) R_{2} R_{5}+\left(I_{1}-I_{4}\right) R_{3} R_{5}+I_{1} R_{1} R_{5}-I_{4} R_{2} R_{4}+\left(I_{1}-I_{4}\right) R_{2} R_{3}=0
$$

Or, using (2') $\quad\left(I_{1}-I_{4}\right)\left(R_{2} R_{5}+R_{3} R_{5}+R_{2} R_{3}\right)+I_{1} R_{1} R_{5}-I_{4} R_{2} R_{4}=0$
It is probably easier at this point to substitute in the component values:

$$
(4 \times 4+10 \times 4+4 \times 10)\left(I_{1}-I_{4}\right)+3 \times 4 I_{1}-4 \times 7 I_{4}=0
$$

$$
108 I_{1}-124 I_{4}=0 \quad \Rightarrow \quad I_{4}=\frac{108}{124} I_{1}=\frac{27}{31} I_{1}
$$

(5) \Rightarrow
$\mathcal{E}-I_{1} R_{1}-I_{4} R_{4}=0$
$\Rightarrow \quad 3-3 I_{1}-7 \times \frac{27}{31} I_{1}=0$
$\Rightarrow \quad I_{1}=0.330 \mathrm{~A}$
$I_{4}=\frac{27}{31} I_{1}=0.287 \mathrm{~A}$
(1) $\Rightarrow \quad I_{3}=I_{1}-I_{4}=0.043 \mathrm{~A}$
$(3) \Rightarrow \quad-4 I_{2}+10 I_{3}+3 I_{1}=0 \quad \Rightarrow \quad I_{2}=\frac{10 I_{3}+3 I_{1}}{4}=0.355 \mathrm{~A}$
(2) $\Rightarrow \quad I_{5}=I_{2}+I_{3}=0.398 \mathrm{~A}$

$$
I_{\text {Total }}=I_{1}+I_{2}=0.685 \mathrm{~A}
$$

Effective resistance $\quad R_{\mathrm{Eff}}=\frac{\mathcal{E}}{I_{\text {Total }}}=\frac{3}{0.685}=4.38 \Omega$

$$
\begin{aligned}
& V_{\mathrm{A}}=I_{4} R_{4}=0.287 \times 7=2.009 \mathrm{~V} \\
& V_{\mathrm{B}}=I_{5} R_{5}=0.398 \times 4=1.592 \mathrm{~V}
\end{aligned}
$$

