
Chapter 2

Dynamical Examples

2.1 Velocity and Acceleration in

Plane Polar Coordinates

In two dimensions (x, y) it is sometimes more convenient to perform

calculations using plane polar coordinates (r, θ) where x = r cos θ,

y = r sin θ. We define the standard vectors

êr =

(
cos θ

sin θ

)
, êθ =

(
− sin θ

cos θ

)
.

It is clear that r = rêr, i.e., êr = r/|r|, so êr is the unit radial vector. Note that êθ is also

a unit vector, perpendicular to êr (because êθ . êr = 0): it is therefore the unit tangential

vector, in the direction of increasing θ.

Now êr and êθ are independent of r, but

∂êr

∂θ
=

(
− sin θ

cos θ

)
= êθ,

∂êθ

∂θ
=

(
− cos θ

− sin θ

)
= −êr.

So

r = rêr

=⇒ ṙ = ṙêr + r
∂êr

∂θ

dθ

dt

=⇒ ṙ = ṙêr + rθ̇êθ

=⇒ r̈ = r̈êr + 2ṙθ̇êθ + rθ̈êθ + rθ̇
∂êθ

∂θ

dθ

dt

=⇒ r̈ = (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ.
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Here θ̇ is the rate of rotation about the origin, known as the angular velocity (or

strictly the angular speed), measured in radians per second. The term angular frequency,

or simply (but misleadingly) frequency, is also used.

Conversion to and from Cartesian Coordinates

If we know ṙ and θ̇, it is easy to compute ẋ and ẏ using the definitions x = r cos θ,

y = r sin θ:

ẋ = ṙ cos θ − rθ̇ sin θ, ẏ = ṙ sin θ + rθ̇ cos θ.

Conversely, given ẋ and ẏ we can find ṙ and θ̇:

r2 = x2 + y2 =⇒ 2rṙ = 2xẋ + 2yẏ =⇒ ṙ =
xẋ + yẏ

r

and

tan θ =
y

x
=⇒ θ̇ sec2 θ =

xẏ − yẋ

x2

=⇒ θ̇ =
xẏ − yẋ

x2(1 + tan2 θ)
=

xẏ − yẋ

x2(1 + y2/x2)

=⇒ θ̇ =
xẏ − yẋ

r2
.

Each of these equations can easily be understood in terms of taking components
of the vector velocity. For instance,

ẋ = ṙ cos θ − rθ̇ sin θ

results from resolving the two components of the vector velocity ṙ = ṙêr + rθ̇êθ

in the x-direction.

Example: If ẋ = x + y and ẏ = y − x then

ṙ =
x(x + y) + y(y − x)

r
= r,

θ̇ =
x(y − x)− y(x + y)

r2
= −1.

Circular Motion

Consider now motion in a circle, so that r is constant, and let ω = θ̇ (not necessarily

constant) be the angular velocity. Then

ṙ = ωrêθ
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and

r̈ = −ω2rêr + ω̇rêθ.

The term ω̇rêθ represents acceleration along the curve itself, i.e., it represents the effect

of varying angular velocity. However, the term −ω2rêr, which is known as the centripetal

acceleration, is present even if ω is constant; this represents the acceleration towards

the centre of the circle which is required simply to keep the motion constrained to the

circle. Let v = ωr be the speed; then the magnitude of the centripetal acceleration can

be written alternatively as ω2r, v2/r or ωv.

Example: A car is travelling on a hump-backed bridge whose surface may be modelled

as an arc of circle with radius of curvature R. At the crest of the bridge, a policeman

observes that the car becomes temporarily airborne. Should he issue a speeding ticket?

At the crest of the bridge, the forces acting on the car are

gravity vertically downwards and a possible normal reaction

vertically upwards; however, because the car has left the road,

it is clear that the normal reaction must be zero. The acceler-

ation downwards (towards the centre of the circle) is therefore

g, which must be insufficient to constrain the car to the circle;

i.e., g < v2/R. So v >
√

gR and the policeman should issue a

ticket if
√

gR is greater than the local speed limit.

2.2 Simple Harmonic Motion

Free Motion

Consider a particle of mass m attached to a spring with spring

constant k:

mẍ = −kx

so x = A sin(
√

k/m t) + B cos(
√

k/m t) for arbitrary (real) constants A, B

or = R sin(
√

k/m t + θ0) for suitable R, θ0

or = αei
√

k/m t + βe−i
√

k/m t for suitable (complex) α, β.

The angular frequency of the oscillation is ω =
√

k/m and the period is 2π/ω.

Other examples include the pendulum,

a magnetic dipole and an electrical circuit.
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Damped Motion

Consider the same system with linear friction, imposed perhaps by

a “dashpot” or shock absorber:

mẍ = −kx− cẋ

where c is a positive constant. Let ω =
√

k/m, the natural frequency, and let γ = c/(2m);

then the roots of the auxiliary equation are −γ ±
√

γ2 − ω2. There are three cases:

• γ > ω – overdamped. Both roots are real and negative, so the

solution contains two exponentially decaying terms.

• γ = ω – critically damped. The roots are equal and

x = (A + Bt)e−γt.

• γ < ω – underdamped. We obtain a decaying oscillation

x = Re−γt cos(
√

ω2 − γ2 t + θ0).

The optimal design for a car suspension is critically damped: overdamping gives a hard

ride, whereas underdamping causes prolonged oscillations.

Forced Damped Motion

Suppose that we now apply an additional periodic force F cos Ωt to the particle, so that

mẍ = −kx− cẋ + F cos Ωt.

The general solution consists of two parts: (a) the particular integral; and (b) the com-

plementary function, which we found above and which always decays as t → ∞. We

are interested in the long-term solution, so we disregard (b), which is the transient, and

only consider (a), the forced response. Like the forcing, this will be periodic with angular

frequency Ω; if Ω is close to the natural frequency ω =
√

k/m then we will observe

resonance, especially if the damping is light.
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2.3 Uniform Electromagnetic Fields

A charged particle in a uniform magnetic field B moves in a helix. For example, consider

an electron with charge −e. The Lorentz force law and N II give that

mẍ = −eẋ×B.

By rotating the axes, we can arrange that B is parallel to the z-axis; then

m

ẍ

ÿ

z̈

 = −e

ẋ

ẏ

ż

×
 0

0

B

 ,

i.e.,

mẍ = −eBẏ, (2.1)

mÿ = eBẋ,

mz̈ = 0. (2.2)

Equation (2.2) gives z = vt + z0 where v and z0 are constants. Let X = ẋ, Y = ẏ and

ω = eB/m; then

Ẋ = −ωY, Ẏ = ωX =⇒ Ẍ = −ω2X

which has solution

X = R sin(ωt + θ0)

where R and θ0 are arbitrary constants. Integrating with respect to t,

x = r cos(ωt + θ0) + x0

where r = −R/ω and x0 is an arbitrary constant. Equation (2.1) now gives that

ẏ = − ẍ

ω
= ωr cos(ωt + θ0),

so

y = r sin(ωt + θ0) + y0.

where y0 is another constant. Hence the complete solution is

x =

r cos(ωt + θ0)

r sin(ωt + θ0)

vt

+ x0

where x0 = (x0, y0, z0) is a constant position vector.
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Note that (x−x0)
2+(y−y0)

2 = r2, so in the x–y plane the motion is

a circle of radius r with centre (x0, y0) and angular frequency ω = eB/m

(the “cyclotron frequency”). But the electron also moves at constant

speed v in the z-direction, resulting in a helix.

If an electric field E is also present then

mẍ = −e(E + ẋ×B),

i.e.,

mẍ = −eE1 − eBẏ

mÿ = −eE2 + eBẋ

mz̈ = −eE3. (2.3)

A similar method to that above, with the addition of some particular integrals, now gives

x = r cos(ωt + θ0) +
E2

B
t + x0,

y = r sin(ωt + θ0)−
E1

B
t + y0

and (2.3) gives

z = z0 + vt− eE3

2m
t2.

So as well as the helical motion there is an acceleration −eE3/m in the B-direction, i.e.,

an acceleration

−eE . B

m|B|2
B,

combined with a horizontal drift of constant velocity E2/B

−E1/B

0

 =
E×B

|B|2
.

The advantage of writing the results in vector notation, rather than in coordinates, is that they are then
true in any coordinate system (and not just the one we have been using in which B is parallel to the
z-axis).
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2.4 Projectiles

Linear Friction using Vectors

A ball is thrown from the origin with initial velocity V and experiences linear air friction.

The equation of motion is

mẍ = mg − kẋ

where k is a constant, i.e.,

ẍ + (k/m)ẋ = g.

We can solve this just as we would a scalar differential equation. Set v = ẋ and use an

integrating factor ekt/m:

d

dt
(vekt/m) = gekt/m

=⇒ vekt/m =
mg

k
ekt/m + c1

where c1 = V −mg/k from the initial condition. Hence

v =
mg

k
+
(
V − mg

k

)
e−kt/m

=⇒ x =
mg

k
t− m

k

(
V − mg

k

)
e−kt/m + c2,

where c2 = (m/k)(V −mg/k).

Quadratic Friction

A particle of mass m falling vertically downwards under gravity with

quadratic air resistance obeys

mz̈ = −mg + kż2

where k is a constant and z is the height of the particle at time t.

Note that the particle has a terminal velocity : when its speed is
√

mg/k, i.e., ż =

−
√

mg/k, the forces of gravity and air resistance are in balance and it accelerates no

more. In fact it never quite reaches this speed.
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2.5 The Simple Pendulum

Using the results of §2.1, we see that the acceleration of a pendulum

bob of length l at angle θ to the vertical is lθ̈ tangentially and lθ̇2

along the string towards the point of suspension.

Resolving in these directions,

mlθ̈ = −mg sin θ, (2.4)

mlθ̇2 = T −mg cos θ. (2.5)

For small oscillations we linearise (2.4) using sin θ ∼ θ for θ � 1, so

θ̈ = −g

l
θ.

This is shm with frequency
√

g/l and period 2π
√

l/g.

To find the period of the nonlinear motion, when θ is not necessarily small, we can

use energy methods: see §4.1.

Tension in the String

We can also find the tension T . Multiplying (2.4) by θ̇/m and integrating,

lθ̇θ̈ = −gθ̇ sin θ =⇒ 1
2
lθ̇2 = g cos θ + c

where c is a constant which can be found from the initial conditions. (This idea in fact

arises from the energy methods of §4.1.) Then from (2.5),

T = mlθ̇2 + mg cos θ = 3mg cos θ + 2mc.

2.6 Varying Mass

Avalanches

We consider a massively simplified model of an avalanche

which nevertheless gives useful results. Take a layer of snow

of density ρ and thickness h on the side of a mountain of slope

α. As the avalanche descends it sweeps up all the snow in

its path into a single “particle”. We assume it is of constant

width L (into the page on our diagram).
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The mass of the avalanche is

m(t) = ρhLx(t)

and from N II (assuming no friction),

d

dt
(mv) = mg sin α.

Using d
dt

= dx
dt

d
dx

,

v
d

dx
(ρhLxv) = ρhLxg sin α

=⇒ xv
d

dx
(xv) = x2g sin α

=⇒ 1
2
(xv)2 = 1

3
x3g sin α + const.

=⇒ v =
√

2
3
xg sin α

=⇒ dx√
x

=
√

2
3
g sin α dt

=⇒ x = 1
6
g sin α t2.

This is equivalent to uniform acceleration of 1
3
g sin α, i.e., gravity is reduced by a factor

of 3.

Note that this method of using N II in the form F = ṗ only works because all other

particles besides the one we are interested in have zero momentum. Normally we need to

use a different approach, taking every particle into account.

Rockets

A rocket has mass m(t), velocity v(t) and is acted on by a force F(t). It expels mass at

a velocity −u (usually constant) relative to itself.

In a time interval δt, the velocity changes to v+ δv and the mass to m+ δm. A small

amount −δm is expelled (note that δm < 0) at velocity v−u + O(|δv|) (i.e., somewhere

between v − u and v + δv − u). N II tells us that

p(t + δt)− p(t) = F δt
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as δt → 0, so{(
m + δm

)(
v + δv

)
+
(
−δm

)(
v − u + O(|δv|)

)}
−mv = F δt

=⇒ mv + v δm + m δv − v δm + u δm−mv = F δt

since we may ignore second-order terms. Dividing by δt and taking the limit,

m
dv

dt
+ u

dm

dt
= F.

This is the rocket equation.

Example: if the rocket has initial mass m0 and burns mass at a constant rate α, then

ṁ = −α and m = m0 − αt. If it is launched vertically from rest then

(m0 − αt)v̇ − αu = −mg = −(m0 − αt)g

=⇒ v̇ = −g +
αu

m0 − αt

=⇒ v = −gt− u ln(m0 − αt) + c

where c = u ln m0 from the initial conditions. Hence

v = −gt− u ln

(
1− αt

m0

)

=⇒ z = −1
2
gt2 +

um0

α

{(
1− αt

m0

)
ln

(
1− αt

m0

)
+

αt

m0

}
.

Note that we must require v̇ > 0 at t = 0 in order for the rocket to lift off: hence

−g + αu/m0 > 0, i.e., α > m0g/u. If this is true then in fact v̇ > 0 for all t < m0/α

(by which time the fuel must have run out and our equation of motion has stopped being

valid).
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