
Chapter 3

Dimensional Analysis

3.1 Power Laws

It is not possible to add together a length and an area meaningfully. Similarly, if x is a

length then ex is physically meaningless, because

ex = 1 + x + 1
2
x2 + 1

6
x3 + · · ·

and we would be adding length to area to volume, etc. (What could e 2 cm mean any-

way?) So we can only add together quantities with the same dimensions: for instance in

Pythagoras’s theorem a2 = b2 +c2 all quantities have the dimensions of area, i.e., length2.

In any equation, the dimensions of the lhs must match those of the rhs, to ensure that

it is true in any system of units.

In fact, quantities with dimensions occur only in power laws, for instance volume =

length3. Any other function of a dimensional quantity (such as ex2
, ln x or sech−1 x where

x has dimensions) is meaningless. Thus sin α only makes sense if α is dimensionless, e.g.,

if α = xy/(πr2) where x, y and r are lengths.

This simple fact makes it possible to obtain some surprisingly significant results about

how physical quantities depend on each other.

We can prove, formally, the result that dimensional quantities occur only in power laws. Let x be a
length and y be a physical variable related to x via the law y = f(x) for some function f . For any two
lengths x1 and x2 we take it as axiomatic that the ratio

y1

y2
=

f(x1)
f(x2)

is dimensionless and therefore independent of our system of units. That is, if we were to rescale the
values of x1 and x2 by some factor α, say, then the ratio would be unchanged; hence

f(x1)
f(x2)

=
f(αx1)
f(αx2)
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for any α. (If we changed our units of length from metres to centimetres, for instance, we would have
α = 100.)

Differentiating this expression with respect to α we obtain

x1f(αx2)f ′(αx1) = x2f(αx1)f ′(αx2)

for any α, x1 and x2. Setting α = 1, x1 = x and x2 = 1 gives

xf ′(x)
f(x)

=
f ′(1)
f(1)

≡ k;

that is to say, xf ′(x)/f(x) is a constant. Integrating this with respect to x gives ln f(x) = k lnx+ c, i.e.,
f(x) ∝ xk. This vindicates our statement.

The argument can easily be extended to more general situations involving other dimensions as well as
length.

We can associate with any physical quantity, y say, a set of dimensions denoted by

[y] in terms of mass M , length L, time T and possibly others based on the SI system

(such as temperature Θ). Charge Q is often included in this list of basic dimensions (even

though, according to the SI system, we should strictly use current I instead).

For example, velocity has dimensions LT−1; force has dimensions MLT−2 (because

F = ma = m d2x/dt2); and density has dimensions ML−3.

Once we have done this, we can write down a power law relationship between y and

the dimensional parameters a, b, c, . . . on which it depends:

y = Caαbβcγ . . .

where C is a dimensionless constant and α, β, γ, . . . are unknown constant exponents.

By considering the powers of each dimension M , L, T , etc., on both sides, we can find

equations connecting α, β and γ etc. There are three possibilities:

• No solutions for α, β, γ, . . . . We must have forgotten an important parameter.

• A unique solution. This is lucky and tells us everything about the relationship

between y and a, b, c, . . . except for one unknown constant C.

• Many solutions. We can still gain useful information in the form of a functional

relationship: see §3.2 below.

Example: A pendulum of length l with a bob of mass m executes small oscillations.

What is the angular frequency ω?

We know that ω must depend on l, m and g. So posit

ω = Clαmβgγ.
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The dimensions are

[l] = L, [m] = M, [g] = LT−2 and [ω] = T−1.

So

T−1 = (L)α(M)β(LT−2)γ

and hence

α + γ = 0

β = 0

−2γ = −1

 =⇒ α = −1
2
, β = 0, γ = 1

2
.

The solution for α, β, γ is unique in this case, so ω = C
√

g/l. In fact we know from §2.5

that C = 1.

3.2 Dimensionless Parameters

When there are many possible solutions for the putative exponents in a supposed power

law of the form considered in §3.1, the relationship between the physical quantities may

in fact have a more complicated form. We cannot determine the exact nature of the

relationship, but we can, nonetheless, show that its functional form must depend only on

one or more dimensionless parameters, as in the following example.

Example: A ball of mass m is thrown vertically upwards with speed V and experiences

quadratic air resistance with coefficient k. How high does it go?

Let h be the height and try

h = CmαgβkγV δ.

We know the dimensions (in particular, [k] = [force]/[velocity]2 = (MLT−2)/(LT−1)2 =

ML−1), so we obtain

α + γ = 0,

β − γ + δ = 1,

−2β − δ = 0.

These do not have a unique solution; but one solution is α = 1, β = 0, γ = −1,

δ = 0, corresponding to m/k. So consider h
/
(m/k); this must be dimensionless. But

dimensionless quantities can only be formed from other dimensionless quantities, so now

start again and look for dimensionless combinations of m, g, k and V . These would have

α + γ = 0,

β − γ + δ = 0,

−2β − δ = 0
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from which we deduce that α = β = −γ and δ = −2α, i.e., our dimensionless combination

is (mg/kV 2)α. Hence λ ≡ mg/kV 2 is essentially the only independent dimensionless

parameter and we must have

h

m/k
= f

( mg

kV 2

)
, i.e., h =

m

k
f

( mg

kV 2

)
(3.1)

where f is some unknown function.

Note that f need not be just a simple power law, because its argument is dimensionless.

In fact, solving the ball’s equation of motion explicitly shows that f is the function

f(λ) = 1
2
ln(1 + λ−1),

but we cannot find this by dimensional analysis.

In this example we said that one combination of parameters with the same dimensions as h is m/k, and
considered h

/
(m/k) as a dimensionless quantity. But we could have chosen a different combination, for

instance V 2/g, with the same dimensions as h and considered h
/
(V 2/g) instead. Would this have led to

a different answer?

We would have obtained

h =
V 2

g
f̂

( mg

kV 2

)
where f̂ is some (different) unknown function. But, given any function f̂(λ), define

f̃(λ) =
f̂(λ)

λ
;

then we see that

h =
V 2

g

mg

kV 2
f̃

( mg

kV 2

)
=

m

k
f̃

( mg

kV 2

)
where f̃ is some unknown function, which is the same answer as before.

Instead of writing
h

m/k
= f

( mg

kV 2

)
in (3.1) we could equally have written

g

(
mg

kV 2
,
kh

m

)
= 0

where g is an unknown function. This is achieved simply by defining, for example,

g(x, y) = y−f(x). There are occasions on which this alternative form is more convenient.

There are many other suitable definitions of g apart from the example y−f(x) given above: for instance
y2 − [f(x)]2 or ln

[(
1 + y

)/(
1 + f(x)

)]
.

The alternative form is in fact more general. Given y = f(x) it is always possible to obtain g(x, y) = 0
by making the definition for g above. However, given an arbitrary equation g(x, y) = 0 it is not always
possible to reverse the process and write y = f(x) (for instance, in the case g(x, y) = (x− 1)2− (y− 1)2,
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where there are in general two solutions for y for any given x, or the case g(x, y) = x3 where y does not
even feature!).

Suppose now that instead of throwing the ball vertically upwards, we had thrown

it at an angle θ to the horizontal. Since angles are dimensionless, we would have two

independent dimensionless quantities, mg/kV 2 and θ; hence

h =
m

k
F

( mg

kV 2
, θ

)
where F is an unknown function of two variables. In fact, F is not known analytically!

3.3 Non-Dimensionalisation

Consider the example of §3.2 again, where the ball is thrown at an

angle θ. If the ball has position vector x = (x, y), then its equation

of motion is

mẍ = mg − k|ẋ|ẋ,

i.e.,

mẍ = −k
√

ẋ2 + ẏ2 ẋ,

mÿ = −mg − k
√

ẋ2 + ẏ2 ẏ;

at t = 0 we have x = y = 0, ẋ = V cos θ, ẏ = V sin θ.

We note that a combination of the parameters with dimensions of length is m/k; and

of time, m/(kV ). So scale x, y and t by defining

X =
x

m/k
, Y =

y

m/k
, T =

t

m/(kV )
.

Then X, Y and T are dimensionless variables. Derivatives can be calculated using the

chain rule:

ẋ =
dT

dt

dx

dT
=

kV

m

d

dT

(m

k
X

)
= V X ′

where a prime denotes d/dT . Repeating this procedure we obtain

ẍ =
kV 2

m
X ′′.

So

kV 2X ′′ = −k
√

V 2X ′ 2 + V 2Y ′ 2 V X ′,

kV 2Y ′′ = −mg − k
√

V 2X ′ 2 + V 2Y ′ 2 V Y ′.
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Defining λ = mg/kV 2 we obtain

X ′′ = −
√

X ′ 2 + Y ′ 2 X ′,

Y ′′ = −λ−
√

X ′ 2 + Y ′ 2 Y ′,

with X = Y = 0 and X ′ = cos θ, Y ′ = sin θ at T = 0. These simultaneous differential

equations and their initial conditions have thus been entirely non-dimensionalised, and the

solution clearly depends only on the parameters λ and θ. We can solve them numerically

(on a computer) for X(T ) and Y (T ), and find the point T0 at which Y ′(T0) = 0; then

the height reached is h = (m/k)Y (T0).

The value of Y (T0), which depends only on λ and θ, is in fact the function F (λ, θ)

mentioned in §3.2. This method allows us to find the complete set of solutions by exploring

only 2 parameters λ and θ instead of a 5D parameter space (m, k, g, V, θ).
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