newton's laws of motion

You will all be familiar with Newton's laws of motion, so we will just summarize them here, using the symbols F for force (which is a vector quantity), v for velocity (also a vector quantity) and m for mass (which is a scalar).

Iaw I Unless a resultant force acts on a body, its velocity will not change.
i.e. if $F=0, \Delta_{V}=0$

This gives us an intuitive meaning of force: a resultant force is that agent which changes the velocity (and momentum) of a body. Law I is a special case of law II.
law II The rate of change of momentum of a body is proportional to the resultant force that acts on it.
i.e. $\quad F_{\alpha} d(m v) / d t$
or $\quad F=k d(m v) / d t$
Hence $F=k m d v / d t+k v d m / d t$

$$
=\mathrm{km} \mathrm{dv} / \mathrm{dt} \quad \text { (since } \mathrm{dm} / \mathrm{dt}=0 \mathrm{in} \text { most problems in classical }
$$ mechanics)

$$
=\mathrm{kma}
$$

We then choose $k=1$, and in so doing we also define our unit for force.
$\mathrm{F}[\mathrm{N}]=\mathrm{m}[\mathrm{kg}] a\left[\mathrm{~ms}^{-2}\right]$
1 newton (N) is that force which accelerates a mass of 1 kg at $1 \mathrm{~ms}^{-2}$. $\mathrm{F}=\mathrm{ma}$ is one form of Newton's second law.
law III If body A exerts a force F on body B, then body B exerts a force F on
body A of the same size and along the same line, but in the opposite direction.
i.e. $F_{A B}=-F_{B A}$

Law III refers to a pair of forces which must always act on two different bodies. These two forces have the same size at every instant of time.

