
Chapter 9

Systems of Particles

9.1 The Centre of Mass

Consider a system of n particles, with masses mi and position vectors xi (i = 1, . . . , n).

The force on the ith particle consists of the “internal” forces from each of the other

particles in the system — say Fij from the jth particle — plus the external force from

outside the system, denoted by Fext
i . Note that

Fij = −Fji

by N III, so that

n∑
i=1

∑
j 6=i

Fij = 0 (9.1)

(because for each pair (I, J) of particles, the term FIJ which is in the sum cancels with

the term FJI which is also in the sum). Hence the total internal force is zero.

Define the total mass

M =
n∑

i=1

mi,

the centre of mass (CoM)

X =
1

M

n∑
i=1

mixi

and the total external force

F =
n∑

i=1

Fext
i .
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Then by N II,

miẍi = Fext
i +

∑
j 6=i

Fij

=⇒
∑

i

miẍi = F +
∑

i

∑
j 6=i

Fij

=⇒ MẌ = F.

So the centre of mass moves as if it were a particle of mass M acted on by the total

external force F. The total momentum of the system is

P =
n∑

i=1

miẋi,

so

Ṗ = MẌ = F. (9.2)

If the total external force were zero then the centre of mass would move with constant velocity; if we
wished, we could therefore make a Galilean transformation to the centre of mass frame (in which the
centre of mass is fixed at the origin, i.e., X = 0). However, we shall not do so here.

Let

x′
i = xi −X

be the position vector of particle i relative to the centre of mass (i.e., x′
i is the position

vector of particle i in the centre of mass frame). Then∑
i

mix
′
i =

∑
i

mixi −
∑

i

miX = MX−MX

=⇒
n∑

i=1

mix
′
i = 0. (9.3)

9.2 Angular Momentum

We shall assume here that the internal forces are all central forces, that is to say, Fij acts

along the line joining particles i and j. (This is true for gravitational, electrostatic and

elastic forces, etc.) Then

Fij ‖ (xi − xj) ∀ i, j.
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Therefore

n∑
i=1

∑
j 6=i

xi × Fij = 0 (9.4)

since the contribution from any pair (I, J) of particles is

xI × FIJ + xJ × FJI = (xI − xJ)× FIJ = 0.

Define the total external couple or torque about a point a(t) (not necessarily fixed,

nor necessarily the centre of mass) by

G =
n∑

i=1

(xi − a)× Fext
i .

The total angular momentum about a is given by

H =
n∑

i=1

mi(xi − a)× (ẋi − ȧ).

Hence

Ḣ =
∑

i

mi(xi − a)× (ẍi − ä)

=
∑

i

(xi − a)×
(
Fext

i +
∑
j 6=i

Fij −miä

)

= G +
∑

i

∑
j 6=i

xi × Fij − a×
∑

i

∑
j 6=i

Fij −
{∑

i

(mixi −mia)

}
× ä

= G−M(X− a)× ä. (using (9.1) and (9.4))

In particular, if a is either the centre of mass or if it is fixed, then

Ḣ = G. (9.5)

We shall always use these “safe” cases.

Example of a couple: suppose that the external force on each particle is just gravity

(near the Earth’s surface), so Fext
i = mig. Then

G =
∑

i

mi(xi − a)× g

= (MX−Ma)× g

= (X− a)×Mg.
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As we might have expected, this is exactly the same as the couple that would be produced

by a single particle of mass M at the centre of mass.

We can write

H =
∑

i

mi(X− a + x′
i)× (Ẋ− ȧ + ẋ′

i)

=
∑

i

mi(X− a)× (Ẋ− ȧ) +
∑

i

mix
′
i × (Ẋ− ȧ)

+ (X− a)×
∑

i

miẋ
′
i +

∑
i

mix
′
i × ẋ′

i;

so, using (9.3) and its derivative,

H = M(X− a)× (Ẋ− ȧ) +
n∑

i=1

mix
′
i × ẋ′

i.

Hence the total angular momentum about a is the “angular momentum of the centre of

mass about a” plus the angular momemtum about the centre of mass.

9.3 Energy of the System

It can be useful to write the total kinetic energy of the system as follows:

T =
∑

i

1
2
miẋ

2
i

=
∑

i

1
2
mi(ȧ + ẋi − ȧ)2

=
∑

i

1
2
miȧ

2 +
∑

i

miȧ . (ẋi − ȧ) +
∑

i

1
2
mi(ẋi − ȧ)2

= 1
2
M ȧ2 + ȧ . (MẊ−M ȧ) +

∑
i

1
2
mi(ẋi − ȧ)2.

The last of these three terms is just the kinetic energy of the system relative to a, which

we shall denote Trel. The second term vanishes, because we are assuming either a = X

or ȧ = 0 according to the “safe” cases described in §9.2. Hence

T = 1
2
M ȧ2 + Trel.

In particular, if a = X, we see that the total kinetic energy is the “kinetic energy of the

centre of mass” plus the “kinetic energy relative to the centre of mass”.
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Suppose that all the internal and external forces are conservative. Then we have potentials V ext
i (xi) for

the external forces, i.e.,
Fext

i = −∇iV
ext
i ,

where ∇i has the same meaning as in §4.4. For each pair (i, j) of particles there is also a potential
Vij(xi,xj) for the internal force, so that

Fij = −∇iVij and Fji = −∇jVij .

N III is automatically satisfied if Vij is a function of |xi − xj |, as is usually the case. Let

V (x1, . . . ,xn) =
n∑

i=1

V ext
i (xi) +

∑ ∑
Vij(xi,xj)

where the double sum is over unordered pairs (i, j) of particles (i.e., we count each pair of particles only
once in the sum). Then, noting that for instance ∇kV ext

i (xi) = 0 if k 6= i,

−∇kV = −∇kV ext
k −

∑
j 6=k

∇kVkj(xk,xj)

= Fext
k +

∑
j 6=k

Fkj

= mkẍk.

Hence ∑
k

mkẋk . ẍk = −
∑

k

ẋk .∇kV

=⇒ dT

dt
= −dV

dt
(by the chain rule for V )

=⇒ T + V = const.

9.4 The Two-Body Problem

Consider two particles moving under a mutual force which depends only on their relative

position, i.e.,

m1ẍ1 = F12 = −F21 = −m2ẍ2

where F12 is a function of x1 − x2. The centre of mass is at

X =
m1x1 + m2x2

m1 + m2

and we know from §9.1 that Ẍ = 0. Let

r = x1 − x2

be the relative position vector; then

x′
1 = x1 −X

= x1 −
m1x1 + m2x2

m1 + m2

65



=
m2

m1 + m2

(x1 − x2)

=
m2

m1 + m2

r,

and x′
2 = −

(
m1/(m1 + m2)

)
r similarly. Hence

m1ẍ1 = m1(Ẍ + ẍ′
1)

=
m1m2

m1 + m2

r̈.

Defining

µ =
m1m2

m1 + m2

to be the reduced mass we obtain

µr̈ = F12(r);

therefore the relative position vector behaves as if it were a particle of mass µ moving in

the same force field.

Example: two bodies orbit each other under mutual gravitational

attraction. The relative position vector behaves like a particle of

mass µ:

µr̈ = −Gm1m2

|r|2
êr

=⇒ r̈ = −Gm1m2

µr2
êr = −G(m1 + m2)

r2
êr.

Comparing this with a standard planetary orbit from Chapter 8 (where the equation of

motion was r̈ = −(GM/r2)êr, M being the mass of the Sun), we see that the relative

position vector describes an ellipse with period

T =
2π√

G(m1 + m2)
R

3/2

where R is the mean separation (by replacing “GM” in §8.5 by “G(m1 + m2)”).

The two-body problem can therefore be solved completely. The three-body problem, with three mutually
gravitating bodies, was studied extensively in the 19th and early 20th centuries, in particular by Poincaré,
without success. It was eventually proved that the system cannot be solved analytically (the proof rests
on the fact that there are not enough constants of the motion): in fact it is typically chaotic.
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