Chapter 10

Rigid Bodies

10.1 Moments of Inertia

A rigid body is a collection of particles, as in Chapter 9, for which the relative distance $|\mathbf{x}_i - \mathbf{x}_j|$ between every pair (i, j) of particles is fixed. Such a body can be described completely by the position of its centre of mass, \mathbf{X} , and the rotation of the body about \mathbf{X} ; no further information is necessary in order to know the position of every particle in the body.

We shall use all the results of Chapter 9, except that we shall use a continuum limit: we will regard the body V as being of density ρ and made up of infinitesimal "particles" with volume dV, mass ρdV and position vector **x**. So, for example, the centre of mass is at

$$\mathbf{X} = \frac{1}{M} \iiint_V \rho \mathbf{x} \, \mathrm{d}V$$

where

$$M = \iiint_V \rho \, \mathrm{d}V.$$

The angular momentum about \mathbf{a} is given by

$$\mathbf{H} = \iiint_{V} \rho(\mathbf{x} - \mathbf{a}) \times (\dot{\mathbf{x}} - \dot{\mathbf{a}}) \, \mathrm{d}V$$

(compare with the definition in $\S 9.2$).

Suppose that **a** is a point which is part of the body, and that the body is rotating with angular velocity $\boldsymbol{\omega}$ about **a**. For any other point **x** in the body, $\mathbf{x} - \mathbf{a}$ is fixed *relative to the body* (any two parts of the body move and/or rotate together); so from $\S7.1$,

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x} - \mathbf{a}) = \mathbf{\omega} \times (\mathbf{x} - \mathbf{a}).$$
(10.1)

Therefore

$$\mathbf{H} = \iiint_{V} \rho(\mathbf{x} - \mathbf{a}) \times [\mathbf{\omega} \times (\mathbf{x} - \mathbf{a})] \, \mathrm{d}V$$
$$= \iiint_{V} \rho\{|\mathbf{x} - \mathbf{a}|^{2} \mathbf{\omega} - [(\mathbf{x} - \mathbf{a}) \cdot \mathbf{\omega}](\mathbf{x} - \mathbf{a})\} \, \mathrm{d}V.$$
(10.2)

Using summation convention,

$$H_{i} = \iiint_{V} \rho \{ |\mathbf{x} - \mathbf{a}|^{2} \delta_{ij} \omega_{j} - [\mathbf{x} - \mathbf{a}]_{j} \omega_{j} [\mathbf{x} - \mathbf{a}]_{i} \} dV$$
$$= I_{ij} \omega_{j}$$

where

$$I_{ij} = \iiint_V \rho\{|\mathbf{x} - \mathbf{a}|^2 \delta_{ij} - (x_i - a_i)(x_j - a_j)\} \,\mathrm{d}V$$

is the *inertia tensor* at **a**. This matrix relationship ($\mathbf{H} = \mathbf{I}\boldsymbol{\omega}$ where \mathbf{I} is the matrix (I_{ij})) means that \mathbf{H} and $\boldsymbol{\omega}$ are not necessarily parallel; but if $\boldsymbol{\omega}$ is along an eigenvector of \mathbf{I} — known as a *principal axis* of \mathbf{I} — then they will be.

Many rigid bodies have symmetries of various kinds: for example, a cylinder is rotationally symmetric about its axis. Since the matrix I is an intrinsic property of the body and nothing else, it must share these symmetries; in particular, its principal axes must coincide with the axes of symmetry. So if the angular velocity vector is aligned with one of these axes then $\mathbf{H} \parallel \boldsymbol{\omega}$. We shall consider only this kind of rotation in this course: more complicated motions in which $\mathbf{H} \not\models \boldsymbol{\omega}$, such as the spinning of a gyroscope, are studied in the Part II course *Classical Dynamics*.

Definition: the moment of inertia of a body about a particular axis is

$$I = \iiint_V \rho r_\perp^2 \,\mathrm{d}V$$

where $r_{\!\perp}$ is the perpendicular distance from ${\bf x}$ to the axis.

This definition is only really useful when the axis coincides with one of the principal axes of the inertia tensor at \mathbf{a} .

Suppose that the body is spinning with angular velocity $\boldsymbol{\omega}$ about **a**. Let $\boldsymbol{\omega} = |\boldsymbol{\omega}|$ and $\hat{\mathbf{n}} = \boldsymbol{\omega}/\boldsymbol{\omega}$, so that $|\hat{\mathbf{n}}| = 1$. By Pythagoras,

$$r_{\perp}^{2} + [(\mathbf{x} - \mathbf{a}) \cdot \hat{\mathbf{n}}]^{2} = |\mathbf{x} - \mathbf{a}|^{2}.$$

Now assume that $\mathbf{H} \parallel \boldsymbol{\omega}$, and let $\mathbf{H} = H\hat{\mathbf{n}}$. From (10.2) we have

$$\begin{split} \mathbf{H} &= \omega \iiint_{V} \rho \{ |\mathbf{x} - \mathbf{a}|^{2} \hat{\mathbf{n}} - [(\mathbf{x} - \mathbf{a}) \cdot \hat{\mathbf{n}}](\mathbf{x} - \mathbf{a}) \} \, \mathrm{d}V \\ \Longrightarrow \qquad \hat{\mathbf{n}} \cdot \mathbf{H} &= \omega \iiint_{V} \rho \{ |\mathbf{x} - \mathbf{a}|^{2} - [(\mathbf{x} - \mathbf{a}) \cdot \hat{\mathbf{n}}]^{2} \} \, \mathrm{d}V \\ \Longrightarrow \qquad H &= \omega \iiint_{V} \rho r_{\perp}^{2} \, \mathrm{d}V \\ &= I\omega. \end{split}$$

Hence $\mathbf{H} = I\omega \hat{\mathbf{n}}$, i.e.,

$$\mathbf{H} = I\boldsymbol{\omega}.$$
 (10.3)

Examples:

• A uniform cylinder of mass M, length l and radius a, rotating about its axis through the centre of mass \mathbf{X} . Use cylindrical polar coordinates (r, ϕ, z) with origin at \mathbf{X} and z-axis along the axis of rotation: it is obvious that r_{\perp} is simply r in this coordinate system. The density is $\rho = M/(\pi a^2 l)$, so

$$\begin{split} I &= \iiint_V \rho r^2 \,\mathrm{d}V \\ &= \frac{M}{\pi a^2 l} \int_{z=-\frac{1}{2}l}^{\frac{1}{2}l} \int_{\phi=0}^{2\pi} \int_{r=0}^a r^2 r \,\mathrm{d}r \,\mathrm{d}\phi \,\mathrm{d}z \qquad (\text{using the Jacobian } J=r) \\ &= \frac{M}{\pi a^2 l} (2\pi l) (\frac{1}{4}a^4) \\ &= \frac{1}{2} Ma^2. \end{split}$$

• A uniform rod of mass M and length l, rotating about an axis perpendicular to the rod through an end-point. Such a mathematically ideal rod is one-dimensional, so we replace $\iiint dV$ by $\int dx$. The density is M/l per unit length, so

$$I = \int_0^l \frac{M}{l} x^2 \, \mathrm{d}x = \frac{1}{3}Ml^2.$$

(Note that this is *not* the same as if the whole mass M were concentrated at $x = \frac{1}{2}l$.)

• A sphere of mass *M* and radius *a* rotating about its centre of mass. The direction of the axis does not matter, by symmetry; choose it along the *z*-axis without loss of generality. Then

$$I = \iiint_V \rho(x^2 + y^2) \,\mathrm{d}V$$

We could simply evaluate this; or instead we can use the following trick which makes the calculation a little easier. If we had chosen the x-axis rather than the z-axis then we would have obtained

$$I = \iiint_V \rho(y^2 + z^2) \,\mathrm{d}V$$

instead, and for the y-axis

$$I = \iiint_V \rho(x^2 + z^2) \,\mathrm{d}V.$$

All three values must be equal by symmetry, so by adding and then converting to spherical polar coordinates (r, θ, ϕ) we obtain

$$3I = 2 \iiint_{V} \rho(x^{2} + y^{2} + z^{2}) \, \mathrm{d}V$$

$$\implies I = \frac{2}{3} \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi} \int_{r=0}^{a} \frac{M}{\frac{4}{3}\pi a^{3}} r^{2} r^{2} \sin\theta \, \mathrm{d}r \, \mathrm{d}\theta \, \mathrm{d}\phi$$
$$= \frac{M}{2\pi a^{3}} 2\pi \left[-\cos\theta \right]_{0}^{\pi} \left[\frac{1}{5} r^{5} \right]_{0}^{a}$$
$$= \frac{2}{5} M a^{2}.$$

Somewhat contrary to intuition, a body can be said to be rotating about *any* point within the body with the *same* angular velocity $\boldsymbol{\omega}$. To see this, suppose that the body is rotating with angular velocity $\boldsymbol{\omega}$ about **a**. Then for any point **x** within the body we have

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x} - \mathbf{a}) = \boldsymbol{\omega} \times (\mathbf{x} - \mathbf{a})$$

from (10.1). Let **b** be another point in the body. We have

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{b}-\mathbf{a}) = \mathbf{\omega} \times (\mathbf{b}-\mathbf{a}),$$

 \mathbf{SO}

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}-\mathbf{b}) = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{x}-\mathbf{a}+\mathbf{a}-\mathbf{b}) = \mathbf{\omega} \times (\mathbf{x}-\mathbf{a}) - \mathbf{\omega} \times (\mathbf{b}-\mathbf{a}) = \mathbf{\omega} \times (\mathbf{x}-\mathbf{b}).$$

So the body can equally well be said to be rotating with angular velocity $\boldsymbol{\omega}$ about $\mathbf{b}.$

For example, a uniform rod rotating with angular velocity $\boldsymbol{\omega}$ about a fixed end-point \mathbf{w} can be described either as rotating about $\mathbf{a} = \mathbf{w}$, with $\dot{\mathbf{a}} = \mathbf{0}$, or as rotating about its centre of mass $\mathbf{a} = \mathbf{X}$, in which case \mathbf{a} is moving. Since the moment of inertia *I* depends on both the direction of the axis *and* the point about which the rotation is taking place, we need to calculate different values of *I* for these two cases.

10.2 Perpendicular and Parallel Axes

The Perpendicular Axes Theorem

The perpendicular axes theorem applies to a lamina S, i.e., a flat, perfectly thin body lying without loss of generality in the (x, y)-plane. If I_x and I_y are the moments of inertia about the x- and y-axes respectively then the moment of inertia about the z-axis is

$$I_z = I_x + I_y.$$

Proof: $I_x = \iint_S \rho y^2 dS$ and $I_y = \iint_S \rho x^2 dS$, but

$$I_z = \iint_S \rho(x^2 + y^2) \,\mathrm{d}S$$

by definition. The result follows.

Example: what is the moment of inertia of a flat circular wire loop of radius a and total mass M about a diameter?

Taking axes about the centre of the circle, we have $I_z = Ma^2$ because every part of the loop is a distance *a* from the origin. Clearly $I_x = I_y$ by symmetry; so the moment of inertia about a diameter is

$$I_x = \frac{1}{2}I_z = \frac{1}{2}Ma^2.$$

The Parallel Axis Theorem

The *parallel axis theorem* applies to a general rigid body (not necessarily a lamina). Let I_{CoM} be its moment of inertia about an axis through the centre of mass **X**, and let *I* be its moment of inertia about a parallel axis. Then

$$I = I_{\rm CoM} + Md^2$$

where M is the total mass and d is the perpendicular distance between the axes.

Proof: let $\hat{\mathbf{n}}$ be a unit vector parallel to both axes. Place the origin of coordinates at \mathbf{X} (i.e., set $\mathbf{X} = \mathbf{0}$ by translating the origin), and let Π be the plane through the origin perpendicular to $\hat{\mathbf{n}}$. Let \mathbf{d} be the position vector of the point where the second axis meets Π . Choose Cartesian coordinate axes through the origin as follows: let the z-axis lie parallel to $\hat{\mathbf{n}}$, and let the x-axis lie parallel to \mathbf{d} , so that $\mathbf{d} = (d, 0, 0)$.

71

Using this coordinate system, the perpendicular distance from a general point \mathbf{x} within the body to the first axis is $\sqrt{x^2 + y^2}$, while the distance from \mathbf{x} to the second axis is $r_{\perp} = \sqrt{(x-d)^2 + y^2}$. Hence

$$\begin{split} I &= \iiint_V \rho r_{\perp}^2 \,\mathrm{d}V \\ &= \iiint_V \rho (x^2 - 2dx + d^2 + y^2) \,\mathrm{d}V \\ &= \iiint_V \rho (x^2 + y^2) \,\mathrm{d}V - 2d \iiint_V \rho x \,\mathrm{d}V + d^2 \iiint_V \rho \,\mathrm{d}V. \end{split}$$

Now, because we have set $\mathbf{X} = \mathbf{0}$, we must have in this coordinate system that

$$\iiint_V \rho \mathbf{x} \, \mathrm{d}V = \mathbf{0}.$$

The x-component of this vector equation gives us that $\iiint \rho x \, dV = 0$. We also have that $I_{\text{CoM}} = \iiint \rho (x^2 + y^2) \, dV$ and $M = \iiint \rho \, dV$ by definition. Hence

$$I = I_{\rm CoM} + Md^2.$$

Corollary: the moment of inertia about an axis which passes through the centre of mass is lower than about any parallel axis.

Examples (using the results already obtained in $\S10.1$):

- The moment of inertia of a uniform sphere of mass Mand radius a about an axis tangential to the surface is given by $I = \frac{2}{5}Ma^2 + Ma^2 = \frac{7}{5}Ma^2$.
- The moment of inertia of a rod of mass M and length l about an axis through its midpoint (i.e., through the centre of mass) is $I_{\text{CoM}} = \frac{1}{3}Ml^2 M(\frac{1}{2}l)^2 = \frac{1}{12}Ml^2$.

10.3 Energy

From §9.3, the kinetic energy of the body is $T = \frac{1}{2}M\dot{\mathbf{a}}^2 + T_{\text{rel}}$ where T_{rel} is the kinetic energy relative to \mathbf{a} . Let $\mathbf{y} = \mathbf{x} - \mathbf{a}$; then

$$T_{\rm rel} = \iiint_V \frac{1}{2} \rho \dot{\mathbf{y}}^2 \, \mathrm{d}V.$$

Suppose that the body has angular velocity $\boldsymbol{\omega}$ about \mathbf{a} with moment of inertia I; then from (10.1), $\dot{\mathbf{y}} = \boldsymbol{\omega} \times \mathbf{y}$, so

$$T_{\rm rel} = \frac{1}{2} \iiint_V \rho(\boldsymbol{\omega} \times \mathbf{y}) \cdot \dot{\mathbf{y}} \, \mathrm{d}V$$
$$= \frac{1}{2} \iiint_V \rho \boldsymbol{\omega} \cdot (\mathbf{y} \times \dot{\mathbf{y}}) \, \mathrm{d}V$$
$$= \frac{1}{2} \boldsymbol{\omega} \cdot \iiint_V \rho \mathbf{y} \times \dot{\mathbf{y}} \, \mathrm{d}V$$
$$= \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{H}$$

since $\mathbf{H} = \iiint_V \rho(\mathbf{x} - \mathbf{a}) \times (\dot{\mathbf{x}} - \dot{\mathbf{a}}) dV$ is the angular momentum about \mathbf{a} . But from (10.3), $\mathbf{H} = I\boldsymbol{\omega}$, so we find that the "kinetic energy relative to \mathbf{a} " is $\frac{1}{2}I\omega^2$ and

$$T = \frac{1}{2}M\dot{a}^2 + \frac{1}{2}I\omega^2.$$
 (10.4)

This result applies in either of the "safe cases", namely $\dot{\mathbf{a}} = \mathbf{0}$ or $\mathbf{a} = \mathbf{X}$. In the latter case we obtain

$$T = \frac{1}{2}M\dot{\mathbf{X}}^2 + \frac{1}{2}I_{\rm CoM}\omega^2.$$

10.4 Motion with Rotation and Translation

Problems involving rotation and/or translation of a rigid body may be approached by making extensive use of the results

$$\mathbf{H} = I\boldsymbol{\omega},\tag{10.3}$$

$$\dot{\mathbf{H}} = \mathbf{G},\tag{9.5}$$

$$M\ddot{\mathbf{X}} = \mathbf{F},\tag{9.2}$$

$$T = \frac{1}{2}M\dot{\mathbf{a}}^2 + \frac{1}{2}I\omega^2.$$
 (10.4)

Example: a rod of mass M and length l is pivoted at an end and oscillates in a vertical plane. Let θ be the angle to the vertical; then $\boldsymbol{\omega} = \dot{\theta} \hat{\mathbf{n}}$. The moment of inertia of the rod about the pivot is $I = \frac{1}{3}Ml^2$ from an example in §10.1; and the total couple is

$$\mathbf{G} = (\mathbf{X} - \mathbf{a}) \times M\mathbf{g} = -Mg(\frac{1}{2}l\sin\theta)\hat{\mathbf{n}}$$

where **a** is the pivot point. Note that we have the "safe" case $\dot{\mathbf{a}} = \mathbf{0}$. Using $\mathbf{H} = I\boldsymbol{\omega}$ and $\dot{\mathbf{H}} = \mathbf{G}$, we obtain

$$I\ddot{\theta}\hat{\mathbf{n}} = -\frac{1}{2}Mgl\sin\theta\,\hat{\mathbf{n}}$$
$$\implies \qquad \ddot{\theta} = -\frac{3g}{2l}\sin\theta = -\frac{g}{\frac{2}{3}l}\sin\theta$$

This is equivalent to a simple pendulum with length $\frac{2}{3}l$.

=

The Rolling Point of Contact

Consider a curved body, specifically, a cylinder or sphere of radius a, rolling along a flat surface. Let X be the distance moved by the centre of mass and let θ be the angle through which the body has turned.

What is the instantaneous speed of the contact point? The centre of mass is moving forward with speed \dot{X} , while the whole body is rotating about its centre of mass with angular velocity $\dot{\theta}$. The speed of the contact point relative to the centre of mass is therefore $a\dot{\theta}$ (by considering $\boldsymbol{\omega} \times (\mathbf{x} - \mathbf{X})$); so the speed of the contact point relative to the flat surface is $\dot{X} - a\dot{\theta}$. This applies whether the body is rolling or slipping.

But if the body is *rolling* (and therefore, by implication, *not slipping*), we must have $X = a\theta$ by considering arc length along the circumference of the body. Therefore

$$\dot{X} = a\dot{\theta}$$

and we deduce that the rolling point of contact is instantaneously at rest. When the body is slipping, the speed of the point of contact is non-zero.

One consequence of this result is that any frictional force \mathbf{R} which acts on a rolling body does no work, because it acts at the rolling point of contact which (instantaneously) always has zero velocity. Hence friction does not slow down a rolling body. Needless to say, this is a mathematical idealisation: a real body deforms slightly so that a whole section of it is in contact with the surface rather than just a single point. Friction acts on that section, not all of which is at rest, resulting in non-zero retardation.