
Chapter 8

Orbits

8.1 Conics

Conic sections — first studied in the abstract by the Greeks — are the
curves formed by the intersection of a plane with a cone. Ignoring
degenerate cases (such as a point, or pairs of straight lines) there are
only three cases. By geometrical means we can show that they each
obey the following simple rule.

All conics are defined by two positive real parameters: a (which determines the size) and

e (the eccentricity, which determines the shape). The two foci are at (±ae, 0) and the

directrices are the two lines x = ±a/e. The conic is the set of points which obey the

focus–directrix property : the distance from the focus is e times the distance from the

corresponding directrix.

• Case 1: 0 < e < 1

From the focus–directrix property,√
(x− ae)2 + y2 = e

(a

e
− x

)
=⇒ x2

a2
+

y2

a2(1− e2)
= 1.

This is an ellipse with semi-major axis a

and semi-minor axis a
√

1− e2.

We can also include the special case of

a circle of radius a, which occurs in the

limit e → 0.
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• Case 2: e > 1

The same method gives

x2

a2
− y2

a2(e2 − 1)
= 1;

this is a hyperbola.

• Case 3: e = 1

In this case, the relevant directrix that

corresponds to the focus at x = a is the

one at x = −a. Then√
(x− a)2 + y2 = x + a

=⇒ y2 = 4ax.

This is a parabola.

A more general conic has the form

ax2 + by2 + 2cxy + 2dx + 2ey + f = 0

for some a, b, c, d, e, f ∈ R. By rotating the axes and shifting the origin (using ideas from the Part IB
course Linear Algebra) we can always transform such an equation to one of the above three cases, unless
the conic is degenerate.

Polar Coordinates

In any of the above cases, place the origin of polar coordinates

at one of the foci and if necessary rotate the axes through

an angle π to place the corresponding directrix on the right.

Let the distance from the focus to the directrix be l/e for

some l; then from the focus–directrix property,

r = e

(
l

e
− r cos θ

)

=⇒ r =
l

1 + e cos θ
. (8.1)

We see that l is the value of y immediately above the focus, since when θ = 1
2
π, r = l;

l is known as the semi-latus rectum. Note also that from the definition of l,

l/e = |a/e− ae| =⇒ l = a|1− e2| (8.2)

for e 6= 1; in the special case when e = 1, l = 2a (from “Case 3” above).
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Asymptotes

Ellipses are bounded, but hyperbolae and parabolae

are unbounded. They have asymptotes at θ = ±θa:

we can find θa by considering the values of θ for which

r → ∞. From (8.1) this occurs when 1 + e cos θa = 0,

i.e., θa = cos−1(−1/e). (Note that θa exists because

e > 1 for a parabola or hyperbola.)

8.2 The Gravitational Potential of a Sphere

Consider a uniform sphere of mass M , radius a and

density ρ (so that M = 4
3
πρa3), made up of many small

elements of volume dV at position r relative to the

centre of the sphere. What is the total gravitational

potential acting on a particle of mass m at a point R

outside the sphere?

Each element dV contributes a gravitational potential

−G(ρ dV )m

|R− r|
(from (4.1) in §4.4), since the mass of the element is ρ dV and the distance from the

element to the particle is |R − r|. Use spherical polar coordinates (r, θ, φ) where the

θ = 0 direction is along R. Then

|R− r|2 = (R− r) . (R− r) = R2 + r2 − 2Rr cos θ

where R = |R|. Hence the total potential at R is

−Gmρ

∫∫∫
r6a

dV√
R2 + r2 − 2Rr cos θ

= −Gmρ

∫ 2π

φ=0

∫ π

θ=0

∫ a

r=0

r2 sin θ√
R2 + r2 − 2Rr cos θ

dr dθ dφ (using the Jacobian)

= −2πGmρ

∫ a

0

[
r

R

√
R2 + r2 − 2Rr cos θ

]π

0

dr

= −2πGmρ

R

∫ a

0

r
(√

R2 + r2 + 2Rr −
√

R2 + r2 − 2Rr
)
dr

= −2πGmρ

R

∫ a

0

2r2 dr = −4πGmρa3

3R
= −GMm

R
.
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This is exactly the same as if the entire mass of the sphere were concentrated in a particle

of mass M at the origin! So, for the purposes of its gravitational field, we may treat the

sphere as if it were a point mass.

(We can easily obtain the same result if ρ is a function ρ(r) of the radius only, i.e., if

the body is spherically symmetric.)

Note that we assumed that R > a. If R < a (e.g., a particle down a mine shaft on

the Earth) then the result is different because
√

R2 + r2 − 2Rr =
√

(R− r)2 = |R − r|
instead of just R− r. In this case, it turns out that only the part of the sphere which lies

in r < R contributes to the force (i.e., the force is G(4
3
πR3ρ)m/R2 radially inwards).

8.3 Kepler’s Laws

During the late 16th century, Tycho Brahe made very careful observations and tables of the positions
of the planets, all without a telescope. Johannes Kepler noted patterns in these tables and in the early
17th century announced his three laws.

K I The course of a planet in the heavens is not a circle, but an oval path, perfectly

elliptical.

K II Through the centre of the world (and in the business at hand, it is the Sun for

Copernicus and the Earth for the others), let the straight line be drawn intersecting

the planet. This chord sweeps out equal areas in equal times.

K III The proportion between the periodic times of any two planets is precisely the

sesquialterate proportion of their mean distances. [I.e., T ∝ R
3/2 where T is the

period of the orbit and R the mean radius.]

8.4 The Shape of the Orbit

We start by noting that the result of §8.2 means that we may treat the Sun and planets

as if they were particles. Next, we note that the Sun is around 3×105 times more massive

than the Earth, so the acceleration of the Sun caused by a planet is negligible compared

to the acceleration of the planet caused by the Sun: we may regard the Sun as fixed.

We now note that the gravitational attraction of the Sun is a central force; hence

from §6.2, the planet moves in a plane (perpendicular to the constant angular momentum

vector). We use plane polar coordinates centred on the Sun, and know from §6.1 that

h = r2θ̇ (8.3)

53



is constant and

r̈ − rθ̇2 = −GM

r2
(8.4)

where M is the mass of the Sun.

To solve these equations, we could try to follow the method of §6.1 to obtain the

energy equation: substituting (8.3) into (8.4) and multiplying by ṙ,

ṙr̈ − h2

r3
ṙ = −GM

r2
ṙ

=⇒ 1
2
ṙ2 +

h2

2r2
=

GM

r
+ const.

=⇒ 1
2
m

(
ṙ2 +

h2

r2

)
− GMm

r
= const. ≡ E, (8.5)

so that

ṙ2 =
2E

m
+

2GM

r
− h2

r2
=⇒ t =

∫
dr

±
√(

2E
m

+ 2GM
r
− h2

r2

) .

However, whilst this approach does give us t as a function of r, and therefore enables

us to calculate for example the period, it tells us nothing about the details of the orbit

because the equations cannot be inverted to give us r as a function of t.

Therefore, instead of trying to find r(t) and θ(t), we just find the shape of the orbit,

r(θ). We can do this with a trick: substitute

u = r−1.

Note that

θ̇ =
h

r2
= hu2,

so

d

dt
=

dθ

dt

d

dθ
= hu2 d

dθ
.

Hence

ṙ = hu2 d

dθ
(u−1) = −h

du

dθ
,

r̈ = hu2 d

dθ

(
−h

du

dθ

)
= −h2u2 d2u

dθ2

whence in (8.4),

−h2u2 d2u

dθ2
− u−1h2u4 = −GMu2

=⇒ d2u

dθ2
+ u =

GM

h2
.
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This differential equation has solution

u =
GM

h2
+ A cos(θ − θ0)

where A and θ0 are constants. But θ0 just corresponds to a rotation of the axes in polar

coordinates; without loss of generality we can choose the θ = 0 direction in such a way

that θ0 = 0. Let

l =
h2

GM

and e = Al; then

r = u−1 =
l

1 + e cos θ

which we recognise from (8.1) as the shape of a conic.

Since planets travel (by definition) in bounded orbits,

these must be ellipses. We placed the Sun at the origin

of polar coordinates, so it lies at one of the foci. An

apse refers either to the point closest to the Sun or to the

one furthest from it, known as perihelion and aphelion

respectively. Other heavenly bodies (e.g., comets) might

travel on parabolae or hyperbolae with the Sun at a focus.

Mercury has e ≈ 0.2 and Pluto has e ≈ 0.24. All the other planets have e < 0.1, so the difference between
the minor and major axes of their orbits is less than 1

2%: almost circular.

Note: this method worked because the radial force is proportional to u2. However, it

also works if the force is proportional to u3, or some linear combination of u2 and u3.

8.5 Kepler’s Laws Explained

We have just proved K I, with the Sun at one of the foci. Elliptical orbits imply an

inverse-square law of gravitation, and conversely.

If a planet moves through a polar angle δθ, then the area swept

out by the radius vector (joining the Sun to the planet) is δA = 1
2
r2δθ

(by considering an infinitesimal triangle). Hence

dA

dt
= 1

2
r2 dθ

dt
= 1

2
r2 h

r2
= 1

2
h.
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So area is swept out at a constant rate, proving K II. Therefore K II is just a statement

that angular momentum is conserved; it implies that gravity is a central force.

What is the period of a planet’s elliptical orbit? We know from §8.1 that the ellipse

has semi-major axis a and semi-minor axis b = a
√

1− e2, and that l = a(1 − e2) from

(8.2); so the area of the ellipse is

πab = πa2
√

1− e2 =
πl2

(1− e2)3/2
.

Since area is swept out at a constant rate 1
2
h, the period T of the orbit must satisfy

1
2
hT =

πl2

(1− e2)3/2
=⇒ T =

2πl2

h(1− e2)3/2

=
2π√
GM

(
l

1− e2

)3/2

since l = h2/(GM) from the last section. If we define

R = 1
2
(rmin + rmax) = 1

2

(
l

1 + e
+

l

1− e

)
=

l

1− e2

to be the mean of the perihelion and aphelion distances, then

T =
2π√
GM

R
3/2 ∝ R

3/2,

verifying K III (so long as we interpret “mean distance” as R).

8.6 Energy of an Orbit

From §8.4 we have

r =
l

1 + e cos θ
, u =

1 + e cos θ

l
, ṙ = −h

du

dθ
=

eh

l
sin θ

where l = h2/(GM). So in the energy equation (8.5),

E = 1
2
m

(
ṙ2 +

h2

r2

)
− GMm

r

=
mh2

2l2
(
e2 sin2 θ + (1 + e cos θ)2

)
− GMm

l
(1 + e cos θ)

=
G2M2m

2h2
(e2 + 1 + 2e cos θ)− G2M2m

h2
(1 + e cos θ)

which simplifies to

E =
G2M2m

2h2
(e2 − 1). (8.6)
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It is useful to define a pseudo-potential

V ∗(r) =
mh2

2r2
− GMm

r
;

then

1
2
mṙ2 + V ∗(r) = E.

Hence the orbit is confined to radii for which E > V ∗(r).

If E > 0, say E = E1, then r > r1, but there is no upper limit on r: the orbit is

unbounded. However, if E < 0, say E = E0, then rmin 6 r 6 rmax as marked on the

diagram and the orbit is bounded, with perihelion and aphelion corresponding to rmin

and rmax respectively.

These results are consistent with equation (8.6). If E > 0 then e > 1, so the orbit is

a hyperbola which is indeed unbounded. Similarly, if E < 0 then e < 1 and the orbit is

a (bounded) ellipse. The case E = 0, e = 1 is the dividing case of a parabola when the

orbit has just enough energy to reach ∞.

8.7 Interplanetary Travel [non-examinable]

Suppose we wish to travel from Earth to Mars. First, our rocket needs to escape the gravitational pull
of the Earth; we must therefore launch it at a speed of at least 11.2 km/s (see §4.5). This places it in
an orbit about the Sun, at the same radius rE as the Earth, travelling at the same speed as the Earth
relative to the Sun: on average, around 29.8 km/s.

We now execute a Hohmann transfer. We fire boosters to place the
rocket in an elliptical orbit for which rmin = rE , rmax = rM (the radius
of Mars’ orbit); note that we shall assume here for the purposes of
simplicity that both the Earth’s and Mars’ orbits may be taken to be
approximately circular. Now rmin + rmax = 2l/(1− e2) from §8.5, so

E = −G2M2m

2h2

2l

rE + rM
(from §8.6)

= − GMm

rE + rM

since l = h2/(GM). If VE is the initial speed of the rocket then

1
2mV 2

E −
GMm

rE
= − GMm

rE + rM

which gives a value of VE ≈ 32.7 km/s; i.e., the boosters need to increase the rocket’s speed by around
3 km/s. On arrival at Mars, we fire boosters to decelerate to the same speed as Mars, and then descend
to the surface.

Of course, for this to work we need Mars to be at the right place when we arrive. Writing R = 1
2 (rE+rM ),

it will take the rocket a time 1
2T =

(
π/
√

GM
)
R

3/2 (about 259 days) to travel to Mars (from §8.5), and
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Mars has approximate angular velocity
√

GM r
−3/2
M (since its period is

(
2π/

√
GM

)
r

3/2
M ); so we need Mars

to be at an orbital angle

β = π −
√

GM

r
3/2
M

π√
GM

(
rE + rM

2

)3/2

= π − π

2
√

2

(
rE + rM

rM

)3/2

(about 0.77 radians or 44◦) ahead of the Earth when we leave.

For a Grand Tour — a fly-by of several planets — we can gain significant
increases in speed by using a “slingshot” around a large planet such as
Jupiter. Here, our rocket flies close to Jupiter and comes within its
gravitational field. Suppose that in a frame of reference moving at vJ

(Jupiter’s velocity relative to the Sun), the rocket approaches at velocity
u and leaves at v. By conservation of energy in this frame, |u| = |v|.
But in the Sun’s frame of reference, the velocity of approach is vJ + u
and that of separation is vJ + v, and these may have very different
magnitudes; by choosing the angle of our fly-by appropriately we can
arrange that the rocket’s speed is increased greatly without the need
for the use of further boosters.

8.8 Rutherford Scattering

A particle with charge q and mass m moves in the electric field produced by a charge Q

which is fixed at the origin. The mutual gravitational attraction of the charges is negligible

compared with the electrostatic Coulomb force. Initially, the particle is approaching from

∞ at speed V along a path which, in the absence of Q, would pass a distance b from the

origin: b is the impact parameter. Hence E = 1
2
mV 2 and h = V b (because h = |r × ṙ|);

conservation of energy and of angular momentum tell us that the particle will recede with

the same V and b.

If qQ < 0 then the particle is attracted to the origin with a force
(
qQ/(4πε0r

2)
)
êr.

Comparing this with the gravitational force, (−GMm/r2)êr, we see that all our previous

results apply if we replace GM by −qQ/(4πε0m). In particular, it is possible to obtain
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the standard result that the angle through which the particle is deflected is given by

φ = 2 tan−1

(
−qQ

4πε0mV 2b

)
> 0.

If qQ > 0 then the force is repulsive. The formula for the angle of deflection φ is

unchanged, but now φ < 0; so the particle is scattered through an angle

Φ = −φ = 2 tan−1 qQ

4πε0mV 2b
= 2 tan−1 qQ

8πε0Eb
.

A careful analysis of the trajectory shows that in the case qQ > 0
we have r = l/(−1 + e cos θ) instead of l/(1 + e cos θ). This is still a
hyperbola, but it is the “other sheet” — i.e., on the opposite side of the
directrix from the focus. But the result for φ is unaltered.

Now consider a uniform beam of many identical incoming particles travelling towards

the fixed charge Q. The number of particles with impact parameters in the range (b, b+δb)

is proportional to the area δΣ = 2πb δb; they are scattered through a range of angles

(Φ, Φ + δΦ). Let

k =
qQ

8πε0E

so that

b = k cot 1
2
Φ,

and define

δΩ = 2π sin Φ δΦ;
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Rutherford’s scattering cross-section is then defined to be

σ(Φ) =

∣∣∣∣dΣ

dΩ

∣∣∣∣ = − b

sin Φ

db

dΦ
(because Φ decreases as b increases, so

db

dΦ
< 0)

= −
k cot 1

2
Φ

2 sin 1
2
Φ cos 1

2
Φ

(−1
2
k cosec2 1

2
Φ)

=

(
qQ

16πε0E

)2

cosec4 1
2
Φ.

Ernest (later Lord) Rutherford used this method to explain the way that α-particles are scattered by
atoms. It led him in 1911 to the first model of the atom as a small, heavy nucleus surrounded by orbital
electrons.

The definition of δΩ is motivated by the fact that the solid angle of a cone of angle Φ is Ω = 2π(1−cos Φ).
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