PHY213 - STELLAR STRUCTURE AND EVOLUTION

Aims Objectives

PHY213 - Syllabus

II. The observed properties of stars

introduction observable properties of stars the Hertzsprung-Russell diagram the mass-luminosity relation clusters of stars

III. The equations of stellar structure

introduction timescales equation of hydrostatic support equation of mass conservation accuracy of hydrostatic assumption validity of spherical symmetry assumption minimum value for central pressure of a star virial theorem minimum mean temperature of a star state of stellar material energy generation equation of energy production energy transport convection equation of radiative transport solving the equations of stellar structure

IV. The physics of stellar interiors

introduction
equation of state of an ideal gas
mean molecular weight
equation of state of a degenerate gas
opacity
approximate form for opacity
energy release from nuclear reactions
occurrence of fusion reactions
hydrogen and helium burning
approximate form for energy release

V. The structure of main-sequence stars

introduction homologous stellar models the M-L and L-T_e relations polytropes solving the Lane-Emden equation detailed stellar models

VI. The evolution of stars

introduction the evolution of low-mass stars the evolution of high-mass stars

removed from 2011 course: white dwarfs removed from 2011 course: neutron stars removed from 2011 course: black holes

removed from 2011 course: The lives of Binary stars

a brief history of binary stars the birth of binary stars the binary star zoo the evolution of binary stars why study binaries?