
Chapter 5

Impulses and Collisions

5.1 Impulses

An impulse I, applied at some time t0, is defined to be a force F(t) = I δ(t − t0) where

δ is the Dirac delta-function. Physically, I is the mathematical idealisation of a very large

force applied for a very short time. By N II,

[
mv

]t+0
t−0

=

∫ t+0

t−0

F dt =

∫ t+0

t−0

I δ(t− t0) dt

=⇒
[
mv

]t+0
t−0

= I,

i.e., there is an instantaneous change I in the momentum.

Example: two balls of equal mass m are at rest and are joined by a rigid rod. An impulse

I is applied to one of the balls making an angle 3
4
π with the rod. In what direction does

the ball move?

The applied impulse induces an instantaneous impulsive tension T. The constraint

imposed by the rod is that the components of the two velocities along the rod must be

equal, from §1.6.4. Hence

v1 cos θ = v2.

36



Using Cartesian coordinates (x, y) and considering the impulses on each ball,

(T, 0) =
[
mv2

]t+0
t−0

= (mv2, 0),

(I cos π
4
− T, I sin π

4
) =

[
mv1

]t+0
t−0

= (mv1 cos θ, mv1 sin θ).

It is easy to deduce that tan θ = 2, i.e., θ ≈ 63◦.

5.2 Collisions

When two solid bodies of masses m1, m2 collide there is a

plane of contact Π and a normal n at the point of contact.

The bodies exert instantaneous forces on each other parallel

to n, and byN III these impulses±I are equal and opposite.

If the bodies are smooth then there is no force perpendicular

to n (i.e., in the plane Π).

(This is clearly idealised: real bodies deform; the forces they exert are not instanta-

neous; and they are rough, producing non-zero frictional forces perpendicular to n.)

Let u1, u2 be the velocities before the collision and v1, v2 the velocities after. Then

m1(v1 − u1) = I,

m2(v2 − u2) = −I

so

m1v1 + m2v2 = m1u1 + m2u2;

that is, total momentum is conserved.

We also observe that the component of m1(v1 − u1) that is perpendicular to n must

vanish (since I is parallel to n). Hence u1 and v1 have equal components perpendicular

to n — i.e., the component of velocity of m1 that is perpendicular to n is conserved.

Similarly for m2. So collisions do not affect components of velocity that are normal to

the direction of the collision.

This can be written succinctly as v1 × n = u1 × n, v2 × n = u2 × n.

However, this gives us no information about the components parallel to n, that is,

in the direction of the collision. For these, we use an empirical (and approximate) rule:

Newton’s law of restitution. This states that

(v2 − v1) . n = −e(u2 − u1) . n
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where e is the coefficient of restitution (0 6 e 6 1). In one dimension,

v2 − v1 = e(u1 − u2),

or, put another way, the speed at which the bodies move away from each other is e times

the speed at which they approach.

A collision with e = 1 is known as elastic (or perfectly elastic); one with e < 1 is

called inelastic.

5.3 The Centre of Mass Frame

Let M = m1 + m2 be the total mass, and define the centre of mass to be

X =
m1x1 + m2x2

M
.

Then let

V ≡ Ẋ =
m1v1 + m2v2

M
;

we note that V is unchanged in a collision (because total momentum is conserved). Hence

V is a constant (in the absence of any external forces).

Consider position vectors relative to the centre of mass, i.e., x′ = x−X. This is the

centre of mass frame. We note that

Ẋ = V =⇒ X = Vt + X0

where X0 is a constant, so x′ = x−X0−Vt: hence changing to the centre of mass frame

is a Galilean transformation with speed V (see §1.4). In this frame,

v′
1 = v1 −V =

m2

M
(v1 − v2), (5.1)

v′
2 = v2 −V = −m1

M
(v1 − v2), (5.2)

so we see that the momenta of the particles are always equal and opposite in the centre

of mass frame (both before and after a collision), i.e.,

m1v
′
1 = −m2v

′
2. (5.3)
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5.4 Energy in Collisions

The total kinetic energy of the particles after a collision is

Tafter = 1
2
m1v

2
1 + 1

2
m2v

2
2

= 1
2
m1(V + v′

1)
2 + 1

2
m2(V + v′

2)
2

= 1
2
(m1 + m2)V

2 + m1V . v′
1 + m2V . v′

2 + 1
2
m1v

′2
1 + 1

2
m2v

′2
2

= 1
2
MV2 + V . (m1v

′
1 + m2v

′
2) + 1

2

m1m
2
2

M2
(v1 − v2)

2 + 1
2

m2
1m2

M2
(v1 − v2)

2

(from (5.1) and (5.2))

= 1
2
MV2 + 1

2

m1m2

M2
(m2 + m1)(v1 − v2)

2 (from (5.3))

= 1
2
MV2 + 1

2

m1m2

M
|v1 − v2|2.

This can be regarded as the kinetic energy of the centre of mass (1
2
MV2) plus a term due

to the relative velocity v1 − v2. Similarly, the total kinetic energy before the collision is

Tbefore = 1
2
MV2 + 1

2

m1m2

M
|u1 − u2|2.

Note that for any vector x,

|x|2 = |x‖|2 + |x⊥|2

where x‖ and x⊥ are the components parallel and perpendicular respectively to some

vector n, by Pythagoras’ Theorem. Taking n to be the normal at the point of contact of

the collision, we know from §5.2 that

(v1 − v2)⊥ = (u1 − u2)⊥ but (v1 − v2)‖ = −e(u1 − u2)‖.

Hence

Tbefore − Tafter = 1
2

m1m2

M
(|u1 − u2|2 − |v1 − v2|2)

= 1
2

m1m2

M

(∣∣(u1 − u2)‖
∣∣2 +

∣∣(u1 − u2)⊥
∣∣2 − ∣∣(v1 − v2)‖

∣∣2 − ∣∣(v1 − v2)⊥
∣∣2)

= 1
2

m1m2

M

∣∣(u1 − u2)‖
∣∣2 (1− e2)

=
m1m2

2M
(1− e2){(u1 − u2) . n}2.

So in an elastic collision (e = 1) there is no loss of energy; whereas in an inelastic collision,

Tafter < Tbefore. This is in fact the real definition of the term “elastic”. The kinetic energy

lost goes into vibration, sound, heat, temporary deformation of the bodies, etc.
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Example: A billiard ball collides elastically with an identical stationary ball. The

impact is slightly oblique so that the balls move off afterwards at an angle. Show that

their velocities after impact are orthogonal.

Let the balls each have mass m; let u be the velocity of the first ball before the impact;

and let v1, v2 be the velocities afterwards. By conservation of total momentum,

mu = mv1 + mv2.

Squaring each side, we obtain

u2 = v2
1 + 2v1 . v2 + v2

2.

But because the collision is elastic, kinetic energy is conserved; therefore

1
2
mu2 = 1

2
mv2

1 + 1
2
mv2

2.

Combining these results, we see that

v1 . v2 = 0,

that is, v1 and v2 are orthogonal as required.
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