Chapter 10

Rigid Bodies

10.1 Moments of Inertia

A rigid body is a collection of particles, as in Chapter 9, for which the relative distance $\left|\mathbf{x}_{i}-\mathbf{x}_{j}\right|$ between every pair (i, j) of particles is fixed. Such a body can be described completely by the position of its centre of mass, \mathbf{X}, and the rotation of the body about \mathbf{X}; no further information is necessary in order to know the position of every particle in the body.

We shall use all the results of Chapter 9, except that we shall use a continuum limit: we will regard the body V as being of density ρ and made up of infinitesimal "particles" with volume $\mathrm{d} V$, mass $\rho \mathrm{d} V$ and position vector \mathbf{x}. So, for example, the centre of mass is at

$$
\mathbf{X}=\frac{1}{M} \iiint_{V} \rho \mathbf{x} \mathrm{~d} V
$$

where

$$
M=\iiint_{V} \rho \mathrm{~d} V .
$$

The angular momentum about \mathbf{a} is given by

$$
\mathbf{H}=\iiint_{V} \rho(\mathbf{x}-\mathbf{a}) \times(\dot{\mathbf{x}}-\dot{\mathbf{a}}) \mathrm{d} V
$$

(compare with the definition in §9.2).
Suppose that a is a point which is part of the body, and that the body is rotating with angular velocity $\boldsymbol{\omega}$ about \mathbf{a}. For any other point \mathbf{x} in the body, $\mathbf{x}-\mathbf{a}$ is fixed relative to the body (any two parts
of the body move and/or rotate together); so from §7.1,

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathrm{x}-\mathbf{a})=\boldsymbol{\omega} \times(\mathrm{x}-\mathbf{a}) . \tag{10.1}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\mathbf{H} & =\iiint_{V} \rho(\mathbf{x}-\mathbf{a}) \times[\boldsymbol{\omega} \times(\mathbf{x}-\mathbf{a})] \mathrm{d} V \\
& =\iiint_{V} \rho\left\{|\mathbf{x}-\mathbf{a}|^{2} \boldsymbol{\omega}-[(\mathbf{x}-\mathbf{a}) \cdot \boldsymbol{\omega}](\mathbf{x}-\mathbf{a})\right\} \mathrm{d} V . \tag{10.2}
\end{align*}
$$

Using summation convention,

$$
\begin{aligned}
H_{i} & =\iiint_{V} \rho\left\{|\mathbf{x}-\mathbf{a}|^{2} \delta_{i j} \omega_{j}-[\mathbf{x}-\mathbf{a}]_{j} \omega_{j}[\mathbf{x}-\mathbf{a}]_{i}\right\} \mathrm{d} V \\
& =I_{i j} \omega_{j}
\end{aligned}
$$

where

$$
I_{i j}=\iiint_{V} \rho\left\{|\mathbf{x}-\mathbf{a}|^{2} \delta_{i j}-\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)\right\} \mathrm{d} V
$$

is the inertia tensor at a. This matrix relationship $\left(\mathbf{H}=\boldsymbol{\omega} \boldsymbol{\omega}\right.$ where I is the matrix $\left.\left(I_{i j}\right)\right)$ means that \mathbf{H} and $\boldsymbol{\omega}$ are not necessarily parallel; but if $\boldsymbol{\omega}$ is along an eigenvector of \boldsymbol{I} - known as a principal axis of I - then they will be.

Many rigid bodies have symmetries of various kinds: for example, a cylinder is rotationally symmetric about its axis. Since the matrix I is an intrinsic property of the body and nothing else, it must share these symmetries; in particular, its principal axes must coincide with the axes of symmetry. So if the angular velocity vector is aligned with one of these axes then $\mathbf{H} \| \omega$. We shall consider only this kind of rotation in this course: more complicated motions in which $\mathbf{H} \nVdash \boldsymbol{\omega}$, such as the spinning of a gyroscope, are studied in the Part II course Classical Dynamics.

Definition: the moment of inertia of a body about a particular axis is

$$
I=\iiint_{V} \rho r_{\perp}^{2} \mathrm{~d} V
$$

where r_{\perp} is the perpendicular distance from \mathbf{x} to the axis.

This definition is only really useful when the axis coincides with one of the principal axes of the inertia tensor at a.

Suppose that the body is spinning with angular velocity $\boldsymbol{\omega}$ about
a. Let $\omega=|\boldsymbol{\omega}|$ and $\hat{\mathbf{n}}=\boldsymbol{\omega} / \omega$, so that $|\hat{\mathbf{n}}|=1$. By Pythagoras,

$$
r_{\perp}^{2}+[(\mathbf{x}-\mathbf{a}) \cdot \hat{\mathbf{n}}]^{2}=|\mathbf{x}-\mathbf{a}|^{2} .
$$

Now assume that $\mathbf{H} \| \boldsymbol{\omega}$, and let $\mathbf{H}=H \hat{\mathbf{n}}$. From (10.2) we have

$$
\begin{aligned}
\mathbf{H} & =\omega \iint_{V} \rho\left\{|\mathbf{x}-\mathbf{a}|^{2} \hat{\mathbf{n}}-[(\mathbf{x}-\mathbf{a}) \cdot \hat{\mathbf{n}}](\mathbf{x}-\mathbf{a})\right\} \mathrm{d} V \\
\Longrightarrow \quad \hat{\mathbf{n}} \cdot \mathbf{H} & =\omega \iint_{V} \rho\left\{|\mathbf{x}-\mathbf{a}|^{2}-[(\mathbf{x}-\mathbf{a}) \cdot \hat{\mathbf{n}}]^{2}\right\} \mathrm{d} V \\
\Longrightarrow \quad H & =\omega \iiint_{V} \rho r_{\perp}^{2} \mathrm{~d} V \\
& =I \omega
\end{aligned}
$$

Hence $\mathbf{H}=I \omega \hat{\mathbf{n}}$, i.e.,

$$
\begin{equation*}
\mathbf{H}=I \omega . \tag{10.3}
\end{equation*}
$$

Examples:

- A uniform cylinder of mass M, length l and radius a, rotating about its axis through the centre of mass \mathbf{X}. Use cylindrical polar coordinates (r, ϕ, z) with origin at \mathbf{X} and z-axis along the axis of rotation: it is obvious that r_{\perp} is simply r in this coordinate system. The density is $\rho=M /\left(\pi a^{2} l\right)$, so

$$
\begin{aligned}
I & =\iiint_{V} \rho r^{2} \mathrm{~d} V \\
& =\frac{M}{\pi a^{2} l} \int_{z=-\frac{1}{2} l}^{\frac{1}{2} l} \int_{\phi=0}^{2 \pi} \int_{r=0}^{a} r^{2} r \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} z \quad \text { (using the Jacobian } J=r \text {) } \\
& =\frac{M}{\pi a^{2} l}(2 \pi l)\left(\frac{1}{4} a^{4}\right) \\
& =\frac{1}{2} M a^{2} .
\end{aligned}
$$

- A uniform rod of mass M and length l, rotating about an axis perpendicular to the rod through an end-point. Such a mathematically ideal rod is one-dimensional, so we replace $\iiint \mathrm{d} V$ by $\int \mathrm{d} x$. The density is M / l per unit length, so

$$
I=\int_{0}^{l} \frac{M}{l} x^{2} \mathrm{~d} x=\frac{1}{3} M l^{2} .
$$

(Note that this is not the same as if the whole mass M were concentrated at $x=\frac{1}{2} l$.)

- A sphere of mass M and radius a rotating about its centre of mass. The direction of the axis does not matter, by symmetry; choose it along the z-axis without loss of generality. Then

$$
I=\iiint_{V} \rho\left(x^{2}+y^{2}\right) \mathrm{d} V
$$

We could simply evaluate this; or instead we can use the following trick which makes the calculation a little easier. If we had chosen the x-axis rather than the z-axis then we would have obtained

$$
I=\iiint_{V} \rho\left(y^{2}+z^{2}\right) \mathrm{d} V
$$

instead, and for the y-axis

$$
I=\iiint_{V} \rho\left(x^{2}+z^{2}\right) \mathrm{d} V
$$

All three values must be equal by symmetry, so by adding and then converting to spherical polar coordinates (r, θ, ϕ) we obtain

$$
\begin{aligned}
3 I & =2 \iiint_{V} \rho\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d} V \\
\Longrightarrow \quad I & =\frac{2}{3} \int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} \int_{r=0}^{a} \frac{M}{\frac{4}{3} \pi a^{3}} r^{2} r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi \\
& =\frac{M}{2 \pi a^{3}} 2 \pi[-\cos \theta]_{0}^{\pi}\left[\frac{1}{5} r^{5}\right]_{0}^{a} \\
& =\frac{2}{5} M a^{2} .
\end{aligned}
$$

Somewhat contrary to intuition, a body can be said to be rotating about any point within the body with the same angular velocity $\boldsymbol{\omega}$. To see this, suppose that the body is rotating with angular velocity $\boldsymbol{\omega}$ about \mathbf{a}. Then for any point \mathbf{x} within the body we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{x}-\mathbf{a})=\boldsymbol{\omega} \times(\mathbf{x}-\mathbf{a})
$$

from (10.1). Let \mathbf{b} be another point in the body. We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathbf{b}-\mathbf{a})=\boldsymbol{\omega} \times(\mathbf{b}-\mathbf{a})
$$

so

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(\mathrm{x}-\mathbf{b})=\frac{\mathrm{d}}{\mathrm{~d} t}(\mathrm{x}-\mathbf{a}+\mathbf{a}-\mathbf{b})=\boldsymbol{\omega} \times(\mathrm{x}-\mathbf{a})-\boldsymbol{\omega} \times(\mathrm{b}-\mathbf{a})=\boldsymbol{\omega} \times(\mathrm{x}-\mathbf{b}) .
$$

So the body can equally well be said to be rotating with angular velocity $\boldsymbol{\omega}$ about \mathbf{b}.
For example, a uniform rod rotating with angular velocity $\boldsymbol{\omega}$ about a fixed end-point \mathbf{w} can be described either as rotating about $\mathbf{a}=\mathbf{w}$, with $\dot{\mathbf{a}}=\mathbf{0}$, or as rotating about its centre of mass $\mathbf{a}=\mathbf{X}$, in which case \mathbf{a} is moving. Since the moment of inertia I depends on both the direction of the axis and the point about which the rotation is taking place, we need to calculate different values of I for these two cases.

10.2 Perpendicular and Parallel Axes

The Perpendicular Axes Theorem

The perpendicular axes theorem applies to a lamina S, i.e., a flat, perfectly thin body lying without loss of generality in the (x, y)-plane. If I_{x} and I_{y} are the moments of inertia about the x - and y-axes respectively then the moment of inertia about the z-axis is

$$
I_{z}=I_{x}+I_{y} .
$$

Proof: $I_{x}=\iint_{S} \rho y^{2} \mathrm{~d} S$ and $I_{y}=\iint_{S} \rho x^{2} \mathrm{~d} S$, but

$$
I_{z}=\iint_{S} \rho\left(x^{2}+y^{2}\right) \mathrm{d} S
$$

by definition. The result follows.
Example: what is the moment of inertia of a flat circular wire loop of radius a and total mass M about a diameter?

Taking axes about the centre of the circle, we have $I_{z}=M a^{2}$ because every part of the loop is a distance a from the origin. Clearly $I_{x}=I_{y}$ by symmetry; so the moment of inertia about a diameter is

$$
I_{x}=\frac{1}{2} I_{z}=\frac{1}{2} M a^{2} .
$$

The Parallel Axis Theorem

The parallel axis theorem applies to a general rigid body (not necessarily a lamina). Let $I_{\text {Com }}$ be its moment of inertia about an axis through the centre of mass \mathbf{X}, and let I be its moment of inertia about a parallel axis. Then

$$
I=I_{\mathrm{CoM}}+M d^{2}
$$

where M is the total mass and d is the perpendicular distance between the axes.
Proof: let $\hat{\mathbf{n}}$ be a unit vector parallel to both axes. Place the origin of coordinates at \mathbf{X} (i.e., set $\mathbf{X}=\mathbf{0}$ by translating the origin), and let Π be the plane through the origin perpendicular to $\hat{\mathbf{n}}$. Let \mathbf{d} be the position vector of the point where the second axis meets Π. Choose Cartesian coordinate axes through the origin as follows: let the z-axis lie parallel to $\hat{\mathbf{n}}$, and let the x-axis lie parallel to \mathbf{d}, so that $\mathbf{d}=(d, 0,0)$.

Using this coordinate system, the perpendicular distance from a general point \mathbf{x} within the body to the first axis is $\sqrt{x^{2}+y^{2}}$, while the distance from \mathbf{x} to the second axis is $r_{\perp}=\sqrt{(x-d)^{2}+y^{2}}$. Hence

$$
\begin{aligned}
I & =\iiint_{V} \rho r_{\perp}^{2} \mathrm{~d} V \\
& =\iiint_{V} \rho\left(x^{2}-2 d x+d^{2}+y^{2}\right) \mathrm{d} V \\
& =\iiint_{V} \rho\left(x^{2}+y^{2}\right) \mathrm{d} V-2 d \iiint_{V} \rho x \mathrm{~d} V+d^{2} \iiint_{V} \rho \mathrm{~d} V
\end{aligned}
$$

Now, because we have set $\mathbf{X}=\mathbf{0}$, we must have in this coordinate system that

$$
\iiint_{V} \rho \mathbf{x} \mathrm{~d} V=\mathbf{0}
$$

The x-component of this vector equation gives us that $\iiint \rho x \mathrm{~d} V=0$. We also have that $I_{\mathrm{CoM}}=\iiint \rho\left(x^{2}+y^{2}\right) \mathrm{d} V$ and $M=\iiint \rho \mathrm{d} V$ by definition. Hence

$$
I=I_{\mathrm{CoM}}+M d^{2} .
$$

Corollary: the moment of inertia about an axis which passes through the centre of mass is lower than about any parallel axis.

Examples (using the results already obtained in §10.1):

- The moment of inertia of a uniform sphere of mass M and radius a about an axis tangential to the surface is given by $I=\frac{2}{5} M a^{2}+M a^{2}=\frac{7}{5} M a^{2}$.
- The moment of inertia of a rod of mass M and length l about an axis through its midpoint (i.e., through the centre of mass) is $I_{\mathrm{CoM}}=\frac{1}{3} M l^{2}-M\left(\frac{1}{2} l\right)^{2}=\frac{1}{12} M l^{2}$.

10.3 Energy

From $\S 9.3$, the kinetic energy of the body is $T=\frac{1}{2} M \dot{\mathbf{a}}^{2}+T_{\text {rel }}$ where $T_{\text {rel }}$ is the kinetic energy relative to \mathbf{a}. Let $\mathbf{y}=\mathbf{x}-\mathbf{a}$; then

$$
T_{\mathrm{rel}}=\iiint_{V} \frac{1}{2} \rho \dot{\mathbf{y}}^{2} \mathrm{~d} V
$$

Suppose that the body has angular velocity $\boldsymbol{\omega}$ about a with moment of inertia I; then from (10.1), $\dot{\mathbf{y}}=\boldsymbol{\omega} \times \mathbf{y}$, so

$$
\begin{aligned}
T_{\text {rel }} & =\frac{1}{2} \iiint_{V} \rho(\boldsymbol{\omega} \times \mathbf{y}) \cdot \dot{\mathbf{y}} \mathrm{d} V \\
& =\frac{1}{2} \iiint_{V} \rho \boldsymbol{\omega} \cdot(\mathbf{y} \times \dot{\mathbf{y}}) \mathrm{d} V \\
& =\frac{1}{2} \boldsymbol{\omega} \cdot \iiint_{V} \rho \mathbf{y} \times \dot{\mathbf{y}} \mathrm{d} V \\
& =\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{H}
\end{aligned}
$$

since $\mathbf{H}=\iiint_{V} \rho(\mathbf{x}-\mathbf{a}) \times(\dot{\mathbf{x}}-\dot{\mathbf{a}}) \mathrm{d} V$ is the angular momentum about a. But from (10.3), $\mathbf{H}=I \omega$, so we find that the "kinetic energy relative to \mathbf{a} " is $\frac{1}{2} I \omega^{2}$ and

$$
\begin{equation*}
T=\frac{1}{2} M \dot{\mathbf{a}}^{2}+\frac{1}{2} I \omega^{2} . \tag{10.4}
\end{equation*}
$$

This result applies in either of the "safe cases", namely $\dot{\mathbf{a}}=\mathbf{0}$ or $\mathbf{a}=\mathbf{X}$. In the latter case we obtain

$$
T=\frac{1}{2} M \dot{\mathbf{X}}^{2}+\frac{1}{2} I_{\mathrm{CoM}} \omega^{2} .
$$

10.4 Motion with Rotation and Translation

Problems involving rotation and/or translation of a rigid body may be approached by making extensive use of the results

$$
\begin{align*}
\mathbf{H} & =I \boldsymbol{\omega}, \tag{10.3}\\
\dot{\mathbf{H}} & =\mathbf{G}, \tag{9.5}\\
M \ddot{\mathbf{X}} & =\mathbf{F}, \tag{9.2}\\
T & =\frac{1}{2} M \dot{\mathbf{a}}^{2}+\frac{1}{2} I \omega^{2} . \tag{10.4}
\end{align*}
$$

Example: a rod of mass M and length l is pivoted at an end and oscillates in a vertical plane. Let θ be the angle to the vertical; then $\boldsymbol{\omega}=\dot{\theta} \hat{\mathbf{n}}$. The moment of inertia of the rod about the pivot is $I=\frac{1}{3} M l^{2}$ from an example in $\S 10.1$; and the total couple is

$$
\mathbf{G}=(\mathbf{X}-\mathbf{a}) \times M \mathbf{g}=-M g\left(\frac{1}{2} l \sin \theta\right) \hat{\mathbf{n}}
$$

where \mathbf{a} is the pivot point. Note that we have the "safe" case $\dot{\mathbf{a}}=\mathbf{0}$. Using $\mathbf{H}=I \boldsymbol{\omega}$ and $\dot{\mathbf{H}}=\mathbf{G}$, we obtain

$$
\begin{aligned}
I \ddot{\theta} \hat{\mathbf{n}} & =-\frac{1}{2} M g l \sin \theta \hat{\mathbf{n}} \\
\Longrightarrow \quad \ddot{\theta} & =-\frac{3 g}{2 l} \sin \theta=-\frac{g}{\frac{2}{3} l} \sin \theta
\end{aligned}
$$

This is equivalent to a simple pendulum with length $\frac{2}{3} l$.

The Rolling Point of Contact

Consider a curved body, specifically, a cylinder or sphere of radius a, rolling along a flat surface. Let X be the distance moved by the centre of mass and let θ be the angle through which the body has turned.

What is the instantaneous speed of the contact point? The centre of mass is moving forward with speed \dot{X}, while the whole body is rotating about its centre of mass with angular velocity $\dot{\theta}$. The speed of the contact point relative to the centre of mass is therefore $a \dot{\theta}$ (by considering $\omega \times(\mathbf{x}-\mathbf{X})$); so the speed of the contact point relative to the flat surface is $\dot{X}-a \dot{\theta}$. This applies whether the body is rolling or slipping.

But if the body is rolling (and therefore, by implication, not slipping), we must have $X=a \theta$ by considering arc length along the circumference of the body. Therefore

$$
\dot{X}=a \dot{\theta}
$$

and we deduce that the rolling point of contact is instantaneously at rest. When the body is slipping, the speed of the point of contact is non-zero.

One consequence of this result is that any frictional force \mathbf{R} which acts on a rolling body does no work, because it acts at the rolling point of contact which (instantaneously) always has zero velocity. Hence friction does not slow down a rolling body. Needless to say, this is a mathematical idealisation: a real body deforms slightly so that a whole section of it is in contact with the surface rather than just a single point. Friction acts on that section, not all of which is at rest, resulting in non-zero retardation.

