
Lecture 7 

Energy transport by radiation  

The complete treatment of the transport of energy by radiation, and the interaction 
between radiation and matter, is a research topic in its own right, which has been 
extensively treated in the literature (e.g. Mihalas D., 1978, Stellar Atmospheres, 2nd 
ed., W. H. Freeman, San Francisco). Such a complete treatment is required to 
analyze the properties of, for example, stellar atmospheres or the interstellar 
medium. In stellar interiors, however, it is possible to get by with a simplified 
description whose results agree with those of the more complete theory in the limit 
where the mean free path of the photons is very short. 

  

7.1. Mean free path and opacity 

The mean free path of a photon depends on a microscopic interaction between 
radiation and matter. Traditionally this interaction is described in terms of a cross 

section σR, such that, on average, a photon interacts with an atom if it passes within 

the area σR around the atom. If the number of atoms per unit volume is n , the 

mean free path λph of a photon is such that 

        
  (7.1) 

Instead of using λph to describe the interaction between matter and radiation it is 

conventional, and convenient, to use the opacity κ , defined as 

                  
                  (7.2) 

Note that n/ρ is the number of atoms per unit mass; hence   κ is the total cross 

section per unit mass. If σR and n/ρ   is independent on the state of the gas (as 

described by its density and temperature), it follows that κ  is also independent on 

ρ and T. 



Typical values for the opacity for stellar material are of order κ 1cm2/g . with 

Typical values of density of order ρ 1g/cm3
, the typical values of the mean free 

path are λph 1cm , i.e. stellar matter is very opaque. It follows that for radiative 

transport in stars, the mean free path λph of the “transporting particles” (photons) is 

very small compared to the characteristic length R (stellar radius) over which the 
transport extends. In this case, the transport can be treated as a diffusion process, 
which yields an enormous simplification of the problem. 

  

7.2. The diffusion approximation 

In this section we show that the diffusive flux j of “transporting particles” (per unit 

area and time) between places of different particle density n is given by 

                                              (7.3) 

where D is the coefficient of diffusion, 

                                                (7.4) 

determined by the average values of mean velocity v and mean free path λ of the 
particles. This result is, of course, of much wider applicability, not limited by the 
problem of radiation diffusion. 

 

Figure 7.1. Particles passing through the plane at x=0 at the angle θ with the 

normal originate, on average, at coordinate x=-λcosθ, where λ is the mean free 
path. 

We consider the transport of particles in the time interval dt through an area dA 

orthogonal to axis x , at x=0 (Fig. 7.1). We choose axis x in the direction of n, 

so that n=n(x) in the vicinity of x=0, and dn/dx>0. We describe the direction 



of motion of particles by the angle θ with axis x . The motion of the particles is 
assumed to be almost isotropically distributed in direction; then out of the total 

number of particles, the fraction of particles with directions between θ and θ+dθ 

is 2πsinθdθ/4π=(1/2)sinθdθ. 

We first consider particles that go through dA  with directions between θ and 

θ+dθ . On average, they come from the distance λcosθ from the plane, where 

the particle density is n(x)=n(-λcosθ) . Their contribution to the flux of particles 

through dA is 

 (7.5) 

The net number of particles dN passind through dA  from the left to the right during 

time interval dt is obtained by integrating over all directions: 



 (7.6) 

where we used a Taylor expansion of n(x) in x , which is 

n(x) n(0)+x(dn/dx)x=0. Comparing with equation (7.3), we have 

|j|=dN/dA/dt and | n|=dn/dx , and thus the diffusion coefficient D is given 
by the equation (7.4). 

  

7.3. Equation of radiative transport 



We now apply the diffusion approximation to the energy transport by radiation. In 

order to obtain the diffusive flux of radiative energy F , we replace the number 

density of transporting particles by the energy density of radiation uR, mean velocity 

v by the velocity of light c , and λ by λph=1/(κρ) (equation 7.2). Owing to the 

spherical symmetry of the problem, F has only a radial component Fr=|F|=F, and 

n reduces to the derivative in radial direction, duR/dr. Then equations (7.3, 7.4) 
give immediately that 

            
(7.7) 

To evaluate the radiative energy flux F, we now only need to specify the energy 
density  of the radiation. 

The radiation energy density uR in deep stellar interior is described in the black body 
approximation. The black body is a perfect absorber and a perfect radiator. If the 
radiation is in thermodynamic equilibrium with its surroundings, as, for example, in 

an adiabatic enclosure whose walls are maintained at a constant temperature T, each 
unit area of the surface emits as much radiant energy as it absorbs in each 
frequency, and the conditions of black-body radiation are fulfilled. 

The specific intensity Iν of the black-body emission (the amount of energy per unit 
frequency interval and per unit time, flowing through unit area in unit solid angle) is 
given by the Planck function 

   (7.8) 

where ν is frequency (ν=c/λ, where λ is wavelength), h is Planck’s constant, k is 

Boltzman’s constant, and c is speed of light. 

We have already used the Planck function in Lecture 2, in discussing stellar luminosity 
(equations 2.9-2.13). Indeed, using the geometry shown in Figure 7.1, the energy 



emitted in unit time by unit area of a black body in all the directions and in all the 
frequencies is 

            
(7.9) 

which gives L=4πR2σT4
 (i.e. equation 2.13), where 

                                          (7.10) 

is Stefan-Boltzman constant (the last expression can be obtained with using 

∫0
∞x3dx/(ex-1)=π4/15 ). 

We now need a relation between integrated radiation intensity 

       
       (7.11) 

and the energy density of the radiation uR. To get this relation, consider the amount 

of energy crossing small area ds in solid angle dω in time dt; this is I ds dω dt 
. This energy occupies the volume ds c dt . The energy density of the radiation 

propagating in a solid angle dω is thus  



                     (7.12) 

The total energy density is obtained by integrating over all the solid angles, 

∫ dω=4π : 

     
                         (7.13) 

using equation (7.11). Introducing 

             
                   (7.14) 

known as Stefan radiation constant, a=7.56×10-16   Jm-3K-4
, we have 

                                              (7.15) 

the expression for the radiation energy density which we need in our analysis. 

Going back to the equation (7.7) for the diffusive flux of radiative energy F , we get 

                          
        (7.16) 

If the energy transport occurs only through radiation, the total amount of energy 

transported through a sphere of radius r in unit time is 

                                     
   (7.17) 

We therefore finally arrive to the equation 



   
                          (7.18) 

which relates the temperature gradient with L(r) , one of the fundamental equations 
of stellar structure. 

  

7.4. Opacity in stellar interiors. 

The computation of the cross section σR is in general a very complicated numerical 
problem, where account must be taken of the detailed interaction between the 
radiation and the different atoms in the gas. Hence it is common in  computations of 

stellar models to use tables over the dependence of opacity on ρ , T and the 
chemical composition. However, there are simple approximations which give a feel for 
the dependence of the opacity on the thermodynamical state. 

The opacity arising from the interaction between radiation and atoms can 
approximately be expressed as 

 (7.19) 

the so-called Kramers approximation. This contribution dominates in the interior of 
relatively light stars, where the temperature is relatively low. At higher temperature, 
i.e. in more massive stars, scattering off free electrons dominates. The cross section 

σR for this process is independent of ρ and T ; the same is true of the number 

ne/ρ of electrons per unit mass, if we assume that the gas is completely ionized. 

Hence the opacity is also independent on ρ and T (see equation 7.2); one finds that 

                       (7.20) 

  

7.5. The main sequence. 

We can estimate the luminosity of stars from the equation of radiative transport, 
combined with our previous estimates of the temperature and density in stars. As 
usual, the purpose is to get a feeling, within a few orders of magnitude, for the 
characteristic value of the luminosity, and an idea about how it varies with the 



parameters characterizing the star. Hence in general we neglect factors of order 
unity. 

We assume the ideal gas law; then we have the estimate for the temperature 

                                         
(7.21) 

(equation 4.10), and we estimate the density by mean density 

                                                  (7.22) 

The luminosity is determined by the equation of radiative transport (equation 7.18), 
which we write as 

            
                     (7.23) 

We approximate the opacity by a power law 

                                         
(7.24) 

(cf. equations 7.19 and 7.20). Finally we replace r by R , and approximate 

dT4/dr by T4/R . Then we obtain 



     
  (7.25) 

It may seem peculiar that we can calculate the stellar luminosities without taking into 
account the processes that are responsible for energy generation. The explanation is 
that the star is in equilibrium, so that all parts of the star have to “fit together”. The 
energy production has to adjust itself to produce the amount of energy necessary to 
satisfy the equation (7.25). This is possible because the rate of energy production is a 
very sensitive function of temperature, as shown in Lecture 6. Hence a small 
modification of the central temperature is sufficient to obtain the correct luminosity. 

But we can also estimate L using the energy generation rates. Comparison of the two 
results allows to establish simple scaling relations which describe the location of the 
main-sequence stars on the Hertzsprung-Russel diagram. We distinguish between two 
cases: 

  

(1)  Lower main-sequence, relatively low masses. 

Here the temperature is relatively low, and the opacity is dominated by atomic 
processes, in particular bound-free transitions. Hence the opacity can be 

approximated by the Kramers law, i.e. λ=1, ν=3.5. Then for stars of nearly the 
same chemical composition, equation (7.25) gives 

                                   
   (7.26) 

The energy generation is dominated by the PP chain. For stars of nearly the same 

polytropic index, equation (6.10) gives, with using α=4.5 , 

                                   
   (7.27) 



We also have a relation between stellar luminosity and its effective temperature 
(equation 2.13), which gives 

                                            (7.28) 

From these three relations, we have 

 (7.29) 

Relation between L and Teff, represented by the HR diagram, is thus 

                                             (7.30) 

It predicts that the stars of the lower main sequence shall be represented by a 

straight line in the log L - log T coordinates of the HR diagram, with slope of 
about 4. 

  

(2) Upper main sequence, relatively massive stars. 

Here the temperature is relatively high, and the opacity is dominated by the electron 

scattering. In the equation (7.25), we have  λ=ν=0 , and hence 

                                                 (7.31) 

The energy generation for massive main-sequence stars is dominated by CNO cycle. 

The energy generation rate per unit mass ε is roughly proportional to ρT16
 for stars 

of similar chemical composition (equation 6.11). We can thus use the same equation 

(6.10) for the luminosity, but now with α=16  , getting 

                                         
(7.32) 

Equation (7.28) remains the same, and we now get 



 (7.33) 

A required relation between L and Teff is now 

                                            (7.34) 

The predicted slope of the the log L - log T relation on the HR diagram is now 
about 8.5 for the upper main sequence, about twice steeper than for the lower main 
sequence. 

The scaling relations developed in this section are, of course, very rough---they are 
based on the simplest order-of-magnitude estimates for the luminosity (equation 
7.25), provided by the equation of radiative energy transport (7.18). Also, as we will 
see in the next Lecture, radiation is not the only means of energy transport in stars. 
Nevertheless, these results are not very far from observations, and allow to get a 
good feeling about the origin of the well-defined main-sequence domain in the HR 
diagrams, without going into the extensive numerical computations.    

Exercises 

Exercise 7.1. A group of stars all have the same chemical composition, opacity 

dominated by electron scattering κ=0.2(1+X) cm2/g, and energy generation 

rate per unit mass ε=ε0ρT18
 with some constant ε0. Using simplest order-of-

magnitude considerations, estimate the dependence of R and L on stellar mass M for 

this group of stars.  

  

Exercise 7.2. Another group of stars has opacity of the Kramers type κ=κ0ρT-3.5
. 

From the equation of radiative transfer, deduce that 

 . 

The energy production rate for these stars is ε=ε0ρT16
. Deduce that 

 . 

Obtain the slope of the line in the H-R diagram, which represents the positions of this 

group of stars.  

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution7_1.htm�
http://www.maths.qmul.ac.uk/~svv/MTH725U/solution7_2.htm�


 


