
Lecture 4 

Hydrostatic equilibrium  

As argued in Lecture 1, the absence of changes in most stars over 
timescales of hours or days indicates that the forces acting on the matter 
in the stars are essentially perfectly balanced. Here we analyze this 
constraint in more detail. 

4.1. Equation of hydrostatic support 

 

Figure 4.1. Mass shell in a spherically symmetric star. In hydrostatic 
equilibrium, the pressure difference over the shell balances the 

gravitational force on dm due to the mass m(r) interior to  r. 

We consider a spherical shell in the star, between the distance r and the 

distance r+dr from the center of the star. To obtain the equation of 
motion for the cell, we must evaluate the forces acting on the shell. One 
force is gravity. It is well known that the gravitational force at the shell 
arises solely from the mass contained within the shell. Let this mass be 

m.  Then the gravitational acceleration is              Gm/r2
, where we 

count forces and accelerations positive in the direction of increasing r. 

The volume of the shell is 4πr2dr. Hence, if the density of matter in the 

shell is ρ, the mass in the shell is 4πr2ρdr, and the gravitational force 
is 



                                (4.1) 

The second force arises from the pressure difference across the shell. 

Since pressure P is defined as force per unit area, this force is 

 (4.2) 

by making a Taylor expansion of P. Hence, by balancing mass times 
acceleration with the combined force, the equation of motion of the shell 
is obtained as 

                          (4.3) 

or 

                             (4.4) 

If we demand that the star be in equilibrium, so that the acceleration 
vanishes, the pressure gradient must be determined by 



                         
                (4.5) 

This is the first of the equations of stellar structure. 

This equation must be supplemented by an equation relating m to the 
other properties of the star. It follows immediately from the definition of 

m, and the fact that the mass in the shell is 4πr2ρdr , that 

               
                       (4.6) 

and hence 

  
                                        (4.7) 

This is our second equation. 

  

4.2. Estimates of stellar internal pressure and temperature 

From the equation of hydrostatic support (4.5),  we may obtain an 

estimate of the central pressure Pc of a star with mass M and radius R. 
We make the following approximations: 

-         Replace dP/dr by Pc/R. 

-         Replace m by M. 

-         Replace r by R. 

-         Replace ρ by the mean density, approximated as M/R3
. 

Then equation (4.5) gives 



                                          
    (4.8) 

or 

                                            
   (4.9) 

If we assume the ideal gas law, equation (3.13), we may estimate the 
central temperature as 

                 
    (4.10) 

where μc is the central mean molecular weight. In terms of solar values 
we obtain 

   (4.11) 



 (4.12) 

where the value of μc was obtained from equation (3.20), with 

X=0.35, Z=0.02. 

The interpretation of these results is the usual: they are obviously not 
accurate estimates of the central pressure or temperature of a star, but 
they provide an order of magnitude. After all, without any prior 
knowledge it would be difficult to guess whether the central pressure of 
the Sun was 1010, 1020, or 1030 N m-2 ! In fact the estimates are 
reasonably (in the case of the temperature, fortuitously) accurate: 
realistic computations of solar models show that the solar central pressure 
is 2.4×1016 N m-2 and the solar central temperature is 1.5×107 K. It 
should be noted also that the estimate for the pressure is obtained solely 
on the basis of Newtonian mechanics; the estimate of the temperature in 
addition required a minimal amount of thermodynamics. Surely a good 
example of the power of basic physics to provide knowledge about the 
internal properties of stars. 

The second aspect of the simple estimates is that they indicate how the 
pressure and temperature scale with the stellar mass and radius. This 
dependence has a wider applicability. We shall later see several examples 
of how this scaling can be given a more precise meaning for particular 
types of simplified stellar models. And even for realistic stellar models, 
with detailed physics, one often find that the scaling provided by the 
simple estimates are surprisingly accurate when the stellar parameters 
are varied. Thus these estimates are very helpful for the interpretation of 
detailed numerical results. 

4.3. Lower limit on the central pressure 

It is of some interest that a strict limit can be obtained for the central 
pressure of a star, with no other assumptions beyond hydrostatic 
equilibrium. It is obtained by manipulating equation (4.5), using also 
equation (4.7): 



 (4.13) 

and hence 

          
      (4.14) 

This shows that the quantity Ψ(r)=P+Gm2/(8πr4) is a decreasing 

function of r. At the center P=Pc; also, equation (4.7) shows that m 
 r3

 for small r, so that the second term in Ψ  vanishes at r=0. 

Hence Ψ(0) = Pc . At the surface P is essentially zero. Thus, from the 

fact that Ψ is a decreasing function of r it follows that  



             
    (4.15) 

and this is the desired limit. 

It is remarkable that this limit is a strict mathematical result, valid for any 
stellar model in hydrostatic equilibrium, regardless of its other properties, 
such as equation of state or energy transport and production. Also, it 

confirms that GM2/R4
 is indeed a characteristic value for the internal 

pressure of stars. On the other hand, the limit is fairly weak, compared 
with the actual solar central pressure quoted above. 

4.4. The virial theorem 

From the equation of hydrostatic equilibrium we can derive an equation 
for the energetics of a star, which is of greatest importance for 
understanding stellar evolution. We begin by deriving an expression for 

the gravitational potential energy of the star. At the distance r from the 

centre the gravitational potential is Gm/r, if we choose the arbitrary 
constant in the potential such that it is zero infinitely far  from the star. 
Hence the total potential energy is 

  (4.16) 

This may be rewritten, by using the equation of hydrostatic support (4.5) 
and integrating by parts: 



    (4.17) 

Here the integrated terms vanishes, since P=0 at the surface r=R. 

Since 4πr2dr is a volume element, we have 

                          
            (4.18) 

where integration is performed over the volume V occupied by the star. 

But for the ideal gas, pressure P is related with internal energy per unit 

volume u as u=3/2P (equation 3.21), and we finally obtain 

                           
                  (4.19) 

where U is the total thermal energy of the star. This relation is called the 
virial theorem. It follows then that the total energy of the star is 



                         (4.20) 

that the total energy is negative indicates that the star is stable: the 
thermal energy in the star is insufficient to cause it explode. 

The last equation allows us to understand the evolution of stars where 
there are no sources of nuclear energy. The tendency for such a star is to 
contract under gravity. In this way the gravitational potential energy 
becomes more negative. The same is therefore true of the total energy of 
the star. However, since globally there has to be energy conservation, the 
energy lost by the star has to go somewhere else, and hence it is radiated 
from the star. Specifically, the luminosity of a contracting star is given by 

           
    (4.21) 

where in the last approximate identity we used the estimate in equation 
(1.5) for the total gravitational potential energy. From equation (4.20) it 

follows also that the thermal energy U increases; so therefore does the 
average temperature in the gas. Of the gravitational potential energy that 
is released in the contraction, half is radiated away and the other half 
goes to heat up the gas. This demonstrates the paradoxical property of 
selfgravitating systems that they have a negative specific heat: as they 
loose energy, they become warmer. 

It follows from equation (4.21) that  

                          
            (4.22) 



where tKH is the Kelvin-Helmholtz time defined in equation (1.6). This 

confirms that tKH is a characteristic time for the gravitational contraction 
of a star. It might be noted that the equality in equation (4.19) shows 

that tKH is also a characteristic time for the radiation of the thermal 
energy of the star. Hence changes that involve substantial losses or gains 

of energy can not take place on timescales shorter than tKH , at least as 
long as hydrostatic equilibrium is nearly maintained. Correspondingly, for 
changes that do occur on much shorter timescales the changes in energy 
must be very small; in other words, such changes are nearly adiabatic. 

Similar effects occur in later stages of stellar evolution, as nuclear fuels 
are exhausted in the core of the star: again, the result is a gravitational 
contraction which releases energy and heats up the core, until the point is 
reached where further nuclear reactions set in. In this case, however, the 
situation may be complicated by the presence elsewhere in the star of 
nuclear burning shells; also, one often finds that the outer parts of the 
star expand (which require energy to work against gravity) as the core 
contracts. Thus the understanding of these evolutionary phases is less 
straightforward; but the virial theorem still plays a central role. 

When the gas can not be regarded as ideal, or effects of ionization have 
to be taken into account, the simple equation (4.20) must be modified; 
but the general principles remain the same. 

Exercises 

Exercise 4.1. Assuming that the Sun has a constant density throughout 
its interior, what is the magnitude of the gravitational field (gravitational 

acceleration) half way in?  

Exercise 4.2. Show that for a star composed of an ideal gas of uniform 
density, the central pressure is 

 

and the central temperature is 

 

 

http://www.maths.qmul.ac.uk/~svv/MTH725U/solution4_1.htm�

