kepler＇s second law

Kepler also investigated the speeds of the planets and found that the closer in its orbit a planet is to the Sun，the faster it moves．Drawing a straight line connecting the Sun and the planet（the radius vector），he discovered that he could express this fact in his second law－the law of areas：

For any planet the radius vector sweeps out equal areas in equal times．
figure 32：Kepler＇s second law．

Figure 32 shows the positions of a planet，$P_{1}, P_{2}, P_{3}, P_{4}$ ，at times $t_{1}, t_{2}, t_{3}, t_{4}$ ． Between times t_{1} and t_{2} the planet＇s radius vector sweeps out the area bounded by the radius vectors $S P_{1}, S P_{2}$ and the arc $P_{1} P_{2}$ ．Similarly，the area swept out by the radius vector in the time interval（ $t_{4}-t_{3}$ ）is the area $S_{3} P_{4}$ ．Then，Kepler＇s second law states that：
area $\mathrm{SP}_{1} \mathrm{P}_{2} /\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)=\operatorname{area} \mathrm{SP}_{3} \mathrm{P}_{4} /\left(\mathrm{t}_{4}-\mathrm{t}_{3}\right)=$ constant.
If $t_{2}-t_{1}=t_{4}-t_{3}$, then area $S P_{1} P_{2}=$ area $S P_{3} P_{4}$.

If the area is the area of the ellipse itself (which is given by 7 mab), the radius vector will be back to its original position and Kepler's second law therefore implies that the planet's orbital period is constant.

It is possible to derive a mathematical expression for Kepler's second law by supposing that the time interval ($t_{2}-t_{1}$) is very small and equal to interval ($t_{4}-t_{3}$). Position P_{2} will be very close to P_{1}, just as P_{4} will be close to P_{3}. The area $S P_{1} P_{2}$ is then approximately the area of triangle $\mathrm{SP}_{1} \mathrm{P}_{2}$, or
$1 / 2 S P_{1} \times S P_{2} \times \sin P_{1} S P_{2}$.
If angle $P_{1} S P_{2}$ is expressed in radians we may write
$\sin \mathrm{P}_{1} S \mathrm{P}_{2}=$ angle $\mathrm{P}_{1} S \mathrm{P}_{2}=\mathrm{G}_{1}$,
since angle $P_{1} S P_{2}$ is very small. Also,
$S P_{1}=S P_{2}=r_{1}, \quad$ say,
so that the area $S P_{1} P_{2}$ is given by
$1 / 2 \mathrm{r}^{2}{ }_{1} \mathrm{~B}_{1}$.
Similarly, area $\mathrm{SP}_{3} \mathrm{P}_{4}$ is given by
$1 / 2 \mathrm{r}^{2}{ }_{2} \mathrm{O}_{2}$,
where $S P_{3}=r_{2}$ and angle $P_{3} S P_{4}=\theta_{2}$. Let $t_{4}-t_{3}=t_{2}-t_{1}=t$. Then, from Kepler's second law,
${ }^{1 / 2} r^{2}{ }_{1}\left(\Theta_{1} / t\right)=1 / 2 r^{2}{ }_{2}\left(\Theta_{2} / t\right)=$ constant.
But $\Theta /$ t is the angular velocity, ω, in the limit when t tends to zero. Hence
$1 / 2 r_{1} 1=1 / 2 r_{2} \quad 2$ = constant,
is the mathematical expression of Kepler's second law. In order for this law to be obeyed, the planet has to move fastest when its radius vector is shortest, at perihelion, and slowest when it is at aphelion, as shown in this java applet.

