
polytropes          

A full solution of the equations of stellar structure requires a complex computer
code. Fortunately, by adopting various simplifying assumptions, it is possible to
solve the equations of stellar structure using a much less complicated code, or even
in some cases do without a computer altogether and solve the equations
analytically. For example, if we adopt a simple relation between pressure and
density which is valid throughout the star, the equations of hydrostatic support and
mass conservation can be solved independently of the other 4 equations of stellar
structure, resulting in a model in which the structure of the star is independent of
the heat flowing through it. Such polytropic models played an important role in the
development of stellar structure theory, particularly before the advent of powerful
computers, and we will now look at them in detail.

Let us proceed by multiplying the equation of hydrostatic support by r2 /  and
differentiating with respect to r, giving

d / dr [(r2 / ) dP / dr] = - G dM / dr .

Substituting the equation of mass conservation on the right-hand side, we obtain

(1 / r2) d / dr [(r2 / ) dP / dr] = - 4  G .

Let us now adopt an equation of state of the form

P = K  (n+1)/n, 

where K is a constant and n is known as the polytropic index. Combining the last
two equations, we obtain the following non-linear second-order differential equation
for the density inside the star

(1 / r2) d / dr [(r2 / ) . [(n+1)K / n] . 1/n d  / dr] = - 4  G ,

which can be rearranged to

[(n+1)K / 4  Gn] . (1 / r2) d / dr [( r2 / (n-1)/n) d  / dr] = - .
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It is convenient at this point to replace r and  in the above equation by
dimensionless variables. We therefore define a dimensionless variable, , where

 = r / ,

and  is a constant scale factor. We also define a dimensionless variable, , where

 n
 =  / c

and c is the central density. Substituting these dimensionless variables into the
second-order differential equation derived above, we obtain

[(n+1)K / 4  Gn] . (1 / 2 2) d / d  [( 2 2 / c
(n-1)/n 

n-1
) d c

n
 / d ] = - c

n
,

which simplifies to

[(n+1)K / 4  G c
(n-1)/n] . (1 / 2 2) d / d  ( 2 d  / d ) = - 

n
.

The coefficient in square brackets on the left-hand side of this equation is a
constant having the dimension length squared. The square root of this coefficient is
hence an appropriate choice for , i.e.

 = [(n+1)K / 4  G c
(n-1)/n] 0.5.

Combining the last two equations, we obtain the Lane-Emden equation: 

(1 / 2) d / d  ( 2 d  / d ) = - 
n
.

To solve the Lane-Emden equation, we need two boundary conditions. At the centre
of the polytrope, i.e. when  = 0,  = c and hence  = 1. A second central
boundary condition follows from the equation of hydrostatic support, in which the
M/r2 term tends to zero as r tends to zero. This means that dP / dr = 0 at r=0 and,
from the polytropic equation of state, d  / d  = 0 at  = 0.

In the next section we will look at how these boundary conditions are used to solve
the Lane-Emden equation and how the solutions compare to more sophisticated
models of stellar structure. 
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