
Chapter 10

Rigid Bodies

10.1 Moments of Inertia

A rigid body is a collection of particles, as in Chapter 9, for which the relative distance

|xi − xj| between every pair (i, j) of particles is fixed. Such a body can be described

completely by the position of its centre of mass, X, and the rotation of the body about

X; no further information is necessary in order to know the position of every particle in

the body.

We shall use all the results of Chapter 9, except that we shall use a continuum limit:

we will regard the body V as being of density ρ and made up of infinitesimal “particles”

with volume dV , mass ρ dV and position vector x. So, for example, the centre of mass

is at

X =
1

M

∫∫∫
V

ρx dV

where

M =

∫∫∫
V

ρ dV.

The angular momentum about a is given by

H =

∫∫∫
V

ρ(x− a)× (ẋ− ȧ) dV

(compare with the definition in §9.2).

Suppose that a is a point which is part of the body, and that

the body is rotating with angular velocity ! about a. For any other

point x in the body, x−a is fixed relative to the body (any two parts
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of the body move and/or rotate together); so from §7.1,

d

dt
(x− a) = !× (x− a). (10.1)

Therefore

H =

∫∫∫
V

ρ(x− a)× [!× (x− a)] dV

=

∫∫∫
V

ρ
{
|x− a|2!− [(x− a) . !](x− a)

}
dV. (10.2)

Using summation convention,

Hi =
∫∫∫

V

ρ
{
|x− a|2δijωj − [x− a]jωj [x− a]i

}
dV

= Iijωj

where

Iij =
∫∫∫

V

ρ
{
|x− a|2δij − (xi − ai)(xj − aj)

}
dV

is the inertia tensor at a. This matrix relationship (H = I! where I is the matrix (Iij)) means that
H and ! are not necessarily parallel; but if ! is along an eigenvector of I — known as a principal axis
of I — then they will be.

Many rigid bodies have symmetries of various kinds: for example, a cylinder is rotationally symmetric
about its axis. Since the matrix I is an intrinsic property of the body and nothing else, it must share
these symmetries; in particular, its principal axes must coincide with the axes of symmetry. So if the
angular velocity vector is aligned with one of these axes then H ‖ !. We shall consider only this kind of
rotation in this course: more complicated motions in which H ∦ !, such as the spinning of a gyroscope,
are studied in the Part II course Classical Dynamics.

Definition: the moment of inertia of a body about a particular axis is

I =

∫∫∫
V

ρr2
⊥ dV

where r⊥ is the perpendicular distance from x to the axis.

This definition is only really useful when the axis coincides with one of the principal axes of the inertia
tensor at a.

Suppose that the body is spinning with angular velocity ! about

a. Let ω = |!| and n̂ = !/ω, so that |n̂| = 1. By Pythagoras,

r2
⊥ + [(x− a) . n̂]2 = |x− a|2.
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Now assume that H ‖ !, and let H = Hn̂. From (10.2) we have

H = ω

∫∫∫
V

ρ
{
|x− a|2n̂− [(x− a) . n̂](x− a)

}
dV

=⇒ n̂ . H = ω

∫∫∫
V

ρ
{
|x− a|2 − [(x− a) . n̂]2

}
dV

=⇒ H = ω

∫∫∫
V

ρr2
⊥ dV

= Iω.

Hence H = Iωn̂, i.e.,

H = I!. (10.3)

Examples:

• A uniform cylinder of mass M , length l and radius a, rotating

about its axis through the centre of mass X. Use cylindrical

polar coordinates (r, φ, z) with origin at X and z-axis along

the axis of rotation: it is obvious that r⊥ is simply r in this

coordinate system. The density is ρ = M/(πa2l), so

I =

∫∫∫
V

ρr2 dV

=
M

πa2l

∫ 1
2
l

z=− 1
2
l

∫ 2π

φ=0

∫ a

r=0

r2 r dr dφ dz (using the Jacobian J = r)

=
M

πa2l
(2πl)(1

4
a4)

= 1
2
Ma2.

• A uniform rod of mass M and length l, rotating about an axis

perpendicular to the rod through an end-point. Such a math-

ematically ideal rod is one-dimensional, so we replace
∫∫∫

dV

by
∫

dx. The density is M/l per unit length, so

I =

∫ l

0

M

l
x2 dx = 1

3
Ml2.

(Note that this is not the same as if the whole mass M were concentrated at x = 1
2
l.)
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• A sphere of mass M and radius a rotating about its centre of

mass. The direction of the axis does not matter, by symmetry;

choose it along the z-axis without loss of generality. Then

I =

∫∫∫
V

ρ(x2 + y2) dV.

We could simply evaluate this; or instead we can use the following trick which makes

the calculation a little easier. If we had chosen the x-axis rather than the z-axis

then we would have obtained

I =

∫∫∫
V

ρ(y2 + z2) dV

instead, and for the y-axis

I =

∫∫∫
V

ρ(x2 + z2) dV.

All three values must be equal by symmetry, so by adding and then converting to

spherical polar coordinates (r, θ, φ) we obtain

3I = 2

∫∫∫
V

ρ(x2 + y2 + z2) dV

=⇒ I = 2
3

∫ 2π

φ=0

∫ π

θ=0

∫ a

r=0

M
4
3
πa3

r2 r2 sin θ dr dθ dφ

=
M

2πa3
2π

[
− cos θ

]π

0

[
1
5
r5

]a

0

= 2
5
Ma2.

Somewhat contrary to intuition, a body can be said to be rotating about any point within the body
with the same angular velocity !. To see this, suppose that the body is rotating with angular velocity
! about a. Then for any point x within the body we have

d
dt

(x− a) = !× (x− a)

from (10.1). Let b be another point in the body. We have

d
dt

(b− a) = !× (b− a),

so
d
dt

(x− b) =
d
dt

(x− a + a− b) = !× (x− a)− !× (b− a) = !× (x− b).

So the body can equally well be said to be rotating with angular velocity ! about b.

For example, a uniform rod rotating with angular velocity ! about a fixed end-point w can be described
either as rotating about a = w, with ȧ = 0, or as rotating about its centre of mass a = X, in which
case a is moving. Since the moment of inertia I depends on both the direction of the axis and the point
about which the rotation is taking place, we need to calculate different values of I for these two cases.
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10.2 Perpendicular and Parallel Axes

The Perpendicular Axes Theorem

The perpendicular axes theorem applies to a lamina S, i.e.,

a flat, perfectly thin body lying without loss of generality

in the (x, y)-plane. If Ix and Iy are the moments of inertia

about the x- and y-axes respectively then the moment of

inertia about the z-axis is

Iz = Ix + Iy.

Proof: Ix =
∫∫

S
ρy2 dS and Iy =

∫∫
S

ρx2 dS, but

Iz =

∫∫
S

ρ(x2 + y2) dS

by definition. The result follows.

Example: what is the moment of inertia of a flat circular

wire loop of radius a and total mass M about a diameter?

Taking axes about the centre of the circle, we have Iz = Ma2 because every part of

the loop is a distance a from the origin. Clearly Ix = Iy by symmetry; so the moment of

inertia about a diameter is

Ix = 1
2
Iz = 1

2
Ma2.

The Parallel Axis Theorem

The parallel axis theorem applies to a general rigid body (not

necessarily a lamina). Let ICoM be its moment of inertia

about an axis through the centre of mass X, and let I be its

moment of inertia about a parallel axis. Then

I = ICoM + Md2

where M is the total mass and d is the perpendicular distance between the axes.

Proof: let n̂ be a unit vector parallel to both axes. Place

the origin of coordinates at X (i.e., set X = 0 by translating

the origin), and let Π be the plane through the origin per-

pendicular to n̂. Let d be the position vector of the point

where the second axis meets Π. Choose Cartesian coordinate

axes through the origin as follows: let the z-axis lie parallel

to n̂, and let the x-axis lie parallel to d, so that d = (d, 0, 0).
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Using this coordinate system, the perpendicular distance from a general point x within

the body to the first axis is
√

x2 + y2, while the distance from x to the second axis is

r⊥ =
√

(x− d)2 + y2. Hence

I =

∫∫∫
V

ρr2
⊥ dV

=

∫∫∫
V

ρ(x2 − 2dx + d2 + y2) dV

=

∫∫∫
V

ρ(x2 + y2) dV − 2d

∫∫∫
V

ρx dV + d2

∫∫∫
V

ρ dV.

Now, because we have set X = 0, we must have in this coordinate system that∫∫∫
V

ρx dV = 0.

The x-component of this vector equation gives us that
∫∫∫

ρx dV = 0. We also have that

ICoM =
∫∫∫

ρ(x2 + y2) dV and M =
∫∫∫

ρ dV by definition. Hence

I = ICoM + Md2.

Corollary: the moment of inertia about an axis which passes through the centre of mass

is lower than about any parallel axis.

Examples (using the results already obtained in §10.1):

• The moment of inertia of a uniform sphere of mass M

and radius a about an axis tangential to the surface is

given by I = 2
5
Ma2 + Ma2 = 7

5
Ma2.

• The moment of inertia of a rod of mass M and length

l about an axis through its midpoint (i.e., through the

centre of mass) is ICoM = 1
3
Ml2 −M(1

2
l)2 = 1

12
Ml2.

10.3 Energy

From §9.3, the kinetic energy of the body is T = 1
2
M ȧ2 + Trel where Trel is the kinetic

energy relative to a. Let y = x− a; then

Trel =

∫∫∫
V

1
2
ρẏ2 dV.
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Suppose that the body has angular velocity ! about a with moment of inertia I; then

from (10.1), ẏ = !× y, so

Trel = 1
2

∫∫∫
V

ρ(!× y) . ẏ dV

= 1
2

∫∫∫
V

ρ! . (y × ẏ) dV

= 1
2
! .

∫∫∫
V

ρy × ẏ dV

= 1
2
! . H

since H =
∫∫∫

V
ρ(x − a) × (ẋ − ȧ) dV is the angular momentum about a. But from

(10.3), H = I!, so we find that the “kinetic energy relative to a” is 1
2
Iω2 and

T = 1
2
M ȧ2 + 1

2
Iω2. (10.4)

This result applies in either of the “safe cases”, namely ȧ = 0 or a = X. In the latter

case we obtain

T = 1
2
MẊ2 + 1

2
ICoMω2.

10.4 Motion with Rotation and Translation

Problems involving rotation and/or translation of a rigid body may be approached by

making extensive use of the results

H = I!, (10.3)

Ḣ = G, (9.5)

MẌ = F, (9.2)

T = 1
2
M ȧ2 + 1

2
Iω2. (10.4)

Example: a rod of mass M and length l is pivoted at an end and

oscillates in a vertical plane. Let θ be the angle to the vertical;

then ! = θ̇n̂. The moment of inertia of the rod about the pivot is

I = 1
3
Ml2 from an example in §10.1; and the total couple is

G = (X− a)×Mg = −Mg(1
2
l sin θ)n̂
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where a is the pivot point. Note that we have the “safe” case ȧ = 0. Using H = I! and

Ḣ = G, we obtain

Iθ̈n̂ = −1
2
Mgl sin θ n̂

=⇒ θ̈ = −3g

2l
sin θ = − g

2
3
l
sin θ.

This is equivalent to a simple pendulum with length 2
3
l.

The Rolling Point of Contact

Consider a curved body, specifically, a cylinder or sphere of radius a,

rolling along a flat surface. Let X be the distance moved by the

centre of mass and let θ be the angle through which the body has

turned.

What is the instantaneous speed of the contact point? The centre of mass is moving

forward with speed Ẋ, while the whole body is rotating about its centre of mass with

angular velocity θ̇. The speed of the contact point relative to the centre of mass is

therefore aθ̇ (by considering ! × (x −X)); so the speed of the contact point relative to

the flat surface is Ẋ − aθ̇. This applies whether the body is rolling or slipping.

But if the body is rolling (and therefore, by implication, not slipping), we must have

X = aθ by considering arc length along the circumference of the body. Therefore

Ẋ = aθ̇

and we deduce that the rolling point of contact is instantaneously at rest. When the body

is slipping, the speed of the point of contact is non-zero.

One consequence of this result is that any frictional force R which acts on a rolling body does no work,
because it acts at the rolling point of contact which (instantaneously) always has zero velocity. Hence
friction does not slow down a rolling body. Needless to say, this is a mathematical idealisation: a real
body deforms slightly so that a whole section of it is in contact with the surface rather than just a single
point. Friction acts on that section, not all of which is at rest, resulting in non-zero retardation.
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