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Waves - 12 lectures of 24

Part III

O. Rath Spivack

May 29, 2009

This part of course deals with propagation and scattering of acoustic and
electromagnetic waves by inhomogeneous, possibly random, media and by
rough surfaces. The direct problem of calculating the scattered field, given
an incident field and a scatterer (which could be a surface or an extended
medium) will be considered first. The last two chapters are concerned with
the inverse problem. The linear approximation to the wave equation for
acoustic waves will be used throughout.

This is just a first draft of the material covered in this course. I should very much

appreciate being told of any corrections or possible improvements Comments, please, to

O.Rath-Spivack@damtp.cam.ac.uk.
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1 Governing equations for acoustic and elec-

tromagnetic waves

The first two sections of this chapter are intended as a reminder of concepts
that are probably all, or mostly, already familiar to you, with the purpose of
establishing terminology and notation and serving as a quick reference.

1.1 Acoustic Waves

We shall start from the linearised wave equation for acoustic waves propagat-
ing in a fluid with density ρ and velocity v. For an ideal fluid, i.e. with zero
viscosity, and neglecting gravity and any other external forces, conservation
of mass and conservation of momentum, together with an appropriate state
equation, are expressed to first order by the linear acoustic equations

∂ρ′

∂t
+ ρ0∇ · v′ = 0 (1.1)

ρ0
∂v

∂t

′
= −∇p′ (1.2)

p′ =

(

∂p

∂ρ

)

0

ρ′ = c2ρ′. (1.3)

and lead to the wave equation for the acoustic pressure:

∇2p − 1

c2

∂2p

∂t2
= 0, (1.4)

where c denotes the speed of sound in the fluid (medium), and ρc, which is
equal to the ratio between pressure and velocity, is called characteristic

impedance of the medium.
The wave equation can be formulated alternatively in terms of a velocity

potential. If we take the curl of (1.2) and use the vector identity ∇×(∇ϕ) =
0, valid ∀ϕ, it follows that (again dropping all primes)

∂(∇× v)

∂t
= 0,

i.e. the vorticity (∇×v) is constant in time. Therefore the velocity field is
irrotational (∇× v = 0) if it is irrotational initially, and we can introduce a
velocity potential φ by writing

v = ∇φ. (1.5)
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1.1 Acoustic Waves

Note that v = ∇φ + v0 will apply if the fluid is initial moving with velocity
v0. Substituting (1.5) in (1.2), we obtain

p = ρ0
∂φ

∂t
. (1.6)

Now, using (1.5), (1.6) and (1.3) in (1.2) gives

∇2φ − 1

c2

∂2φ

∂t2
= 0, (1.7)

which is the wave equation in terms of the velocity potential.
A general solution of (1.4) is

p = f

(

t − ξ

c

)

+ g

(

t +
ξ

c

)

, (1.8)

where f and g are arbitrary functions which will be determined by initial
and boundary conditions, and ξ is the coordinate along which the acoustic
pressure varies, i.e. the direction along which the acoustic disturbance trav-
els. This solution is the sum of two waves travelling at speed c in the +ξ and
−ξ direction respectively.
In an arbitrarily oriented coordinate frame, if n is the unit vector in the
direction of increasing ξ, then at a point x we can write ξ = n · x. If one
assumes, as is usually appropriate from physical considerations, that there
exists a time t0 in the past before which the wave hasn’t arrived and all field
quantities are zero (causality), then the solution reduces to waves travelling
in the positive direction:

p = f
(

t − n · x
c

)

. (1.9)

For an acoustic disturbance of constant frequency, the field variables oscillate
sinusoidally with time, so

p = |A| cos(ωt − ϕ) = Re{Ae(iϕ−iωt)} , (1.10)

where ω = angular frequency,

ϕ = phase,

and we have T =
2π

ω
= period,

f =
ω

2π
= frequency.

Part III - Waves 4 O.Rath-Spivack@damtp.cam.ac.uk
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1.1 Acoustic Waves

If a sinusoidal wave p = |A| cos(ωt) travels in the n direction, then we must
have p = f(t − n · x/c), and consequently

p = |A| cos
[

ω(t − n · x
c

)
]

= Re{e−iω(t−n·x
c

)} = Re{eik·x−ωt} , (1.11)

where we have used the wavevector k = ω
c
n. The above rightmost expression

is the one usually and most conveniently used in practical calculations.

NOTE: Even though the physical quantity is given by the real part only,
full complex waves are normally used in calculations, and the real part is
subsequently taken as appropriate. Consequently, if the acoustic field is
expressed in terms of a complex velocity potential ψ, we should be careful to
take

p = Re [iωρψ exp(−iωt)]

v = Re [∇ψ exp(−iωt)] (1.12)

when dealing with real physical quantities.
Any acoustic disturbance p(x, t) can be written as a superposition of time-
harmonic waves 1.10. This can be done using a Fourier transform (as long
as | p(x, t) | and | p(x, t) |∈ L2):

p(x, t) =
1

2π

∫ ∞

−∞
p(x, ω) exp(−iωt)dω (1.13)

where

p(x, ω) =
1

2π

∫ ∞

−∞
p(x, t) exp(iωt)dt (1.14)

If we substitute a harmonic wave p = eik·x−ωt in the wave equation (1.4)
(noting that Re{·} and ∂

∂t
{·} commute), we obtain

ω2

c2
p + ∇2p = 0 ,

or, by using the wavenumber k = ω
c

∇2p + k2p = 0 . (1.15)

This form of the wave equation, suitable for time-harmonic waves, is usually
called the Helmholtz equation, or reduced wave equation.

When considering time-harmonic problems then, it is usual (and obviously
very convenient) to drop the time-dependent part of the wave altogether.

Part III - Waves 5 O.Rath-Spivack@damtp.cam.ac.uk
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1.1 Acoustic Waves

This is possible, at least for part of the calculations, in the case of a non-
monochromatic wave, by decomposing it into monochromatic waves using
Fourier analysis. Since the wave equation is linear, each Fourier component
obeys the Helmholtz equation, and the total field can be reconstracted after
solving the scattering problem for whatever boundary conditions on any finite
surfaces are appropriate. In this case, though, it is not possible to express the
causality condition in the same way as before. Causality then is expressed by
the integrability condition implicit in assuming that a Fourier representation
of the wave exists. What was introduced as a condition in time (initial value),
and cannot in that form be readily applied to a superposition of stationary
waves, is equivalent to a condition in space (boundary condition at infinity):

p(x) = O(| x |−1/2) (1.16)

or, more usually:

|x |
(

∂p(x)

∂ |x | − ikp(x)

)

→ 0 (1.17)

uniformly as | x |→ ∞. This is the Sommerfeld radiation condition,
and it expresses the requirement that the field should contain no incoming
waves as |x |→ ∞. In general, integrability, hence causality, will also result in
restrictions imposed on the contour chosen for the integration in the complex
plane.

Part III - Waves 6 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

1.2 Electromagnetic waves

In this section the wave equation obeyed by electromagnetic waves is derived,
and we introduce the general scattering problem for electromagnetic waves.
We shall begin with Maxwell’s equations for an electromagnetic field in a
generic medium with permittivity ǫ and permeability µ, in SI units (also
sometimes called MKS):

∇× E = −∂B

∂t
(1.18)

∇ · B = 0 (1.19)

∇× H =
∂D

∂t
+ J (1.20)

∇ · D = ρ , (1.21)

Here E is the electric field intensity, B is the magnetic induction, H is the
magnetic field intensity, D is the so-called electric displacement, J is the
current density, and ρ is the electric charge density. These quantities are
related by

D = ǫE + P (1.22)

B = µH + M , (1.23)

where P is the electric polarization and M the magnetization.
In free space, we have P = 0 and M = 0, and Maxwell’s equations reduce to

∇× E = −µ0
∂H

∂t
(1.24)

∇ · H = 0 (1.25)

∇× H = ǫ0
∂E

∂t
(1.26)

∇ · E =
ρ

ǫ0

, (1.27)

where ǫ0 and µ0 are the permittivity and permeability of free space respec-
tively.
It is straightforward to see from the Maxwell equations that there exist
scalar and vector potentials for the electromagnetic field. Since ∇·B = 0,
∃ a vector field A such that

B = ∇× A . (1.28)

Using this in the first of Maxwell’s equations shows that E must satisfy:

E = −∇V − ∂A

∂t
, (1.29)

Part III - Waves 7 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

where V is a scalar field. A and V are not unique. It is always possible to
find an arbitrary scalar Φ such that the vector

A0 = A −∇Φ

also satisfies (1.28) giving the same B, and the scalar

V0 = V +
∂Φ

∂t

gives the same E. This is a gauge transformation, and any particular choice
of Φ is a choice of gauge.
We shall see that the electric field E and the magnetic field B obey a wave
equation equivalent to that derived in section 1.1 for acoustic waves. A
similar equation can also be derived for the scalar and vector potentials Φ
and A.
Let us derive the wave equation first in free space, i.e. and in the case when
there are no charges nor currents: ρ = 0,J = 0. We shall start with equation
(1.20), which in this case becomes:

∇× B = µ0ǫ0
∂E

∂t
(1.30)

Noting that ∇ × {·} and ∂
∂t
{·} commute, if we now apply ∂

∂t
to (1.30), and

use equation (1.18), we obtain

∇× (∇× E) = µ0ǫ0
∂2E

∂t2
(1.31)

and, since ∇ · E = 0 in this case, and µ0ǫ0 = c−2, where c is the speed of
light, we arrive at the wave equation for E

∇2E − 1

c2

∂2E

∂t2
= 0 . (1.32)

It is straightforward to derive a wave equation of the same form for the
magnetic field B. A wave equation for E can be similarly derived in the
more general case where charges and currents are present, and, for the case
of a homogeneous and isotropic medium, has the form:

∇2E − 1

c2

∂2E

∂t2
= ǫ−1

0 ∇ρ + µ0
∂J

∂t
, (1.33)

where the r.h.s. represents source terms due to charges and currents. A
similar equations for B also applies.

Part III - Waves 8 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

In an inhomogeneous medium the permittivity and permeability are space-
dependent, and if the medium is also anisotropic, then it has different proper-
ties in different directions and its permittivity and permeability are tensors,
ǭ(x, y, z) and µ̄(x, y, z). In this case the wave equation will be a more com-
plicated expression, since we will not be able to factorise ǫ and µ in the same
way.
We notice here that the vector product E × H has the dimensions of an
energy flux. It is indeed taken as the energy flow at a point (even though it
is not unique), and is called Poynting vector:

S = E × H =
1

µ
E × B (1.34)

The Poynting vector gives the direction of the energy flow. For a general time-
harmonic field E(r, t) = Re{E(r)e−iωt+θE} and H(r, t) = Re{H(r)e−iωt+θH}
we can see that the time-averaged energy flux:

S̄ =
1

T

∫

(E × H)dt

is given by half the real part of the complex Poynting vector:

S̄ =
1

2
Re[E(r) × H∗(r)] (1.35)

Similarly to acoustic plane waves, an electromagnetic plane wave shall be
written E(r, t) = E0(t)e

ik·r, from which we can see (from Maxwell equations)
that for plane waves the energy flow is perpendicular to the wavefront, and
the energy travels in the direction of the wavevector k. Note that, even
though the functional form of an electromagnetic plane wave is the same as
that of an acoustic plane wave, electromagnetic waves are vector waves, so
all the equations are vector equations.
For a time-harmonic field E(r, t) = Re{E(r)e−iωt} we can derive, as in the
case of acoustic waves, a reduced wave equation: the Helmholtz equation for
electromagnetic waves

∇2E(r) + k2E(r) = 0 , (1.36)

where k2 = ω2µǫ. The equivalent equation is also satisfied by H(r).
The radiation condition for electromagnetic waves can be expressed (as
before) in terms of the scalar and vector potentials, but is usually more
conveniently expressed in terms of the field components:

| rE |< K , | rH |< K

Part III - Waves 9 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

r(E + Z0̂ir × H) → 0 , as | r |→ ∞ , (1.37)

r(H − îr × E/Z0) → 0 , as | r |→ ∞ , (1.38)

where Z0 =
√

µ/ǫ = impedance of the medium.
Maxwell’s equations are linear, so if a distribution of charges and currents
gives the e.m. field (E1,H1) and another gives the field (E2,H2), then the
superposition of the two distributions gives the field (E1 + E2,H1 + H2),
and they all satisfy the wave equation. This property holds exactly for
electromagnetic waves, unlike the case of acoustic waves where it is only
approximate, when the linearised wave equation is assumed.

Polarized waves
Plane waves solutions of (1.33) or (1.32) and their equivalents for the mag-
netic field are again fundamental in practical applications, as in the case
of acoustic waves, either because only far-field solutions are of interest, or
because any wave can be represented as a superposition of plane waves.
Of particular interest are plane waves which are linearly polarized. Two kinds
of linear polarizations are possible. Let’s take Cartesian coordinates and a
plane wave with direction of propagation k in the (x, y)-plane. Then, either
the electric vector E is parallel to the z-coordinate:

E = ẑEz , E-polarization (1.39)

or TM wave

or:

H = ẑHz , H-polarization (1.40)

or TE wave .

When talking of “direction of polarization”, one normally refers to the di-
rection of E (but note that the opposite convention is sometime found in
the literature). It is immediately apparent that in many scattering problems
with linearly polarized waves, the vector wave equation will reduce to a scalar
equation for either Ez or Hz.
For example, if a TM wave is incident on a surface that can be described by
S = f(ρ, φ) in cylindrical polar coordinates, independently of z, then for this
scattering problem the incident field is given by

Einc = ẑEinc
z , Hinc = − i

kZ

(

∂Einc
z

∂y
x̂ − ∂Einc

z

∂x
ŷ

)

, (1.41)

where Z =
√

µ/ǫ is the surface impedence, and depends on the properties
of the two media and the surface, and usually varies with the incoming field

Part III - Waves 10 O.Rath-Spivack@damtp.cam.ac.uk
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1.2 Electromagnetic waves

at each point. In general, Z is also a function of frequency and angle of
incidence.
Since the boundary conditions are independent of z, then the scattered field
must also be E-polarized, and of the form

Esc = ẑEsc
z , Hsc = − i

kZ

(

∂Esc
z

∂y
x̂ − ∂Esc

z

∂x
ŷ

)

, (1.42)

therefore the scattering problem reduces to finding the scalar function Esc
z ,

and is analogous to the problem of an acoustic field scattered by a soft sur-
face. Similarly, the case of H-polarization is analogous to that of an acoustic
field scattered by a hard surfaces. All problems where the scatterer is ax-
isymmetric and the incident electromagnetic field is polarized in the direction
parallel to the axis of symmetry therefore reduce to a scalar problem.

Part III - Waves 11 O.Rath-Spivack@damtp.cam.ac.uk
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1.3 Boundary conditions

1.3 Boundary conditions

The solutions of the various forms of the wave equations will typically have
to be found subject to boundary conditions on any surface in the prob-
lem. A generic surface is an interface between two media, and the boundary
conditions must reflect the continuity of actual physical quantities at the in-
terface. The constraints imposed on the solutions of the wave equation at an
interface between two fluids will reflect the different characteristic properties
of the two fluids or, if the surface delimits a solid object, the properties of
the solid object defined by the surface.

In the case of acoustic waves, the b.c. at an interface between two media, let
say medium 1 and medium 2 with densities ρ1 and ρ2, must reflect continuity
of pressure, which means that there cannot be a net force at the interface,
and continuity of the normal component of the velocity, which means that
the two media are in contact at the interface (no gaps). These are normally
expressed in terms of the velocity potential by the ’jump conditions’:

ρ1ψ1 = ρ2ψ2

(1.43)

∂ψ1

∂n
=

∂ψ2

∂n

where the subscripts 1 and 2 refer to the two media, and we take n as the
normal directed into medium 1.
In the case of electromagnetic waves, we can see from Maxwell’s equations
that there will be discontinuities in some components of the fields, which are
related to the surface distribution of charges and currents. We have :

E2 − E1 = (ρs/ǫ)n (1.44)

H2 − H1 = Js × n , (1.45)

(where the subscript s refers to the quantities at the surface) which imply
discontinuity in the normal component of the electric field E⊥ and the tan-
gential component of the magnetic field H‖.

We can derive the appropriate continuity equation for the components of the
electromagnetic field by applying the integral theorems of vector calculus to
an infinitesimal layer across the interface.

Part III - Waves 12 O.Rath-Spivack@damtp.cam.ac.uk
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1.3 Boundary conditions

We shall first apply Gauss theorem to
∫

∇· Bdv over an infinitesimal cylinder
across the interface, with height δh and basis area δA.

We have
∫∫∫

V
∇ · Bdv =

∫∫

S
B · nds . (1.46)

We then let δh → 0 and assume that B is constant over the area, since δA
is very small, and we can write:

B1 · n1δA + B2 · n2δA = 0 , (1.47)

where n1 and n2 are the normals directed into medium 1 and medium 2
respectively, from which we have:

(B2 − B1) · n = 0 , (1.48)

hence B⊥ (or H⊥) is continuous.

Similarly, from

∫∫∫

V
∇ · Ddv =

∫∫

S
D · nds =

∫∫∫

V
ρdv (1.49)

and defining a surface charge density ρs by

lim
δh→0

∫∫∫

V
ρdv =

∫∫

S
ρsds , (1.50)

we get
(D2 − D1) · n = ρs . (1.51)

To look at the tangential components, let us take an infinitesimal area S
across the interface, with height δh perpendicular to the interface, and sides

Part III - Waves 13 O.Rath-Spivack@damtp.cam.ac.uk
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1.3 Boundary conditions

δs1 and δs2 parallel to the interface. We further denote by C the total bound-
ary of this area, and by b its normal.

Using Stokes theorem and Maxwell’s equation we have:

∫∫

S
∇× E · bds =

∮

C
E · dr = −

∫∫

S

∂B

∂t
· bds . (1.52)

Since the lengths of the parallel sides are very small, we can take them to be
equal and take E to be constant over each side and write:

E1 · t1δs + E2 · t2δs + “contrib. from ⊥ sides” = −∂B

∂t
· bδsδh (1.53)

Now, by letting δh → 0 and noting that

t1 = −t2 = b × n ,

we get
n × (E2 − E1) = 0 . (1.54)

Similarly, and defining a surface current density Js by

lim
δh→0

∫∫∫

V
Jdv =

∫∫

S
Jsds , (1.55)

we get
n × (H2 − H1) = Js . (1.56)

If the surface at the interface is perfectly reflecting (for acoustic waves),
then no energy is allowed through, therefore the magnitude of the reflected
wave must be equal to the magnitude of the incident wave. This can be
achieved with a reflection coefficient which is either +1 or -1, corresponding
to the two cases where the total field at the surface is twice the incident field
or vanishes (and conversely for the normal derivative).
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1.3 Boundary conditions

The equivalent of a perfectly reflecting surface for electromagnetic waves is a
perfectly conducting surface, where no energy is transmitted because the
electric and magnetic fields inside the conductor are zero, and the tangential
component of the total electric field at the surface is zero:

E − (E · n)n = 0 , (1.57)

For perfectly reflective or perfectly conductive surfaces the two possible cases
are:
Neumann condition, when the normal derivative of the potential field is
given at the boundary, i.e., if n is the unit normal pointing outward from the
surface:

∂ψ(r)

∂n
= 0, r on S. (1.58)

For acoustic waves, this corresponds to an acoustically hard surface, or in the
case of electromagnetic waves in 2D, to a vertically polarized electromagnetic
wave on the perfectly conducting surface.
Dirichlet condition, when the value of the potential field is given at the
boundary:

ψ(r) = 0, r on S. (1.59)

which, for acoustic waves, corresponds to a pressure-release or acoustically
soft surface, and in the case of electromagnetic waves corresponds to a hor-
izontally polarized electromagnetic wave in 2D on the perfectly conducting
surface.

In most real cases the surface is neither perfectly reflecting, nor perfectly
conducting. Both the potential and its normal derivative are different from
zero at the boundary, and it is convenient to express the boundary condition
as an approximate equation relating these two quantities. This is called
Cauchy condition (or Robin, or impedance boundary condition).
In the case of acoustic waves the impedance boundary condition is usually
expressed by

∂ψ

∂n
(r) = iZ(r, ω, θ, ...)ψ(r) r on S. (1.60)

For electromagnetic waves the boundary condition relates the tangential com-
ponent of the electric field at the surface to the normal component of the
magnetic field at the surface:

E − (E · n)n = iZ(r, ω, θ, ...)n × H , (1.61)

The impedance of the surface, Z, depends on the properties of the two media
and usually varies with the incoming field at each point. In general, Z is also
a function of frequency and angle of incidence.
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1.3 Boundary conditions

The impedance boundary condition can also be expressed as

n ×∇× E‖ = iZn × (E × n)

in a form similar to the one for scalar waves.
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1.4 Green’s functions

1.4 Green’s functions

In most problems of practical interest in acoustics, there will be one or more
sources of sound, and the space where the problem needs to be solved will
include one or more surfaces. Consequently, the differential equation to be
solved will be an inhomogeneous version of (1.4) or (1.15), and the solutions
will be subject to other boundary conditions in addition to (1.17). In general
the problem in question will then be defined by a differential equation

∇2p(x, t) + k2p(x, t) = f(x, t) , (1.62)

together with boundary conditions on one or more surfaces and the Sommer-
feld conditions. It is usually not easy to find solutions for such boundary
value problems, but the task is greatly facilitated by the use of an auxil-
iary function associated with the differential equation, known as Green’s

function.
In order to illustrate the concept of a Green’s function, and provide the means
of constructing Green’s functions for different problems, let’s first write (1.62)
in operator form as

Lp(ξ) = f(ξ) , (1.63)

where L is a linear operator, p the unknown function, and f is a known
function determined by the source. The variable ξ denotes a point in an
n-dimensional space which can include time as one of the coordinates. The
solution of (1.63) can be sought in principle by finding the inverse of the
operator L,

p(ξ) = L−1f(ξ) , (1.64)

but this is so far not particularly useful in practice. Since L is a differential
operator, if L−1 exists, it can be reasonably assumed to be an integral oper-
ator. If we assume that L−1 is an integral operator with kernel K, i.e. such
that

L−1f(ξ) =

∫

K(ξ, η)f(η)dη

for any functions f defined in the same domain as p, then we can write

p(ξ) = LL−1p(ξ) = L

∫

K(ξ, η)p(η)dη ,

Since L is a differential operator with respect to the variable ξ, we can for-
mally write

p(ξ) =

∫

LK(ξ, η)p(η)dη .
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1.4 Green’s functions

This can be true only if

LK(ξ, η) = δ(η − ξ) , (1.65)

in which case we can write the solution to (1.63) as

p(ξ) =

∫

K(ξ, η)f(η)dη (1.66)

The kernel K of the operator L−1 is called the Green’s function for the
problem and will therefter be denoted by G(ξ, η). We can see from (1.66)
that its knowledge allows us to find the solution of the wave equation for
any known source f(ξ), at least in principle. Equation (1.65) shows that the
Green’s function is the field generated by a delta-function inhomogeneity, i.e.
the solution of the inhomogeneous wave equation (1.63) with the source term
f = δ(η − ξ).
Due to the symmetric property of G:

G(ξ, η) = G∗(η, ξ)

This reciprocity relation means that G(x,y, t, t′) can equivalently represent
the field at a point x due to a ’disturbance’ at y, or the field at y due to a ’dis-
turbance’ at x. In other words, the Green’s function is unchanged if source
and receiver are interchanged. We note that, with regard to the time coor-
dinate, the reciprocity implies time reversal: G(x,y, t, 0) = G(y,x, 0,−t), so
causality is satisfied.
The Green’s function defined above is not unique: it is always possible to
add to it a solution of the homogeneous wave equation, and the result will
of course still satisfy (1.65). The particular solution for the Green’s function
which is independent of any boundary conditions is called the free space
Green’s function, and shall usually be denoted by G0(ξ, η). Any other Green’s
function can be written as

G(ξ, η) = G0(ξ, η) + GH(ξ, η) , (1.67)

where GH(ξ, η) is a solution of

L(ξ)G(ξ, η) = 0 . (1.68)

When GH(ξ, η) is chosen to satisfy the boundary conditions for the problem,
then G(ξ, η) is the exact Green’s function for the problem.

We shall derive here the free space Green’s function for time-dependent wave
equation in 1D, i.e. the function G satisfying:

∂2Gx, t

∂t2
− c2∂2G(x, t)

∂x2
= δ(x − y)δ(t − τ) (1.69)
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1.4 Green’s functions

If we Fourier transform (1.69) in both space and time, it becomes

−ω2Ĝ(k, ω) + c2k2Ĝ(k, ω) = eikye−iωτ , (1.70)

so the transform of the required Green’s function is given by

Ĝ(k, ω) =
1

c2

eikye−iωτ

k2 − ω2/c2
, (1.71)

and G(x, t) can be obtained by transfoming back:

G(x, t) =
1

4π2c2

∫ ∞

−∞

∫ ∞

−∞

e−ik(x−y)eiω(t−τ)

k2 − ω2/c2
dkdω (1.72)

The integral in (1.72) must be calculated taking care that the contour of
integration is chosen in a way that satisfies the causality condition. As dis-
cussed in section 1.1, this means requiring that the time-Fourier transformed
function G(x, ω) must be analytic in Im(ω) ≤ 0. Therefore, when integrat-
ing in the complex k-plane, we need to take the limit from below at the pole
k = ω/c, and the liimit from above at the pole k = −ω/c. In the first case
the contour will have a small indentation above the pole, in the second case,
a small indentation below. With these contraints then, if we first carry out
the inverse in k-space we obtain:

G(x, ω) =
1

4π2c2

∫ ∞

−∞

e−ik(x−y)

k2 − ω2/c2
dk =

e−iω
|x−y|

c

4πiωc
. (1.73)

The inverse transform in time then gives:

G(x, t) =
1

4πic

∫ ∞

−∞

eiω(t−τ− |x−y|
c

)

ω
dω =

1

2c
H

(

t − τ − | x − y |
c

)

. (1.74)

The time (t − τ − |x−y|
c

) is called retarded time, and is the time at which
the disturbance observed at (x, t) has been emitted by the source at (y).
In 3 dimensions, the free space Green’s function for the time-dependent wave
equation is

G(x, t) =
1

4πc2r
δ(t − τ − r/c) , (1.75)

where r =| x − y |,
and the free space Green’s function for the Helmholtz equation is

G(x, t) =
eikr

4πr
. (1.76)
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1.4 Green’s functions

The above represents a spherically symmetric wave, and can be derived as
the wave generated by a source consisting of an oscillating sphere, in the
limiting case where the radius tends to zero. Such source is called a point

source, or monopole. In the case of electromagnetic waves, a point source
is equivalent to a charge.

It is instructive to consider a source Q(r), uniformly distributed within a
sphere. The Helmholtz equation for the wave field is then

∇2p(x, ω) + k2p(x, ω) = Q(x) . (1.77)

This can now be written, using (1.66), as:

p(x, ω) =
1

4π

∫

eikr

r
Q(y)dy (1.78)

If the radius of the sphere r′ is very small, so r′ ≪ r, then we can expand
(eik|r−r′|/(| r − r′ |) in a power series:

(eik|r−r′|)/(| r − r′ |) =

eikr

r
− r′ · ∇

(

eikr

r

)

+
1

2
(r′ · ∇)2

(

eikr

r

)

+ . . .

If we substitute this expansion in (1.78), we obtain:

p = Q0
eikr

r
+ Qi

eikr

r2
+ Qij

eikr

r3
+ . . . (1.79)

The coefficients Q0, Qi and Qij (obtained by integrating over the volume
of the sphere containing the sources), are called respectively monopole,
dipole and quadrupole strength, and the series just obtained multipole
expansion.
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1.5 The Kirchoff-Helmholtz and Stratton-Chu equations

1.5 The Kirchoff-Helmholtz and Stratton-Chu equa-
tions

By using the Green’s function it is possible to derive an integral form of the
Helmholtz equation, which facilitates calculations of sound propagation and
scattering, and allows sources and boundary conditions to be treated in a
simple and convenient way.
In order to derive this integral equation, we shall first recall the following
vector identities. Given any two function f and g, we have:

∇ · (f∇g) = f∇2g + (∇f) · (∇g) . (V 1)

If f∇g is a vector field continuously differentiable to first order, which we
shall denote by F = f∇g, then we can apply to it the following theorem,
which transforms a volume integral into a surface integral:
Gauss theorem If V is a subset of Rn, compact and with piecewise smooth
boundary S, and F is a continuously differentiable vector field defined on v,
then

∫

V

∇ · F dV =

∫

S

F · n dS , (V 2)

where n is the outward-pointing unit normal to the boundary S.
In R3, for an F1 = f∇g and an F2 = g∇f , we have, using V2 and V1:

∫

V

[

f∇2g + (∇f) · (∇g)
]

dV =

∫

∂V

f∇g · n dS , (1.80)

∫

V

[

g∇2f + (∇g) · (∇f)
]

dV =

∫

∂V

g∇f · n dS , (1.81)

and subtracting (1.81) from (1.80) we obtain:

∫

V

(

f∇2g − g∇2f
)

dV =

∫

∂V

(f∇g − g∇f) · n dS . (1.82)

This result can be used can be used to solve a general scattering problem, in-
volving one or more sources and write the solution in terms of the (unknown)
field and its normal derivative along the boundary. The integral equations
obtained can in principle be solved to find these unknown surface field val-
ues. This approach applies whether the problem involves an interface with a
vacuum or with a second medium.
Consider first a finite region V contained between two smooth closed surfaces
S0 and S1, and containing a source Q(r).
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1.5 The Kirchoff-Helmholtz and Stratton-Chu equations

Let G be the free space Green’s function, and ψ the solutions to the inho-
mogeneous equation

∇2ψ + k2ψ = Q(r) . (1.83)

Using the vector identities introduced above, we can write:

∫

V

(

ψ∇2G −∇2ψG
)

dV =

∫

S0+S1

(

ψ
∂G

∂n
− ∂ψ

∂n
G

)

ds , (1.84)

where we have used d/dn = n ·∇. If we let the outer surface S1 go to infinity,
then, provided ψ obeys the Sommerfeld boundary condition at infinity, then
the integral over S1 vanishes.
Substituting in (1.84) the expressions for ∇2ψ and ∇2G obtained by the
appropriate wave equations, i.e.

∇2G = δ(r − r′) − k2G

∇2ψ = Q(r) − k2ψ

we obtain
∫

V

ψ(r′)δ(r − r′) − Q(r′)G(r, r′)dr′ =

∫

S0+S1

(

ψ
∂G

∂n
− ∂ψ

∂n
G

)

ds . (1.85)

But

ψi(r) =

∫

V

Q(r′)G(r, r′)dr′. (1.86)

is the incident field ψi inside the volume V . Using this result, then, we can
write (1.84) as

ψ(r) = ψi(r) +

∫

S0

[

ψ(r0)
∂G(r, r0)

∂n
− ∂ψ

∂n
(r0)G(r, r0)

]

dr0 . (1.87)

This is the Kirchoff-Helmholtz equation, an integral (implicit) form of
the Helmholtz equation, which is of great practical use in calculating the field
induced by sources scattered by finite boundaries.
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1.5 The Kirchoff-Helmholtz and Stratton-Chu equations

An integral form of the wave equation can be derived also for electro-
magnetic waves. To this end, we shall use the form of the Gauss theorem as
applied to a vector F ×∇× G:

∫

V

∇ · F ×∇× G dV =

∫

S

(F ×∇× G) · n dS , (1.88)

Expanding (1.88) gives the identity:
∫

V

(∇× F · ∇ × G − F · ∇ ×∇× G) dV =

∫

S

(F ×∇× G) · n dS , (1.89)

If we then obtain another identity by reversing F and G in (1.89), and
subtract it from (1.89), we get
∫

V

(G×∇×∇×F−F ·∇×∇×G) dV =

∫

S

(F×∇×G−G×∇×F) ·n dS ,

(1.90)
To derive the integral form of the Helmholtz equation for electromagnetic
waves, fictitious magnetic charge densities ρ∗ and currents J∗ are intro-
duced, to make the equations symmetric, so Maxwell’s equations for a time-
harmonic field become:

∇× E = iωµH − J∗ (1.91)

∇ · H =
ρ∗
ǫ

(1.92)

∇× H = −iωǫE + J (1.93)

∇ · E =
ρ

ǫ
, (1.94)

currents and charges are related by the continuity equations

∇ · J − iωρ = 0 ; ∇ · J∗ − iωρ∗ = 0 (1.95)

and E and H satisfy

∇×∇× E − k2E = iωµJ −∇× J∗ (1.96)

∇×∇× H − k2H = iωǫJ∗ −∇× J , (1.97)

where k2 = ω2ǫµ, as usual. Let us now use (1.90) with F = E and G = Ga,
where

a = an arbitrary unit vector

G =
eikr

r
.
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1.5 The Kirchoff-Helmholtz and Stratton-Chu equations

Using these definitions, and since G is a solution of ∇2G + k2G = −δ(r − r′),
we can then write the terms needed in (1.90) as:

∇× G = ∇G × a

∇×∇G = ak2G + ∇(a · G)

∇×∇F = k2E + iωµJ −∇× J∗ .

Using the equations, definitions and identities above in the vector identity
(1.88) we obtain:

∫

V
[iωµJG −∇× J∗ +

1

ǫ
ρ∇G] dV = (1.98)

=
∫

S
[iωµ(n × H)G + (n × E) ×∇G + (n · E)∇G − (n × J∗)G] dS ,

where the unit vector a has been dropped, because it is common to all terms
and its direction is arbitrary.
By applying the identity

∫

V

∇× J∗G dV =

∫

S

n × J∗G dS +

∫

V

J∗ ×∇G dV ,

we can reduce (1.98) to:

∫

V
[iωµJG − J∗ ×∇G +

1

ǫ
ρ∇G] dV = (1.99)

=
∫

S
[iωµ(n × H)G + (n × E) ×∇G + (n · E)∇G] dS .

Note that the gradient of the Green’s function, which appears in the above
integral, is given by

∇G =

(

1

r
− ik

)

eikr

r
r̂ ,

which is singular at r = 0. Therefore, when calculating the above integrals,
we need to exclude a small neighbourhood of r = 0, bounded by, e.g., a
small sphere of radius r1. When we then let the radius tend to zero, the
contribution of the surface integral over this small sphere in the r.h.s of
(1.99) reduces to 4πE, because the area over the sphere vanishes with radius
as 4πr2, on the sphere r̂ = n, and (n × E) × n + (n · E)n = E.

The field E at any point r′ in V is then given by

E(r′) =

∫

V

[iωµJG − J∗ ×∇G +
1

ǫ
ρ∇G] dV (1.100)

−
∫

S

[iωµ(n × H)G + (n × E) ×∇G + (n · E)∇G] dS ,
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1.5 The Kirchoff-Helmholtz and Stratton-Chu equations

and the equivalent equation for H is

H(r′) =

∫

V

[iωǫJ∗G + J ×∇G +
1

µ
ρ∗∇G] dV = (1.101)

+

∫

S

[iωǫ(n × E)G − (n × H) ×∇G − (n · H)∇G] dS ,

The equations just derived are quite complicated and difficult to calculate.
In any practical application it is useful to be able to reduce the calculations
to either volume integrals or surface integrals only.
We note that, if all sources can be enclosed within a sphere of finite radius,
the field is regular at ∞ and either side of S may be chosen as its interior,
i.e. S may be closed at ∞. In this case when the surface recedes to ∞ the
surface integral vanishes, so when the fictitious magnetic sources (charges
and currents) are placed equal to zero we get:

E(r′) =

∫

V

[iωµJG − J∗ +
1

ǫ
ρ∇G] dV (1.102)

and

H(r′) =

∫

V

(J ×∇G) dV . (1.103)

All the above expressions were obtained under the assumption that the
medium is homogeneous and isotropic. Some modifications apply for more
general media. Useful expressions can be obtained for an inhomogeneous
medium where a logarithmic dependence is assumed for the permittivity and
permeability gradients:

∇ · E =
ρ

ǫ
− E · ∇(log ǫ)

∇ · H =
ρ∗

µ
− H · ∇(log µ) .

Then the equations equivalent to (1.102) and (1.103) are:

E(r′) =

∫

V

[(iωǫJ∗G + iωµ(∇(log µ) × H)G − (E · ∇(log ǫ))∇G] dV (1.104)

and

H(r′) =

∫

V

[J ×∇G + iωǫ(E · ∇(log ǫ))G − (H · ∇(log µ))∇G dV . (1.105)

These equations are used in remote sensing to describe variations the E
and H fields of an electromagnetic wave caused by refraction in a layered
inhomogeneous medium, such as the earth atmosphere.

Part III - Waves 25 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

9 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

1.5 The Kirchoff-Helmholtz and Stratton-Chu equations

If the volume inside the surface S contains no charges nor currents then the
volume integrals in (1.100) and (1.101) vanish and the field at any point r′

is given by

E(r′) =

∫

S

[−iωµ(n × H)G + (n × E) ×∇G + (n · E)∇G] dS . (1.106)

It is natural then to describe this as the the field that would be produced by
a distribution of surface currents and charges, identified as:

Js = −n × H

J∗
s = n × E

ρs = −ǫn · E .

The equivalent expression for the magnetic field in this case is

H(r′) =

∫

S

[iωǫ(n × E)G − (n × H) ×∇G − (n · H)∇G] dS . (1.107)

The above equations, (1.106) and (1.107), are usually referred to as the
Stratton-Chu equations. These are widely used for problems involving
scattering from surfaces and from apertures.
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2 Approximations

In general, the solution of most scattering problems can only be expressed
analytically as some kind of integral, or as an implicit integral equation.
Calculation of the actual values of the field then has to be obtained by com-
putationally intensive numerical solutions. For many problems, though, it
is possible to obtain approximate analytical solutions. We shall review the
main ones in this chapter.

2.1 Parabolic Equation

Consider first a scalar plane wave ψ in free space (where we again assume
and suppress a time-harmonic variation e−iωt), with wavenumber k in a two-
dimensional medium (x, z). As before x is horizontal and z is vertical. So
ψ obeys the Helmholtz wave equation (∇2 + k2) ψ = 0. Suppose that ψ is
propagating at a small angle α to the horizontal, say

ψ(x, z) = eik(x cos α+z sin α) . (2.1)

Since sin α is small we can approximate

cos α =
√

1 − sin2 α ∼= 1 − sin2 α/2.

Now the fastest variation of ψ is close to the x direction, so define the ‘slowly-
varying’ part E of ψ by

E = ψe−ikx

so that
E ∼= eik(−x sin2 α/2+z sin α). (2.2)

(E is also referred to as the reduced wave.) It then follows that

∂E

∂x
=

i

2k

∂2E

∂z2
. (2.3)

This is one form of the parabolic wave equation in free space, and
holds for any superposition of plane waves travelling at small angles to the
horizontal. (Also referred to as the paraxial or forward scatter equation.)
It is straightforward to write the exact solution of (2.3) in terms of an initial
value.
Let E be a field obeying (2.3). Define the Fourier transform of E with respect
to z,

Ê(x, ν) =
1

2π

∫ ∞

−∞
E(x, z)eiνz dz. (2.4)
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2.1 Parabolic Equation

Taking the z-transform of (2.3) gives an equation for Ê,

∂Ê

∂x
= − iν2

2k
Ê. (2.5)

This has solution (in terms of E at vertical plane x = 0)

Ê(x, ν) = e−iν2x/2k Ê(0, ν). (2.6)

Note that equation (2.3) can also be derived by substituting the form E =
ψeikx into the Helmholtz wave equation for ψ, and neglecting terms of the
form ∂2E/∂x2.

We shall now consider the more general case of a harmonic source in a refrac-
tive medium. Let us consider a point source. It is natural then to use cylin-
drical coordinates (r, z, θ), and we shall restrict the problem to one where we
assume azimuthal symmetry, so effectively again 2-dimensional, as the field
is not dependent on θ. The Helmholtz equation is therefore

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+

∂2ψ

∂z2
+ k2

0n
2ψ = 0 , (2.7)

where k0 = ω/c0 is a reference wave number, and n(r, z) = c0/c(r, z) is the
index of refraction of the medium.
Let us now rewrite the solution as

ψ(r, z) =
u(r, z)√

r
, (2.8)

so we can go on to solve the Helmholtz equation for the wave u(r, z), with
the cylindrical spreading removed. In the far field, we obtain

∂2u

∂r2
+

∂2u

∂z2
+ k2

0n
2u = 0 . (2.9)

If we now denote the operators appearing in this equation by

A =
∂

∂r
, B =

√

1

k2
0

∂2

∂z2
+ n2 , (2.10)

we can factor equation (2.9) as

(A − ik0B)(A + ik0B)u − ik0[A,B]u = 0 . (2.11)

For a range-independent medium, where the refractive index does not depend
on r, so n ≡ n(z), A and B commute and the last term in (2.10) is zero.

Part III - Waves 28 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

9 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

2.1 Parabolic Equation

The remaining term corresponds to factorisation into one outgoing and one
incoming wave component. Selecting only the outgoing wave component we
obtain the one-way wave equation

Au = ik0Bu (2.12)

or

∂u

∂r
= ik0

(
√

1

k2
0

∂2

∂z2
+ n2

)

u (2.13)

In order to use this equation in practice, a further approximation is necessary,
to resolve the square root operator. If we write B as

B =
√

1 + b , (2.14)

where

b =
1

k2
0

∂2

∂z2
+ n2 − 1 , (2.15)

then, if b is small, we can Taylor expand B and keep the first 2 terms to give
the approximation

B ≃ 1 +
b

2
= 1 +

1

2k2
0

∂2

∂z2
+

n2 − 1

2
. (2.16)

Substituting this expression into (2.13) we obtain a parabolic equation for
the ’full’ wave in a refractive medium:

∂u

∂r
=

i

2k0

∂2u

∂z2
+

ik0

2
(n2 + 1)u . (2.17)

If, as in the free space case, we again separate a ’slowly-varying’ part E by
defining

E = u(r, z)e−ikr = ψ(r, z)
√

re−ikr , (2.18)

then the Helmholtz equation for E is

∂2E

∂r2
+ 2ik0

∂E

∂r
− k2

0E +
∂2E

∂z2
+ k2

0n
2E = 0 , (2.19)

and the operator A in the factorisation is

A =
∂

∂r
+ ik0 , (2.20)

leading to the more usual parabolic equation in a refractive medium:

∂E

∂r
=

i

2k0

∂2E

∂z2
+

ik0

2
(n2 − 1)E . (2.21)
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2.1 Parabolic Equation

It is seen here that the effect of the medium is contained in the second term
on the right hand side. We may loosely think of the first term on the right
as the diffraction term, and the second as the scattering term.
Other forms of the parabolic wave equation can be obtained by using different
approximations for the square root operator.
The approximation used above in obtaining the parabolic equation leads to
an error proportional to sin4α.
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2.1 Parabolic Equation

Suitable more accurate expansions are obtained in terms of Padé approxi-
mants:

Wide-angle methods

Approximating the square root operator with a Padé approximant of the
form

B =
√

1 + b =
1 + pb

1 + qb
(2.22)

leads to and error proportional to sin6(α).

Approximating the exponential operator which appears in the formal solution
directly with a Padé approximant of the form

eikx
√

1+b ∼ 1 +
N

∑

l=1

plb

1 + qlb
(2.23)

leads to a stable numerical scheme that allows to increase the angular range
of validity according to the number N of terms in (2.23).

Summary

• The parabolic wave equation replaces a boundary-value problem with an
initial-value problem

• The energy propagates at small angles to a preferred directions (the paraxial
direction).

• | ∂2ψ
∂x2 | ≪ k | ∂ψ

∂x
| .

Part III - Waves 31 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

9 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

2.2 Born Approximation

• The operators A = ∂
∂x

+ ik0 and B =
√

1
k2
0

∂2

∂z2 + n2 commute (or nearly

commute)

equivalently

• The refractive index n is constant (or its variation remains slow on the
scale of a wavelength).
The parabolic wave equation can also be derived (rather non-rigorously), as
follows.
Again restricting ourselves to 2 dimensions, by regarding the wave as equiv-
alent to the far field of a cylindrically spreading wave in a 3-dimensional
medium with cylindrical symmetry, we shall take as starting point the same
Helmholtz equation (2.7). As we are in the far field of this wave, we can re-
place the range r by the horizontal coordinates x, and take z as the vertical
coordinate. We then denote by E the slowly varying part of φ,

E(x, z) = ψ(x, z)
√

xe−ik0x. (2.24)

By substituting (2.24) into (2.7), and neglecting

1. all terms O
(

x− 3

2

)

and higher order, since we are in the far field,

2. the term ∂2E
∂x2 , which corresponds to slow variation across wavefronts

and can be assumed to be small,

we obtain again the parabolic equation

∂E

∂x
=

i

2k

∂2E

∂z2
+

ik

2
(n2 − 1)E. (2.25)

2.2 Born Approximation

The Born approximation is based on expressing the total wave field ψ, which
is in general the solution of a scattering problem in a volume with sources
and surfaces, as the sum of the incident field plus a ’small’ perturbation:

ψ = ψi + ψs , (2.26)

The actual solution in this approximation will take various forms, depending
on how the perturbation is expressed.
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2.2 Born Approximation

We can immediately see how the Born approximation can be applied to the
integral form of the wave equation (1.87), to obtain a first Born approxima-
tion

ψ(1)(r) = ψi(r) +

∫

S0

[

ψi(r0)
∂G(r, r0)

∂n
− ∂ψi

∂n
(r0)G(r, r0)

]

dr0 , (2.27)

and higher terms can be obtaind by iteration.
The Born approximation will only be valid when ψs ≪ ψi, which intuitively
must apply to some kind of ’weak scattering’. In order to understand better
what this means in practice, to relate it to the physical features of a scattering
problem, and find boundaries for its range of validity, we shall derive it here
for some particular cases.
We shall consider the case where the scattered field is the result of a varying
refractive index n(r). The total field satisfies

∇2ψ + k2(r)ψ = 0 . (2.28)

We can then write

k(r) = k0n(r) = k0(1 + nδ(r)) , (2.29)

where it is assumed nδ(r) ≪ 1. Substituting k0n(r) into (2.28) we get:

∇2ψ + k2
0(r)ψ = −k2

0(n
2(r) − 1)ψ ≡ −V (r)ψ . (2.30)

Using (2.26), and the fact that the incident field satisfies

∇2ψi + k2(r)ψi = 0 , (2.31)

we can write the wave equation for the scattered wave

∇2ψs + k2(r)ψs = −V (r)ψ . (2.32)

We can then solve for ψs using the free space Green’s function, with −V (r)ψ
as the source term

ψs(r) =

∫

G(r − r′)[V (r′)ψ(r′)]dr′ . (2.33)

But ψs = ψ − ψi, so

ψ = ψi(r) +

∫

G(r − r′)[V (r′)ψ(r′)]dr′ . (2.34)
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2.3 Rytov Approximation

We can write the above implicit integral equation as an infinite series of ex-
plicit integral equations by forming successive approximations starting from
the unperturbed incident field ψi:

ψ(0) = ψi

ψ(1) = ψi(r) +

∫

G(r − r′)[V (r′)ψ(0)(r′)]dr′

ψ(2) = ψi(r) +

∫

G(r − r′)[V (r′)ψ(1)(r′)]dr′

ψ(3) = . . .

The first iteration in this series, ψ(1), is know as the first-order Born approx-
imation, usually referred to just as Born approximation.
This can also be put in a more compact form by writing the integration with
Green’s function as an operator:

∫

G(r − r′)[f(r′)]dr′ ≡ Ĝf

so (2.34) becomes ψ = ψ0 − ĜV ψ, and the series becomes

ψ(0) = ψi

ψ(1) = ψ(0) + ĜV ψ(0)

ψ(2) = ψ(0) + ĜV ψ(0) + ĜV ĜV ψ(0)

. . .

ψ(n) = ψ(0) + ĜV ψ(0) + · · · + (ĜV )nψ(0)

This form of the Born series helps visualising the structure of the n-th or-
der approximation, and is the one usually found in quantum mechanics, for
scattering of a wave on a potential V .
Naturally the (first-order) Born approximation is good only if the first cor-
rection is smaller than the incident field, and in general will be valid only if
the series converges.
Note: in the Born approximation, if the wave is expressed as a sum of inci-
dent and diffracted secondary wave, the scattering of the secondary wave is
neglected. So no multiple scattering.

2.3 Rytov Approximation

The Rytov approximation is obtained by representing the total field as a
complex phase:

ψ(r) = eφ(r) . (2.35)
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2.3 Rytov Approximation

Then, from the Helmholtz wave equation for ψ we have:

∇2eφ(r) + k2eφ(r) (2.36)

Since
∇2eφ(r) = ∇2φeφ(r) + (∇φ)(∇φ)eφ(r) ,

we get the following Riccati equation for the phase φ(r):

∇2φ + (∇φ)(∇φ) + k2 = 0 . (2.37)

Let us now again write the refractive index as

k(r) = k0n(r) = k0(1 + nδ(r)) . (2.38)

The field for n(r) = 1, i.e. the field in a non-refractive medium, can be
written as ψi(r) = eφi(r); it is of course the incident field, and its phase will
satisfy

∇2φi + (∇φi)
2 + k2

0 = 0 (2.39)

If we write φ = φi + φs and subtract (2.39) from (2.37), we get

∇2φs + 2(∇φi)(∇φs) = −
(

(∇φs)(∇φs) + k2
0(n

2 − 1)
)

. (2.40)

Now, using the identity

∇2(ψiφs) = (∇2ψi)φs + 2ψi(∇φi)(∇φs) + ψi∇2φs ,

equation (2.40) becomes:

∇2(ψiφs) + k2ψiφs =
(

(∇φs)(∇φs) + k2
0(n

2 − 1)
)

ψi , (2.41)

whose solution can be written as an integral using the free-space Green’s
function, to give:

φs(r) =
1

ψi(r)

∫

G(r − r′)
[

(∇φs(r
′))(∇φs(r

′)) + k2
0(n

2(r′) − 1)
]

ψi(r
′)dr′

(2.42)
This equation is exact, but it’s implicit and in practice provides no solution
as it is. If we assume that the scattered phase φs is very small, then we
can neglect (∇φs)

2, and we obtain an approximate solution for the scattered
phase

φs(r) ≃
1

ψi(r)

∫

G(r − r′)[k2
0(n

2(r′) − 1)]ψi(r
′)dr′ (2.43)
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2.3 Rytov Approximation

The corresponding solution for the total field is then

ψ(r) ≃ ψi(r)e
φs . (2.44)

This approximation is known as the (first) Rytov approximation. It cor-
responds to taking the first order term in an infinite power series expansion
of the phase φ(r). It is valid when (∇φs)

2 ≪ k2
0(n

2(r′) − 1).
It is interesting to compare the validity of the Born and Rytov approxima-
tions.
Note that the Born approximation can be seen as a Taylor series approxi-
mation of the field ψ(r, ε) in powers of ε, where ε is a measure of the in-
homogeneity. The Rytov approximation can also be seen as a Taylor series
approximation of log ψ(r, ε) in powers of ε. In our case, ε was the space-
dependent variation nδ from a constant refractive index.
[The following is non-examinable]. We shall reproduce here the analy-
sis by Keller (see Keller J.B. 1969 ’Accuracy and validity of the Born and
Rytov approximations’, J. Opt Soc. Am. 59, 1003-04) and consider the
one-dimensional case of a wave travelling in a inhomogeneous medium given
by

ψ(x, ε) = eik(ε)x , (2.45)

and assume that k(ε) is analytic in ε for |ε| sufficiently small, so that it can
be expanded in a power series in ε with coefficients kj:

k(ε) =
∞

∑

j=0

kjε
j . (2.46)

The Born expansion gives

ψ(x, ε) = eik0x

∞
∑

s=0

εs

s
∑

l=0

(ix)l

l!

∑

j1+···+jl=s

kj1 · · · kjl
(2.47)

The nth Born approximation ψ
(n)
B (x, ε) is the sum of the first n + 1 terms in

the expression above:

ψ
(n)
B (x, ε) = eik0x

n
∑

s=0

εs

s
∑

l=0

(ix)l

l!

∑

j1+···+jl=s

kj1 · · · kjl
(2.48)

The Rytov expansion gives

ψ(x, ε) = eik(
P∞

j=0 kjεj) , (2.49)
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2.3 Rytov Approximation

and the nth Rytov approximation ψ
(n)
R (x, ε) is obtained by taking the first

n + 1 terms in the sum in the exponent:

ψ(x, ε) = eik(
Pn

j=0 kjεj) . (2.50)

The size of the error of the nth Born approximation ψ−ψ
(n)
B for small ε and

large |x| can be found by examining the coefficient of εn+1 in (2.47). That
coefficient contains a term proportional to xn+1. So

ψ − ψ
(n)
B = eik0xO(εn+1xn+1) . (2.51)

Dividing this by ψ, and noting that ψ differs from eik0x by terms of the order
ε, we obtain for the relative error:

ψ − ψ
(n)
B

ψ
= O(εn+1xn+1) . (2.52)

The error for the nth Rytov approximation ψ − ψ
(n)
R is:

psi − ψ
(n)
R = eik(

P∞
j=0 kjεj) − eik(

Pn
j=0 kjεj)

= ψ
(

1 − e−ik(
P∞

j=n+1 kjεj)
)

= ψO(εn+1x)

Dividing this by ψ gives for the relative error

ψ − ψ
(n)
R

ψ
= O(εn+1x) . (2.53)

We can see then that the relative errors of the Born and the Rytov approx-
imation are of the same order in the inhomogeneity parameter ε. However,
the expressions obtained for the relative errors also show that they vary in a
very different way as functions of x. For a single plane wave, the nth Rytov
approximation is valid over a much larger range than is the nth Born ap-
proximation, however this advantage is lost for fields containing more than
one wave, where the Rytov method must be applied to each wave separately
and not to the total field ψ.
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3 Scattering from randomly rough surfaces

3.1 Rayleigh criterion

The scattering of plane waves from a flat boundary between two media is
a typical canonical problem, where analytical solutions are straightforward
and well-known. It is an idealized case: all real surfaces are rough. The scat-
tering problem will then depend on the ’roughness’ of the surface, and exact
analytical solutions will not be generally available. In this chapter we shall
look at ways of characterizing the surface, and consider some approximate
solutions.
Suppose then that a time-harmonic plane wave

ψi = exp(ik[x sin θ − z cos θ])

is incident on a boundary which is now an irregular function of position.
(We suppress above and in what follows the harmonic time dependence).
We will assume here that the surface normal is well-defined and continuous
everywhere along the boundary. One of the earliest treatments of the rough
surface problem was by Rayleigh (1907), who considered the phase change
due to height differences in the case when the wavelength is small compared
with the horizontal scale of surface variation.

Calculating the phase difference ∆φ between wavefronts along two specularly
reflected rays as in the schematic diagram gives

∆φ = 2k(h2 − h1) cos θ

where h1, h2 are the heights at the two points of incidence. The interference
between these two rays depends on the magnitude of ∆φ with respect to
π. When the surface is nearly flat, ∆φ ≪ π and the two rays are in phase
(so interfere constructively), but for large deviations we may have ∆φ ∼ π,
giving destructive interference. This lead to the so-called Rayleigh criterion
for distinguishing different roughness scales, by which surfaces may be called
‘rough’ or ‘smooth’ according to whether ∆φ greater than or less than π/2.
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3.2 Surface Statistics

If this is averaged across the surface, then (h2 − h1) may be replaced by the
average r.m.s. surface height σ, which gives the surface r.m.s. deviation from
a flat surface, and is defined by σ2 =< h2(x) >. The Rayleigh criterion for
’smoothness’ is then expressed by

kσ cos θ <
π

4
. (3.1)

The quantity kσ cos θ is referred to as the Rayleigh parameter. Note that
this is dependent on angle of incidence, and implies that all surfaces become
‘smooth’ for low grazing angles. At optical wavelengths this is often reason-
able, but is less true, for example, for typical radar wavelengths of 3cm or
whenever the roughness length scale becomes comparable to a wavelength. In
that case the Rayleigh criterion fails to take into account ‘multiple scattering’
effects such as shadowing and diffraction.

3.2 Surface Statistics

When we go on to the study of the Helmholtz integral equation, one of
the main goals is to find dependence of averaged quantities on the statistics
of the surface. We therefore require a few concepts and results for surface
statistics and characterisation. (The necessary results are not extensive but
some familiarity with them is essential in the manipulation of the statistical
quantities which arise.)
Let S be a continuous irregular boundary, varying about a plane at, say,
z = 0. We will assume that S can be represented as a function h(x) of x, so
that we can model this as a continuous stochastic process. We can think of
h as a member of a given ensemble of surfaces all having the same statistical
nature. All averages < h(x) > etc are averages over this ensemble. (The
angled brackets denote ensemble averages.)
Main assumptions: A number of assumptions are usually made about the
statistics of the rough surfaces. This is for analytical convenience, but in
most cases the assumptions are physically reasonable.

(1) The mean surface is flat, i.e. < h(x) >= constant for all x (so we can
choose < h >= 0).

(2) The surface h is statistically stationary in x, i.e. all statistics are
translationally invariant. Thus, in particular the autocorrelation function
< h(x)h(x + ξ) > is a function of the spatial separation ξ only, and is
constant in x.

(3) Surface heights are often assumed to be normally distributed (also
referred to as Gaussian distributed, or simply as normal), i.e. they have
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3.2 Surface Statistics

probability density function

f(h) =
1

σ
√

2π
e−h2/2σ2

. (3.2)

For normal random variables we have the following:
If h is normal, then so is h(x1) + h(x2), and

∫

h(x)dx over any interval.
All the one-point statistics are determined by the mean < h > and variance
< h2 >. For example we have < h2n+1(x) >= 0 for all n, and

< h4(x) >= 3σ2 < h2 > (3.3)

This can be seen by writing

< hn >=

∫

h′nf(h′)dh′

and integrating by parts, noting that in the case where f(h) is Gaussian
hf(h) = −σ2 d

dh
(f(h)).

The assumption of normal distributed heights is often physically reasonable;
many rough surfaces arise as the result of a large number of independent ran-
dom events ad are therefore normal by the Central Limit Theorem. However,
it is wrong for important cases such as the sea surface. (The sea typically
has sharper peaks than troughs, so the height distribution is not symmet-
ric about the mean, as would be required by the symmetry of the normal
distribution about the origin.)
There are three main measures with which to characterise roughness:

(1) r.m.s. height σ =
√

< h2(x) > (since we assume < h >= 0).

(2) Autocorrelation function (a.c.f)

ρ(x1, x2) =< h(x1)h(x2) >

By stationarity we can write this as a function of spatial separation only:

ρ(ξ) =< h(x)h(x + ξ) >

(3) Correlation length L: This is defined as the value of separation ξ
at which ρ(ξ) = e−1ρ(0). So large L corresponds to a slowly varying surface.
Instead of L we often use the mean slope, < |dh/dx| >. Clearly, slope scales
with 1/L.
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3.2 Surface Statistics

The most general of these measures is clearly the a.c.f. (2), since this deter-
mines both the correlation length and r.m.s. height. It provides information
about the spatial variation of the surface height, but is not related to the
distribution of surface heights. The a.c.f. can have various forms depending
on the nature of the irregularities.
Examples:

(a) Gaussian a.c.f.: ρ(ξ) = σ2e−ξ2/L2

(b) Fractal surface: ρ(ξ) = σ2e−|ξ|/L

(c) Fourth order power law: ρ(ξ) = σ2(1 + |ξ|)e−|ξ|/a

Unlike (b), the functions (a) and (c) are smooth at the origin, i.e. dρ/dξ = 0
at ξ = 0. Thus ‘under a microscope’ a surface of this type would appear
smooth. The autocorrelation function (c) often occurs in other contexts,
such as turbulence. We can assume that ρ is an even function, and falls from
its maximum σ at ξ = 0 to zero at large |ξ|.
We also need the roughness spectrum (or power spectrum), that is the
Fourier transform of the a.c.f.:

S(ν) =

∫ ∞

−∞
ρ(ξ)eiξνdξ (3.4)

All the definitions and observations about statistical quantities just given in
the case of surface heights, also apply in the case of other random variables
that are of interest to us, e.g. fluctuations in the dielectric constant εδ, or in
the refractive index nδ.
We note that 2-point correlations are not normally calculated directly. In
practice, the ensemble average is often approximated by a time average over
a finite data sample, for example:

< εδ(x, t)εδ(x + ξ, t) >≃ 1

T

∫ T

0

εδ(x1, t)εδ(x2, t)dt

It is possible to do so only if we assume stationary random process. In this
case, the ergodic theorem applies, which states that the ensemble average
and the time average of a stationary random process must converge as the
integration time goes to infinity:

< εδ(x, t)εδ(x + ξ, t) >= lim
T→∞

1

T

∫ T

0

εδ(x, t)εδ(x + ξ, t)dt (3.5)

The equivalent result applies to infinite random surfaces:

< h(x)h(x + ξ) >= lim
AM→∞

1

AM

∫ ∞

−∞
h(x)h(x + ξ)dx (3.6)
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3.2 Surface Statistics

If we use this expression for the a.c.f. in the power spectrum (3.4), we obtain

S(ν) = lim
AM→∞

1

AM

∣

∣

∣

∣

∫ ∞

−∞
h(x)eν·xdx

∣

∣

∣

∣

2

,

and therefore
∫ ∞

−∞
S(ν)d(ν) = σ2.

The above is a special case of the general result that moments of the power
spectrum give r.m.s. averages of higher order surface derivatives:

∫ ∞

−∞
S(ν)ν2nd(ν) =

〈

(

∂nh

∂xn

)2
〉

(3.7)

Finally in this section, the scattering solutions we seek are functions of the
rough surface, involving integrals and derivatives of h. We therefore often
need to evaluate the statistics of such functions, so we need some basic prop-
erties or rules for averaging.

(1) If F (x) is a deterministic function, and A(h) is any functional of the
surface h, then

〈
∫

A(h(x))F (x)dx

〉

=

∫

〈A(h(x))〉F (x)dx

This follows by linearity of the integral.

(2) A function which sometimes arises is the average of the product of h
and its slope:

〈

h(y)
dh(x)

dx

〉

=
dρ

dξ

∣

∣

∣

∣

ξ=y−x

.

In order to prove (2), write

h(y)h′(x) = h(y) lim
ǫ→0

1

ǫ
[h(x + ǫ) − h(x)]

The result follows by averaging the right-hand-side and taking the average
inside the limit sign.
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3.2 Surface Statistics

Numerical generation of random surfaces
It is instructive in the manipulation of averages to consider how a continuous
rough surface h(x) may be simulated. The simplest method is to represent
h(x) as a sum of sinusoidal components as follows:
Suppose we wish to represent an example of a surface with a given a.c.f. ρ(ξ).
The basic steps are:
(1) Define A(ν) =

√

B(ν) where B is the cosine transform of ρ,

B(ν) =
2

π

∫ ∞

−∞
ρ(ξ) cos(ξν) dξ.

(We can assume that B(ν) has compact support.)
(2) Choose some number N of equally-spaced frequencies νj = j∆ν, say,
where N and νN are large enough to resolve the features of B adequately.
(3) Choose N independent random phases φj, uniformly in [0, 2π).
(4) Define a function h(x) by

h(x) =
√

∆ν
N

∑

n=1

An sin(νnx + φn),

where An = A(νn). Then h is a continuous function of x with the required
statistics, as we can show. The random part of this definition is in the
choice of random phases (3). Each different set of phases gives rise to a new
realisation of a random process h, and averages can therefore be taken over
this ensemble.
First, it is easy to check that < h >= 0, and for large N the values h(x) are
normally distributed by the central limit theorem. To calculate the a.c.f. of
h, first write xn = νnx + φn, and yn = νny + φn. Then since φn is uniform in
[0, 2π), it is easy to show for example that

< sin xn > = 0

< sin xn cos xn > = 0

< sin2 xn > = 1/2

< sin xn sin yn > =
1

2
cos(νnξ)

where ξ = y − x.
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3.2 Surface Statistics

So the a.c.f. can be written

< h(x)h(y) > = ∆ν
N

∑

m,n=1

AmAn < sin xn sin ym >

= ∆ν
N

∑

n=1

A2
n < sin xn sin yn >

=
∆ν

2

N
∑

n=1

A2
n cos(νnξ)

∼=
∫ ∞

−∞
B(ν) cos(νξ) dξ

= ρ(ξ)

as required. Here we have used the fact that sin xn and sin ym are indepen-
dent.
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3.3 Properties and Approximate Solutions of Scattering
Equations

3.3 Properties and Approximate Solutions of Scatter-
ing Equations

We will consider here the main methods used in solving the Helmholtz inte-
gral equations in the case of scattering from a rough surface, and the prop-
erties of the solutions.
Suppose that a plane wave

ψi(x, z) = eik(x sin θ−z cos θ)

impinges on a random rough surface h(x). We will consider h to be a member
of a statistical ensemble, which is stationary with respect to translation in
x, with rms height < h2 >= σ2, autocorrelation function ρ(ξ). We usually
require:

the scattered field ψs;
the coherent (or mean) field < ψs >;
and the field coherence function

m(ξ) =< ψs(x)ψ∗s(y) > , where ξ = y − x ,

so that m(0) is the mean intensity of the scattered field. It is often most
important to find the angular spectrum |ψ̂(ν)|2 or its average < |ψ̂(ν)|2 >,
where

ψ̂(ν) =
1

2π

∫ ∞

−∞
ψs(x, 0)e−iνx dx (3.8)

i.e. the Fourier transform of ψs along the horizontal mean plane, z = 0. Each
Fourier component ψ̂(ν) will be scattered away from the surface z = 0 as
another plane wave

ψ̂(ν)eiqz

satisfying the Helmholtz equation. This gives q =
√

k2 − ν2, where we have
taken the positive (or positive imaginary) root to ensure that the scattered
field consists of outgoing waves.
The field at a point (x, z) in the medium can therefore be written

ψs(x, z) =

∫ ∞

−∞
ψ̂(ν)ei(νx+qz)dν (3.9)

General properties:
We can state some general properties of these quantities.
(1)Relation between m(ξ) and |ψ̂(ν)|2:
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3.3 Properties and Approximate Solutions of Scattering
Equations

Consider the autocorrelation of ψ̂. From (3.8) we obtain

〈

ψ̂(ν ′)ψ̂∗(ν)
〉

=
1

4π2

∫ ∞

−∞

∫ ∞

−∞
〈ψ(x)ψ∗(y)〉 e−iνx+iν′y dx dy. (3.10)

Make the changes of variables ξ = (x − y)/2, Y = (x + y)/2. This then
becomes

〈

ψ̂(ν)ψ̂∗(ν ′)
〉

=
1

π2

∫ ∞

−∞

∫ ∞

−∞
m(2ξ)e−i(ν+ν′)ξ−i(ν−ν′)Y dξ dY

=
2

π
δ(ν − ν ′)

∫ ∞

−∞
m(ξ)e−iνξ dξ. (3.11)

This is just 2/πδ(ν − ν ′) times the Fourier transform of m(ξ). Notice the
important corollary of this, that < ψ̂(ν)ψ̂(ν ′) >= 0 for ν 6= ν ′.

(2) Energy conservation, i.e. the average energy flux across a boundary in
one direction must equal the average energy flux at the same point in the
opposite direction. The averaged energy flux in a direction n is given by:

E(ψ, n) = −ρω

2
Im

{

ψ∗∂ψ

∂n

}

(3.12)

This is then integrated across the plane to which n is the normal to obtain
the energy per unit area in the direction n. So for the homogeneous incident
plane wave ψi = exp(ik[x sin(θ − z cos(θ)]), the point-wise energy flux in the
direction n = −z, across some horizontal line is

E(ψi, n) =
ρωk cos(θ)

2
(3.13)

and for the scattered field (3.9), the average energy flux in the direction n = z
is

E(ψs(x, z)) =
ρωk

2

∫ ∞

−∞
|ψ̂(ν)|2qdν (3.14)

So energy conservation implies

cos θ =

∫ ∞

−∞
q|ψ̂(ν)|2 dν (3.15)

where q =
√

k2 − ν2.
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3.3 Properties and Approximate Solutions of Scattering
Equations

(3) The mean field is specular, i.e.

< ψs(x, z) >= Re(θ) eik[x sin θ+z cos θ] (3.16)

where the (generally unknown) constant Re is an ‘effective reflection coeffi-
cient’ which depends on the angle and the surface statistics. This result is a
generalised form of Snell’s law, and the mean transmitted field can be writ-
ten similarly as a plane wave at the Snell’s law angle. (Correspondingly, the
mean spectrum < ψ̂ > consists of a single delta-function peak.) The result
follows from the assumption that the rough surface is statistically stationary.
A corollary of this is that the mean of the full complex field shows no
backscatter, or indeed any scatter outside the specular direction. This may
initially surprising, but note that it does not apply to the mean amplitude
< |ψ̂| > or the mean intensity or energy.

We now consider the two simplifying regimes of small surface height or small
slope which allow approximate analytical solutions to be found.

(a) Small surface height kσ ≪ 1:
In this case perturbation theory can be applied. The method is essentially
to expand quantities appearing in the problem that are function of surface
height, in order to form a simpler boundary problem on the mean plane, i.e.
on z =< h(x) >= 0.
We seek the solution for the scattered field ψs and its mean < ψs >. Suppose
that the surface obeys the Dirichlet condition, ψ(x, h) = 0. We proceed as
follows:

(1) Expand the boundary condition to order h. Thus we obtain

ψi(x, 0) + ψs(x, 0) + h(x)

(

∂ψi

∂z
+

∂ψs

∂z

)

= 0 + O(h2) (3.17)

using ψ = ψi + ψs. Here and below, unless specified otherwise, the functions
are to be evaluated on the mean plane z = 0.

(2) Next, assume that the scattered field everywhere can be expanded in
powers of kh, say

ψs(x, z) = ψ0(x, z) + ψ1(x, z) + ψ2(x, z) + ... (3.18)

where ψn is of order O(hn) for all n, so that ψ0 is the known, deterministic
flat surface reflected field, and ψn is stochastic for n ≥ 1 since it depends on
the specific choice of surface h(x).

(3) Now truncate (3.18) at O(h), substitute into (3.17), and neglect terms
of order O(h2). This gives an approximate boundary condition which holds
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3.3 Properties and Approximate Solutions of Scattering
Equations

on the mean plane

ψi + ψ0 + ψ1 + h(x)

(

∂ψi

∂z
+

∂ψ0

∂z

)

= 0 (3.19)

where again all functions are evaluated at points (x, 0). In this equation the
third term ψ1 is the only unknown component, since the remaining functions
are the zero order (flat surface) forms, so we have an explicit approximation
to the solution along the mean plane.
The first two terms in (3.19) cancel, since they represent the total field which
would exist in the case of a flat surface, which vanishes by the Dirichlet
boundary condition. We can now equate terms of equal order. Equating
O(h) (first order) terms gives

ψ1 = −h(x)
∂(ψi + ψ0)

∂z

∣

∣

∣

∣

(x,0)

which gives

ψ1(x, 0) = −2h(x)
∂ψi

∂z
. (3.20)

This solves for ψ1 explicitly on the mean plane. From this we can obtain the
scattered field everywhere to O(h), using ψs = ψ0 + ψ1 + O(h2). Once ψ1 is
known on any plane we can split it into Fourier components, and propagate
these outwards (using radiation conditions to determine the direction):
Consider in particular the case of an incident plane wave, ψi = eik(x sin θ−z cos θ).
We then have

ψ1(x, 0) = −2h(x)ik cos θ eikx sin θ. (3.21)

Denote by ĥ the transform of h,

ĥ(ν) =
1

2π

∫ ∞

−∞
h(x)e−iνx dx ,

then, from (3.8) and (3.21) we get

ψ̂(ν) =
1

2π

∫ ∞

−∞
ψs(x, 0)e−iνx dx = −ik

cos θ

π
ĥ(ν − k sin θ) , (3.22)

so that

ψ1(x, z) = −ik
cos θ

π

∫ ∞

−∞
ĥ(ν − k sin θ) ei(νx+qz) dν (3.23)

where as before q =
√

k2 − ν2.
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3.3 Properties and Approximate Solutions of Scattering
Equations

We note that the formulation of the solution using perturbation theory in
the approximation of small height depends on the boundary conditions. In
particular, it will be different for Neumann and for impedance boundary
conditions, although some results are applicable in general.

Averaging:
The dependence of the field on the surface is now clear to first order in
surface height. Taking the average of (3.23) immediately gives the mean of
this perturbation as

< ψ1 >= 0

everywhere, since < h(x) >= 0, so that first order perturbation theory pre-

dicts no change in the coherent field. (Equivalently, the effective reflection
coefficient is the same to first order as the flat surface coefficient.) Although
we have examined the Dirichlet condition it holds for arbitrary boundary
conditions since the first order term is always linear in the boundary itself.

Angular spectrum:
Now consider the angular spectrum to find the scattered energy. For a plane
wave incident at angle θ on a given surface, the far-field intensity in the
transform space is given by Iθ(ν) = |ψ̂(ν)|2, so from (3.8), (3.21) we can
write its average as

〈

|ψ̂(ν)|2
〉

=

〈

k2 cos2 θ

π2

∫ ∞

−∞

∫ ∞

−∞
h(x)h(x′)ei(k sin θ−ν)(x−x′) dx′ dx

〉

.

(3.24)
Making the change of variables ξ = (x − x′), X = (x + x′), this becomes

〈

|ψ̂(ν)|2
〉

=
k2 cos2 θ

π2

∫ ∞

−∞

∫ ∞

−∞
ρ(ξ)ei(k sin θ−ν)ξ dξ dX

= 2
δ(ν)

π
k2 cos2 θ S(k sin θ − ν) (3.25)

where S is again the power spectrum of the surface and δ is the delta-function.
Since the averaged scattered intensity is non-zero, this approximation to first
order does lead to a contribution to the diffusely scattered field

ψd = ψsc− < ψsc >

, even though it predicts no change in the coherent field, as we saw above.
First order perturbation theory therefore does not obey conservation of en-
ergy.

Part III - Waves 49 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

9 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

3.3 Properties and Approximate Solutions of Scattering
Equations

(b) Small surface slope:
We have been dealing with approximate solution in the case of small surface
height. Now suppose that the surface slopes are small, i.e. < |dh/dx| >≪ 1.
We shall use this approximation with the integral form of the wave equation
(1.87), so the scattered field at r is given by

ψsc(r) =

∫

S

ψ(r0)
∂G(r, r0)

∂n
− G(r, r0)

∂ψ

∂n
(r0)dr0 , (3.26)

where r0 is on the surface and ψ and ∂ψ/∂n are unknown. We note that
the use of this integral form implies integration over a closed surface, so will
introduce errors (due to the edges) when the surface is not infinite.
The unknowns are approximated by using the Kirchhoff approximation
(sometimes referred to as the tangent plane, or the geometrical optics so-
lution), which treats any point on the scattering surface as though it were
part of an infinite plane, parallel to the local surface tangent. We make the
following assumptions:

(1) that the surface can be treated as ‘locally flat’;
(2) and that the incoming field at each point is just ψi.

The second assumption neglects multiple scattering, which can give rise to
secondary illumination of any point on the surface.
Consider for simplicity the Dirichlet boundary condition, so that we are solv-
ing the integral equation

ψsc(rs) = −
∫

S

G(r, r0)
∂ψ

∂n
(r0)dr0 . (3.27)

Under the assumptions above, we can approximate ∂ψ/∂n at each point by
the value it would take for a flat surface with slope dh/dx:

∂ψ

∂n
∼= −2

∂ψi

∂n
. (3.28)

This neglects curvature and shadowing by other parts of the surface. The
field then becomes

ψs(r) = 2

∫

G(r, r0)
∂ψi

∂n
(r0)dr0. (3.29)

Similar formulae are easily obtained for Neumann condition and more gen-
erally an interface between two media.
When the surface is not perfectly reflecting, the normal derivative of the field
at the surface will be given by

∂ψ

∂n
∼= (1 − R(r0))

∂ψi

∂n
, (3.30)
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3.3 Properties and Approximate Solutions of Scattering
Equations

where R(r0) is the flat surface reflection coefficient; and the field at the
surface by:

ψ ∼= (1 + R(r0))ψi . (3.31)

If we further consider the far-field approximation, we can approximate the
argument of the free space Green’s function, k|r − r0| by

k|r − r0| ∼= kr − kr̂ · r0 , (3.32)

where r̂ is the unit vector in the direction of observation r. The derivative
of the Green’s function can then be approximated by

∂G(r, r0)

∂n
∼= − ieikr

4πr
(n · ksc)e

−iksc·r0 , (3.33)

where ksc = kr̂ is the wavevector of the scattered wave. Using these approx-
imations in equation (3.26), we obtain for the scattered field

ψsc(r) =
ieikr

4πr

∫

S

((Rk− − k+) · n)e−ik−·r0dr0 , (3.34)

where

k− = ki − ksc

k+ = ki + ksc .

If θ1 is the angle of incidence (measured from the normal), and θ2 and θ3 are,
respectively, the angle of the scattered wave with the normal, and the angle
of the scattered wave with the x-axis in the plane (x, y), then

ki = k(x̂ sin θ1 − ẑ cos θ1)

ksc = k(x̂ sin θ2 cos θ3 + ŷ sin θ2 sin θ3 + ẑ cos θ2) .
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3.3 Properties and Approximate Solutions of Scattering
Equations

We can now convert the integration in equation (3.34) to integration over
the mean plane of the surface, SM , by noting that an area element of the
rough surface, dr0, projects onto the mean plane of an area element of the
mean plane drM , with the area elements related by

ndr0
∼=

(

−x̂
∂h

∂x0

− ŷ
∂h

∂y0

+ z

)

drM . (3.35)

The scattered field can therefore be written in the general form

ψsc(r) =
ieikr

4πr

∫

SM

(

a
∂h

∂x0

+ b
∂h

∂y0

− c

)

eik(Ax0+By0+Ch(x0,y0))dx0dy0 , (3.36)

where

A = sin θ1 − sin θ2 cos θ3

B = − sin θ2 sin θ3 (3.37)

C = −(cos θ1 + cos θ2) ;

and

a = sin θ1(1 − R) + sin θ2 cos θ3(1 + R)

b = sin θ2 sin θ3(1 + R) (3.38)

c = cos θ2(1 + R) − cos θ1(1 − R) .

Note that this approximation for the scattered field has been derived within
the far-field approximation, and for an incident plane wave. In order to make
analytical manipulations possible, further approximations are usually made.
In general, the reflection coefficient is a function of position on the surface.
We shall assume instead that R is constant. With this approximation, and for
C 6= 0, we can eliminate the terms involving partial derivatives of the surface
by performing a partial integration. Carrying out the integration with the
assumption of independent integration limits for x0 and y0, and taking the
surface to be of finite extent, defined by −X ≤ x0 ≤ X and −Y ≤ y0 ≤ Y ,
gives a scattered field of the form

ψsc(r) = − ieikr

4πr
2F (θ1, θ2, θ3)

∫

SM

eikφ(x0,y0)dx0dy0 + ψe , (3.39)

where the phase function φ(x0, y0) is

φ(x0, y0) = Ax0 + By0 + Ch(x0, y0) , (3.40)
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3.3 Properties and Approximate Solutions of Scattering
Equations

the angular factor F (θ1, θ2, θ3) is

F (θ1, θ2, θ3) =
1

2

(

Aa

C
+

Bb

C
+ c

)

, (3.41)

and the term ψe is given by

ψe(r) = − ieikr

4πr

[

ia

kC

∫

(

eikφ(X,y0) − eikφ(−X,y0)
)

dy0

+
ib

kC

∫

(

eikφ(x0,Y ) − eikφ(x0,−Y )
)

dx0

]

(3.42)

In the above approximation the angular factor depends on the boundary
conditions. The term ψe is often referred to as ’edge effects’, since it involves
the values of the phase function at the surface edges.

We can now calculate average quantities of the scattered field, when h(x, y)
is a random surface with some probability density f(h). The average of the
scattered field, i.e. the coherent field is given by

ψsc(r) = − ieikr

4πr
2F

∫

SM

∫ ∞

−∞
eikφ(x0,y0)f(h)dhdx0dy0 . (3.43)

Assuming stationarity, and using the explicit expression for the phase func-
tion given by equation (3.40), we obtain

ψsc(r) = − ieikr

4πr
2F f̂(kC)

∫

SM

eik(Ax0+By0dx0dy0 , (3.44)

where f̂(kC) is the Fourier transform of the probability density function,
with respect to the transform variable kC.
The average of the intensity, or of the angular spectrum, of the diffuse
field ψd = ψsc− < ψsc > is given by

〈

|ψd|2
〉

= 〈ψscψ∗sc〉 − 〈ψsc〉 〈ψ∗sc〉 . (3.45)

This expression is far more complicated than the equivalent one obtained in
the ’small height’ approximation, because the coherent field is now different
from zero. Further approximations will be necessary to obtain an expression
of practical use for the angular spectrum in the Kirchoff approximation.
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3.4 Depolarization of electromagnetic waves

3.4 Depolarization of electromagnetic waves

In Chapter 1 we saw that the electromagnetic scattering problem cannot in
general be reduced to a scalar problem, and the Stratton-Chu equations are
a system of coupled vector equations for the electric and magnetic field of a
wave. It is therefore intuitive that a polarized electromagnetic wave with the
electric field in a given plane, incident on an arbitrary surface, will give rise
to a scattered wave with its electric field in a different plane.

In order to explore the effect of scattering from a surface on the polarization
of a wave, we shall first define the geometry of the problem.
Let the surface S be defined by a function h = h(x, y), with z = 0 as its
mean level. Let bfEi be the electric field of the incident wave, and bfEsc

be the electric field of the scattered wave, and we assume that the incident
wave is linearly polariszd.

The plane of incidence is the vertical plane containing kI , and corresponds
in this case to the plane (x, z). The scattering plane is the vertical plane
containing ksc. The angle θ1 is the angle between the z−axis and ki; θ2 is
the angle between the z−axis and ksc; and θ3 is the angle between the x−axis
and the scattering plane.
If Ei is in the plane of incidence, then we call the incident wave vertically

polarized.
If Ei is perpendicular to the plane of incidence, then we call the incident
wave horizontally polarized.
We shall denote by e+ and e− unit vectors in the direction of vertical (+)
and horizontal (−) polarization, so for example e+

i ⊥ e−
i ⊥ ki, and a field

E arbitrarily polarized can be decomposed into its vertical and horizontal
components as E = E+e+ + E−e−.
When an incident field Ei is scattered by a surface S, the scattered field can
be expressed in terms of the total field using Stratton-Chu equations:

Esc(r) = −
∫

S

[(n(r0) × E(r0)) ×∇G(r, r0) + (n(r0) · E(r0))∇G(r, r0)

+ iωµ(n(r0) × H(r0))G(r, r0)] dS . (3.46)
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3.4 Depolarization of electromagnetic waves

It is usually impossible, though, to find exact expressions for the compo-
nents of Esc in the direction of horizontal and vertical polarization, and thus
quantify exactly the degree of depolarization caused by the scattering.

We shall derive here approximate expressions for the components of Esc by
using a perturbation approximation over the mean plane z = 0, and in the
special case of a perfectly conducting surface. In this case it is convenient to
use a scalar Green’s function Ḡ that is identically zero for z = 0 (i.e. satisfies
a Dirichelet condition on the mean plane). This is achieved by choosing the
half-space Green’s function

Ḡ(r,R) =
eik|r−R|

4π | r − R | −
eik|r−R′|

4π | r − R′ | , (3.47)

where R′ = (x, y,−z) if R′ = (x, y,−z).
We shall first make a far field approximation, so

∇Ḡ(r, r0) ≡ ∂Ḡ

∂x0

x̂ +
∂Ḡ

∂y0

ŷ +
∂Ḡ

∂z0

ẑ

≃ −2iksc
eikr

4πr
e−iksc·r0 ,

where ksc = kr̂. Then we use the far field approximation for the Green’s
function in (3.46) and take the surface integral onto the mean plane SM to
obtain:

Esc(r) = −2i
eikr

4πr

∫

SM

[(n × E) × ksc + (n · E)ksc]e
−iksc·r0dr0 . (3.48)

But Esc cannot have a component in ksc direction, so the second term inside
the above integral must be discarded and (3.48) reduces to:

Esc(r) = 2i
eikr

4πr
ksc ×

∫

SM

(n × E)e−iksc·r0dr0 . (3.49)

Since we have assumed that the surface S = h(x, y) is perfectly conducting,
we have E×n = 0 on S, and we can expand this to give boundary conditions
on the mean surface SM :

E × n|z=h = E × n|z=0 + h

(

∂(E × n)

∂z

)
∣

∣

∣

∣

z=0

+ . . . = 0 (3.50)

If we now assume that we can expand Esc as well:

Esc = E(0)
sc + E(1)

sc + O(k2h2) (3.51)
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3.4 Depolarization of electromagnetic waves

and recall that

n ÷
(

−∂h

∂x
,−∂h

∂x
, 1

)

,

so to order (0) n(0) = (0, 0, 1), then matching terms of the same order in
(3.50) and (3.4) (and using E = Ei + Esc) gives

to order (0):

Eix + E(0)
scx

= 0 , E(0)
scx

= −Eix

Eiy + E(0)
scy

= 0 , E(0)
scy

= −Eiy

to order (1):

E(1)
scx

∣

∣

z=0
= −2h

∂h

∂x
Eiz

∣

∣

∣

∣

z=0

−2h
∂Eix

∂z

∣

∣

∣

∣

z=0

E(1)
scy

∣

∣

∣

z=0
= −2h

∂h

∂y
Eiz

∣

∣

∣

∣

z=0

−2h
∂Eiy

∂z

∣

∣

∣

∣

z=0

To first order then (3.49) becomes:

Esc(r) = i
eikr

2πr
ksc ×

∫

SM

(

x̂E(1)
scy

− ŷE(1)
scx

)

e−iksc·r0dr0 . (3.52)

We can now use this expression to see whether, in this approximation, po-
larization is conserved or not, and quantify the scattered components.

Let us consider a linearly polarized incident plane wave. e.g. horizontally
polarized, and, for simplicity, with unit amplitude:

Ei = ŷeiki·r

If we use this incident field in the order (1) terms obtained above for the
scattered field at the mean surface, and use the result in (3.52), we have:

Esc(r) = −i
eikr

πr
(ksc × x̂)

∫

SM

h(r0)

(

∂Eiy

∂z

)

e−iksc·r0dr0

= −i
k2eikr

πr
(k × x̂) cos θ1

∫

SM

h(r0)e
ik(Ax0+By0)dx0dy0 .

We can now find the scattered horizontal and vertical polarization compo-
nents by taking the dot product with the unit vectors e− and e+ respectively,
which in this geometry are given by:

e− = x̂ sin θ3 + ŷ cos θ3

e+ = x̂ cos θ2 cos θ3 + ŷ cos θ2 sin θ3 − ẑ sin θ2
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3.4 Depolarization of electromagnetic waves

and we obtain the result that in this approximation the far field scattered
intensity in the β polarization direction obtained from an incident field with
α polarization is in general different from zero, which we shall write as: <
I

(1)
α→β >6= 0 (here α and β denote either vertical and horizontal polarization).

For an incident wave with components in both polarization directions, the
general result can be expressed as:

< I
(1)
α→β > = (3.53)

k4

r2 Φα→β(θ1, θ2, θ3) AM

∣

∣

∣

∣

∫

SM

< h(r0), h(r0 + r′0) > eik(Ax′
0+By′

0)dx′
0dy′

0

∣

∣

∣

∣

2

where Φα→β is an angular factor dependent on the polarization of the incident
and scattered waves, AM is the area of the mean surface, and the integral is
the power spectrum of the surface (recall definition of power spectrum of a
surface in section 3.3).
For the particular case of a horizontally polarized incident wave, the angular
factors obtained are:

ΦH→H = 4 cos2 θ1 cos2 θ2 cos2 θ3 ,

ΦH→V = 4 cos2 θ1 sin2 θ3 (3.54)

For the particular case of a vertically polarized incident wave, the angular
factors are:

ΦV →V = 4(sin θ1 sin θ2 − cos θ3)
2 ,

ΦV →H = 4 cos2 θ2 sin2 θ3 (3.55)

There will be some angles for which some of these terms vanish. In particular,
if θ3 = 0, i.e. for scattering in the azimuthal plane, both cross-polarization
terms are zero: ΦH→V = ΦV →H = 0, therefore

< I
(1)
H→V >=< I

(1)
V →H >= 0

and first order perturbation theory predicts no depolarization in the az-
imuthal plane. We know from experimental results and numerical simulations
that depolarization does occur in the azimuthal plane. The result obtained
hear shows that it is a higher order effect.
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4 Wave Propagation through Random Media

References:
A. Ishimaru, Wave Propagation and Scattering in Random Media
B.J. Uscinski, Elements of Wave Propagation in Random Media

Remarks
This section concerns waves scattered by randomness or irregularities in the
medium through which they are propagating. In many situations the wave
speed varies randomly, for example in the atmosphere or the ocean. Some-
times this variation may be highly localized, such as a patch of turbulent air
(e.g. over a hot road) or bathroom glass. These effects cause focusing, some-
what like that of a lens, and produce regions of both high and low intensity.
(Familiar examples include the twinkling of stars, or the pattern of light in
a swimming pool.)
There are essentially two mechanisms which contribute to these effects, and
we shall refer to them as:

(i) diffraction (distance effect): i.e. the evolution of an irregular wave
beyond a fixed plane. This allows focusing of rays as in a lens even when the
medium is homogeneous; and

(ii) scattering, i.e. the continuous evolution of phase with propagation
due to extended irregularities, causing bending of rays.
We will consider these mechanisms only for weakly scattering media. Roughly
speaking, ‘weak scattering’ corresponds to small angles of scatter, so that a
plane wave may become scattered into a narrow range of directions close
to the original direction. This allows us to use the parabolic wave equation,
which was derived in Lecture 3 as a small angle approximation. We will
assume throughout this section that the parabolic equation holds, and that
there is a definite predominant direction of propagation (which can be taken
to be horizontal).
In an extended medium the effects (i) and (ii) mentioned above of course
occur simultaneously, but we shall see that it is possible to treat them sepa-
rately under reasonable assumptions.

We shall first consider the case in which the random irregularities occur
within a thin layer.

4.1 Propagation beyond a thin phase screen

Suppose that we have initially a plane wave ψ = eikx of unit amplitude prop-
agating horizontally, so that the reduced wave, i.e. ψe−ikx, is just E(x, z) ≡ 1.
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4.1 Propagation beyond a thin phase screen

Suppose that E encounters a thin vertical layer in the region x ∈ [−ξ, 0], say,
in which the wave speed c(z) is slightly irregular. (This may represent for
example a jet of hot air, or a turbulent layer.)

Denote the refractive index n(z) = c0/c(z), where c0 is the background or
free wave speed, and write

n(z) = 1 + w(z) . (4.1)

We will assume that

• the function w(z) is small: w(z) ≪ 1,

• w(z) is a continuous random fluctuation, with the following properties:

– it has mean zero, i.e. < w(z) >= 0 for all z,

– it is stationary in z, so, e.g. < w(z1)w(z2) >=< w(z)w(z + ξ) >,

– it is normally distributed, i.e. its probability distribution function
is Gaussian.

Initial effect: In the assumption of weak scattering and for a thin enough
layer, the field will only suffer a phase change on going through the layer. If
a wave has wavenumber k before entering the layer, the wavenumber in the
layer will be given by kn(z) = k + kw(z), and the reduced wave will acquire
a phase

φ(z) = kξw(z), (4.2)

where ξ is the thickness of the layer.

Then E emerges from the layer with a pure phase change,

E(0, z) = eiφ(z) (4.3)
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4.1 Propagation beyond a thin phase screen

Evolution of the field and the moment equations

We shall use the thin screen model described above, and the parabolic equa-
tion which applies under the assumptions we made, to derive evolution equa-
tions for the moments of the field, in particular the first moment or
mean field

m1(x) = 〈E(x, z)〉 . (4.4)

(note this is a function of x only, by stationarity)
and the second moment (transverse autocorrelation ) of the field, defined
as

m2(x, η) = 〈E(x, z)E∗(x, z + η)〉 (4.5)

so that the mean of the intensity I(x, z) = |E|2 can be written < I(x) >=
m2(x, 0).
Evolution equations will be derived first just for propagation beyond a thin
screen, as an introduction to the concept, then for propagation in an extended
random medium, for some of the moments of the field: the moment equations.

It is primary aim of the study of random media, to examine the evolution
of the field E with distance beyond a layer and find its statistics. There are
many reasons for this requirement: for example in ocean acoustics one can al-
most never know the refractive index in detail, but statistical information can
help overcome communications and navigational problems, or may be used
for remote sensing of the environment. In other situations the measurement
devices themselves may be detecting time or spatial averages.
Suppose for example we wish to find the mean intensity of the field. For
a given medium it will not be possible to obtain a general solution for the
wavefield or its intensity as a function of position. However, some of the
statistical moments, such as field autocorrelation, themselves obey evolu-
tion equations which take a relatively simple form since the fluctuations in
the medium have been ‘averaged out’, and can be solved or their solutions
approximated analytically.

Before deriving equations for the evolution of the first and second moments,
we shall make some heuristic remarks.
As the field evolves, the pure phase fluctuations which are imposed ini-
tially, equation (4.3), become converted to amplitude variations. (In terms
of ray theory, this happens as the layer focuses or de-focuses the rays passing
through it, and the intensity changes with the ray density.)
This can be shown and quantified roughly as follows:
At a small distance x beyond the layer, we can take a Taylor expansion of the
field E(x, z) about E(0, z) = eiφ(x). If we then use (4.3) and the parabolic
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4.1 Propagation beyond a thin phase screen

wave equation
∂E

∂x
=

i

2k

∂2E

∂z2
. (4.6)

we obtain

E(x, z) ∼=
[

1 +
i

2k
x(iφ′′ − φ′2)

]

eiφ , (4.7)

where the prime denotes derivative, φ′ = dφ/dz etc., so that

I(x, z) ∼= 1 − x

k
φ′′ +

x2

4k2
(φ′′2 + φ′4) (4.8)

neglecting higher powers of x. This describes the initial mechanism for the
build-up of amplitude fluctuations across the wavefront.

However, we can form evolution equations, i.e. differential equations govern-
ing the behaviour of the moments. These can be solved to find the far-field.
The first few moment equations are trivial in the case of propagation beyond
a layer, but are a useful introduction to the moment equations, and illustrate
simply some important concepts..

Evolution of the first moment (mean field):
We note first that, since E(x, z) = 1 before the screen and E(0, z) = exp(iφ(z))
immediately after the screen, the initial intensity is unchanged: < I(0, z) >≡
1, and the initial mean field is

m1(0) =< eiφ(z) >= e−σ2/2 . (4.9)

This is exact for the normal distribution as assumed here, in which case the
the probability density function of φ is

f(φ) =
1

σ
√

2π
e−φ2/2σ2

.

and approximate in general. It can be obtained from the definition

< eiφ >=

∫ ∞

−∞
eiφf(φ)dφ , (4.10)

or simply by expanding the exponential and averaging term by term,

< eiφ >= 1 + i < φ > − < φ2 > /2 − i < φ3 > /3+ ... (4.11)

By equation (4.9) we can write

< Ê(0, ν) > =

∫ ∞

−∞
m1(0) eiνz dz =

√
2π δ(ν) e−σ2/2 . (4.12)
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4.1 Propagation beyond a thin phase screen

But Ê satisfies the parabolic equation, so

Ê(x, ν) = e−i ν2

2k
xÊ(0, ν) (4.13)

Taking the average of (4.13) and using (4.12) then gives

< Ê(x, ν) > =
√

2π δ(ν) e−iν2x/2k e−σ2/2,

so that (because of the delta function) < Ê(x, ν) >=< Ê(0, ν) > for all z,
i.e.

dm1

dx
= 0. (4.14)

The mean field is unchanged with distance.

Evolution of the second moment (vertical correlation of field):
We are also interested in mean intensity < I(x) >. Although we cannot form
an evolution equation for < I(x) > itself, we can do so for m2(x, η) (equation
(4.5)) and obtain < I > by solving and setting η = 0.
The initial condition for m2 at x = 0, just beyond the screen, is given by

m2(0, η) =
〈

ei[φ(z1)−φ(z2)]
〉

where η = z1 − z2. Since φ is normally distributed, so is the difference
φ(z1) − φ(z2). The variance of this difference is

〈

[φ(z1) − φ(z2)]
2
〉

= 2
[

σ2 − ρ(η)
]

,

where we have denoted by ρ(η) the transverse autocorrelation of the layer φ:

ρ(η) =< φ(z)φ(z + η) > (4.15)

with variance
σ2 = ρ(0) . (4.16)

This gives the initial value

m2(0, η) = e−[σ2−ρ(η)]. (4.17)

Now consider the ‘transform’ moment M2 defined by

M2(x, ν1, ν2) =
〈

Ê(x, ν1)Ê
∗(x, ν2)

〉

.

By using the parabolic equation (4.6) for the transform field we get

∂M2

∂x
=

i

2k
(ν2

2 − ν2
1) M2 (4.18)
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4.2 Propagation in an extended random medium

However we can write M2 directly in terms of E, as

M2(x, ν1, ν2) =

∫ ∞

−∞

∫ ∞

−∞
〈E(x, z1)E

∗(x, z2)〉 ei(ν1z1−ν2z2) dz1 dz2

=

∫ ∞

−∞

∫ ∞

−∞
m2(x, η) ei(ν1−ν2)Y/2+i(ν1+ν2)η/2 dη dY (4.19)

where we have made the change of variables η = z1 − z2, Y = z1 + z2.
Evaluating the Y -integral in (4.19) gives

M2(x, ν1, ν2) =
√

2π δ(ν1 − ν2)

∫ ∞

−∞
m2(x, η) ei(ν1+ν2)η/2 dη (4.20)

so that M2 vanishes unless ν1 = ν2. Hence we see from equation (4.18) that
M2, and therefore m2, does not evolve with x, i.e.

∂M2

∂x
=

∂m2

∂x
= 0. (4.21)

In particular the mean intensity remains constant. (It will be seen later that
this no longer holds for an extended random medium.) We therefore need
to go to higher moments to describe the intensity fluctuations which the eye
and most ‘square law’ detectors observe in waves propagating through an
irregular layer. Before doing that, we shall consider the evolution of the first
and second moments in an extended random medium.

4.2 Propagation in an extended random medium

Consider now the second mechanism which can produce field fluctuations,
that of extended refractive index irregularities. This is common in many
situations, e.g. underwater acoustic, or atmospheric radio wave propagation.
(Apart from any random irregularities there is often an underlying profile;
for example the ocean sound channel which causes upward refraction of ray
paths, confining sound to a region near the surface. This will not be treated
here.)

Consider again a 2-dimensional medium (x, z) and a time-harmonic wave
φeiωt. Let c(x, z) be the wave speed in the medium, and c0 be the ‘reference’
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4.2 Propagation in an extended random medium

or average wave speed. (We will take this as constant here although the
actual profile may depend on depth.) Let k = ω/c0 be the corresponding
wavenumber.
Denote the refractive index by n(x, z) = c0/c(x, z). We can write

n = 1 + nd(z) + µW (x, z) (4.22)

where nd is the deterministic profile which, for example, allows for chan-
nelling, but which will be set to zero in the following derivation. µW is the
random part, where W has been normalised, so that

< W >= 0, < W 2 >= 1,

and therefore µ2 is the variance of n. We will take W to be normally dis-
tributed, and stationary in x and z. We can then define the 2-dimensional
autocorrelation function

ρ(ξ, η) = µ2 〈W (x, z) W (x + ξ, z + η)〉 (4.23)

so that ρ(0, 0) = µ2. Note that ρ is assumed to decay to zero as ξ → ∞ or
η → ∞. (This is reasonable unless there is an underlying periodicity in the
medium.)
Further define the horizontal and vertical length scales H, L defined by

ρ(H, 0) = ρ(0, L) = µ2e−1.

There are thus at least three measures affecting the scattering in different
ways: µ2, H, and L. We will look at their various effects on the field.

Weak scatter assumptions: We make the following assumptions, which
correspond to different forms of weak scattering restrictions.

(1) Small variation of refractive index, µ2 ≪ 1 (or equivalently |n2−1| ≪
1).

(2) Small angles of scatter, expressed as

λ0 ≪ L

where λ0 is the reference wavelength, λ0 = 2π/k0.

(3) Weakly scattering medium, i.e. the phase fluctuations imposed over a
distance H are small,

k0µH ≪ 1
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4.2 Propagation in an extended random medium

Note: It will be seen below that ‘stretching’ the scale size H increases the
scattering effect, whereas stretching the vertical scale L weakens it.

Under these weak scatter assumptions we will be able to use the parabolic
equation for an extended random medium, which was derived in section 3.4:

∂E

∂x
=

i

2k

∂2E

∂z2
+

ik

2
(n2(x) − 1)E. (4.24)

Moment equations for an extended random medium
We now go on to formulating and solving equations for the evolution of the
moments, analogous to those for the thin layer. In the derivations that follow,
we shall consider separately the ‘scattering effect’ and the ‘diffraction effect’,
i.e. the two terms on the r.h.s. of the parabolic equation (4.24).
Define again the first moment

m1(x) = < E(x, z) > (4.25)

where this quantity is again independent of z by the stationarity of W . Thus
all z-derivatives dnm1/dzn vanish, so that all effects on the mean field are
due to the scattering term only (in eq. (4.24)).
In order to derive the first moment equation, consider first the phase change
φ(z) over a distance d > H due to the scattering term only:

E(x + d, z) = E(x, z) eiφ(z) (4.26)

where

φ(z) = k0µ

∫ x+d

x

W (x′, z) dx′. (4.27)

Averaging (4.26) will involve a term < φ2 >, so square and average (4.27) to
get

< φ2 > = k2
0µ

2

∫ x+d

x

∫ x+d

x

〈W (x′, z)W (x′′, z)〉 dx′ dx′′

= k2
0µ

2

∫ x+d

x

∫ x+d

x

ρ(x′ − x′′, 0) dx′ dx′′ ,

where we have used the definition (4.23) for the transverse autocorrelation
ρ(x′ − x′′, 0). We now make the change of variables

ξ = x′ − x′′

X = (x′ + x′′)/2
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4.2 Propagation in an extended random medium

and use d > H together with the fact that ρ(ξ, 0) ∼ 0 for large ξ to obtain

〈

φ2
〉 ∼= k2µ2

∫ d

0

∫ ∞

−∞
ρ(ξ, 0) dξ dX.

Therefore
〈

φ2
〉

= k2µ2σ0d (4.28)

where

σ0 =

∫ ∞

−∞
ρ(ξ, 0) dξ.

Now, averaging (4.26) and using (4.28) gives

m1(x + d) ≡ 〈E(x + d, z)〉 ∼= m1(x) e−k2
0µ2σ0/2d (4.29)

where we have made a further key assumption: the field becomes independent
of the medium, due to the cumulative effect of scattering., i.e. for large x

〈

E(x, z)eiφ(z)
〉

∼ 〈E(x, z)〉
〈

eiφ(z)
〉

.

This is because the moments of E at any distance in the medium are the
result of the cumulative effective of the medium - of scattering - up to that
distance, however the statistics of the medium in a layer of thickness d are
independent of the statistics of the medium elsewhere.
It now follows directly from (4.29) that

m1(x) = e(−k2
0µ2σ0/2)x m1(0). (4.30)

Equivalently (or expanding m1(x+ξ) in ξ and comparing terms of O(ξ) with
a Taylor series) we can write

dm1

dx
= −(

1

2
k2

0µ
2σ0)m1 . (4.31)

Thus m1(x) decays exponentially and is purely real.
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4.2 Propagation in an extended random medium

Equation (4.31) for the evolution of the first moment due to the scattering
term only, is also valid for a more general incident wave in 3 dimension, and
amplitude different from 1, where the wave emerging from from a screen of
width d is given by:

E(x + ξ, y, z) = E(x, y, z)eφ(x+ξ,y,z) ,

and we have
∂m1

∂x
= −(

1

2
k2

0µ
2σ0)m1 . (4.32)

In general, we cannot disregard the ‘diffraction’ term, and we need to use

∂E

∂x
=

i

2k0

(

∂2

∂z2
+

∂2

∂y2

)

E +
ik0

2
(n2 − 1)E . (4.33)

Therefore the equation for the first moment is

∂m1

∂x
=

i

2k0

(

∂2

∂z2
+

∂2

∂y2

)

m1 − (
1

2
k2

0µ
2σ0)m1 . (4.34)

As before, since the medium is stationary, and therefore m1 is independent
of the transverse directions y, z, this reverts to equation (4.32)above.

For higher moments, we shall see that the ∇2 term must be retained. The
evolution equations could be solved by applying some small perturbations
method, for example Born or Rytov, but only for small intensity fluctuations.
Such solutions are of very limited use, since we know from experimental
results and observations that even small randomness can give rise to very
large intensity fluctuations.
It is possible to find a solution that allows for large intensity fluctuations by
a local application of the method of small perturbation, and we shall derive
moment equations and their solutions in this way. Conceptually then, using
these moment equations to describe the evolution of the field is equivalent to
using repeated applications of the Born approximation for successive (thin)
screens.

Let us now consider the second moment

m2 =< E1(x, y1, z1)E
∗
2(x, y2, z2) > , (4.35)

where E1 and E2 represent E at two separate points in the same transverse
plane at x.
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4.2 Propagation in an extended random medium

Let us derive first the ‘diffraction’ term (or ‘distance effect’). Consider

∂

∂x
E1E

∗
2 = E∗

2

∂E1

∂x
+ E∗

1

∂E2

∂x
.

The diffraction term for the field at a single point Ej (where j = 1, 2) is

∂Ej

∂x
=

i

2k0

(

∂2

∂y2
j

+
∂2

∂z2
j

)

Ej ≡ − i

2k0

∇2
TjEj . (4.36)

Therefore
∂

∂x
E1E

∗
2 =

i

2k0

(

E∗
2∇2

T1E1 − E1∇2
T2E

∗
2

)

,

and taking the ensemble average

∂

∂x
< E1E

∗
2 >=

i

2k0

(

∇2
T1 −∇2

T2

)

< E1E
∗
2 > . (4.37)

We shall now consider the ‘scattering’ effect due to a screen of thickness d,
so how the second moment < E1E

∗
2(x) > evolves onto < E1E

∗
2(x + d) > .

We have:
E1E

∗
2(x + d) = E1E

∗
2(x)ei[φ(x+d,y1,z1)−φ(x+d,y2,z2)] (4.38)

and

E1E
∗
2(x + d) ≃ E1E

∗
2(x) +

∂

∂x
(E1E

∗
2)d , (4.39)

so

E1E
∗
2(x+d) = E1E

∗
2(x)[1+i(φ(y1, z1)−φ(y2, z2))−

1

2
(φ(y1, z1)−φ(y2, z2))

2+...] ,

(4.40)
where we have expanded the exponent in (4.38). If we now equate (4.38) and
(4.39), by taking the ensemble average, and remembering that < φ >= 0, we
have

∂

∂x
< E1E

∗
2 > d = −1

2

〈

(φ(y1, z1) − φ(y2, z2))
2
〉

< E1E
∗
2 > . (4.41)

Now consider

〈

(φ1 − φ2)
2
〉

=
(

< φ2
1 > −2 < φ1φ2 > + < φ2

2 >
)

, (4.42)

where φi = φ(yi, zi) In the same way as we previously derived < φ2 >,
(equation (4.28)), we can derive

〈φ1φ2〉 ∼= k2
0µ

2

∫ d

0

∫ ∞

−∞
ρ(ξ, 0) dξ dX.
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4.2 Propagation in an extended random medium

Therefore
〈φ1φ2〉 = k2

0µ
2dσ(η, ζ) (4.43)

where

σ(η, ζ) =

∫ ∞

−∞
ρ(ξ, η, ζ) dξ,

η = y1 − y2, ζ = z1 − z2, and ρ is the normalised autocorrelation function of
the refractive index fluctuation:

ρ(ξ, η, ζ) =
1

µ2
< W (x1, y1, z1)W (x2, y2, z2) > .

We can now use (4.43) in (4.42) to obtain

〈

(φ1 − φ2)
2
〉

= 2k2
0µ

2d(σ(0, 0) − σ(η, ζ)) . (4.44)

Therefore the evolution due to the scattering only is

∂

∂x
< E1E

∗
2 >= −k2

0µ
2(σ(0, 0) − σ(η, ζ)) < E1E

∗
2 > (4.45)

Now, combining (4.45) and (4.37), we obtain the second moment equation

∂m2

∂x
=

i

2k0

(

∇2
T1 −∇2

T2

)

m2 − k2
0µ

2(σ(0, 0) − σ(η, ζ))m2 . (4.46)

Let us consider the fourth moment defined by

m4 =< E1E
∗
2E3E

∗
4 > . (4.47)

We can derive an equation for the fourth moment in the same way as before:
The ’distance’ effect:

∂

∂x
(E1E

∗
2E3E

∗
4) =

∂E1

∂x
(E∗

2E3E
∗
4)+E1

∂E2

∂x
(E3E

∗
4)+E1E

∗
2

∂E3

∂x
(E∗

4)+E1E
∗
2E

∗
3

∂E4

∂x
.

(4.48)
But

∂Ei

∂x
=

i

2k0

∇2
TiEi ,

therefore:

∂

∂x
< (E1E

∗
2E3E

∗
4) >=

i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4) < (E1E
∗
2E3E

∗
4) > .

(4.49)
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4.2 Propagation in an extended random medium

The ‘scattering’ effect:
We have

(E1E
∗
2E3E

∗
4)(x + d) = (E1E

∗
2E3E

∗
4)(x)eφ1−φ2+φ3−φ4 , (4.50)

and

(E1E
∗
2E3E

∗
4)(x + d) = (E1E

∗
2E3E

∗
4)(x) +

∂(E1E
∗
2E3E

∗
4)

∂x
d . (4.51)

Equating (4.50) and (4.51), and expanding the exponent, we get

(E1E
∗
2E3E

∗
4)(x+d) = (E1E

∗
2E3E

∗
4)(x)[1+i(φ1−φ2+φ3−φ4)−

1

2
(φ1−φ2+φ3−φ4)

2+...

(4.52)
So, truncating the expansion and taking the ensemble average, we have

∂
∂x

< E1E
∗
2E3E

∗
4 > d = −1

2
(φ1 − φ2 + φ3 − φ4)

2 < E1E
∗
2E3E

∗
4 >

= −1

2

(

4 < φ4 > +2 < φ1φ3 > +2 < φ2φ4 > (4.53)

− 2 < φ1φ2 > −2 < φ1φ4 > −2 < φ2φ3 > −2 < φ3φ4 >) < E1E
∗
2E3E

∗
4 > ,

where we have used
< φiφj >=< φjφi >

and
< φiφi >=< φ2

i > .

Now, proceeding as before, and remembering that (equation (4.43)),

< φiφj >= k2
0µ

2σ(ηj, ζj)d , (4.54)

we can combine the ’distance’ and ’scattering effects to obtain the fourth
moment equation

∂m4

∂x
= − i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4)m4

− k2
0µ

2σ(0, 0)(2 + σ13 + σ24 − σ12 − σ14 − σ23 − σ34)m4 .(4.55)

This is more usefully often written in the slightly different form:

∂m4

∂x
= − i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4)m4

− β(2 + f13 + f24 − f12 − f14 − f23 − f34)m4 , (4.56)
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4.2 Propagation in an extended random medium

where
β = k2

0µ
2σ(0, 0) (4.57)

and
fi,j = σ(yi − yj , zi − zj)/σ(0, 0) . (4.58)

The quantity β defined above is the so-called attenuation coefficient, which
is a useful parameter of physical significance. β is of course related to the
attenuation of the mean field < E > by the medium, since

< E >= E0e
−β/2 ,

and to the ’unscattered’ power < E >2 by

< E >2= E0e
−β , (4.59)

It has a further physical significance in terms of the mean free path of a
photon in a random medium. Suppose the incident (electromagnetic) field is
regarded as a unidirectional flux of photons. The incident field is attenuated
exponentially like

ex/xm

as it passes through the medium, where xm is the mean free path of the
photon in the medium. The number of photons in the unscattered flux is
proportional to the unscattered power, so, comparing with (4.59), we see
that β−1 may be interpreted as the mean free path of a photon in a random
medium.

Let us now find the solutions for the second and fourth moment.

Solution of the second moment equation (non-examinable)
It is convenient to use the set of variables

ξ = x1 − x2 , η = y1 − y2 , ζ = z1 − z2

X = x1 + x2 , Y = y1 + y2 , Z = z1 + z2 (4.60)

and to set
< E1E

∗
2 > eβx = u(βx, η, ζ) . (4.61)

The equation for the second moment then can be written as

∂u

∂(βx)
= − 2i

k0β

(

∂2u

∂Y ∂η
+

∂2u

∂Z∂ζ

)

+
σ(η, ζ)

σ(0, 0)
u . (4.62)
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4.2 Propagation in an extended random medium

It is convenient to transform this equation using the transform pair

u(Y, η;Z, ζ) =

∫ ∫

û(η, ζ; ǫ1, ǫ2)e
i(ǫ1Y +ǫ2Z)dǫ1dǫ2 ,

û(η, ζ; ǫ1, ǫ2) =
1

2π

∫ ∫

u(Y, η;Z, ζ)e−i(ǫ1Y +ǫ2Z)dY dZ .

to obtain
∂û

∂(βx)
= B1

∂û

∂η
+ C1

∂û

∂ζ
+

σ(η, ζ)

σ(0, 0)
û , (4.63)

where
B1 = 2ǫ1/kβ , C1 = 2ǫ2/kβ .

The general solution of (4.63)is

û = û0(η+B1βx, ζ+C1βx) exp

[
∫ βx

0

σ(η + B1(βx − βx′); ζ + C1(βx − βx′))

σ(0, 0)
d(βx′)

]

,

(4.64)
where û0 is the solution of the transform equation (4.63) when σ(ξ, η, ζ) = 0.
The second moment then is given by the inverse transform, which, in our
case where Y = Z = 0, reduces to

u(Y, η;Z, ζ) =

∫ ∫

ûdǫ1dǫ2 . (4.65)

If the incident field is a plane wave with amplitude E0 at x = 0 and propa-
gating parallel to the x-direction, then

û0 = δ(ǫ1)δ(ǫ2) (4.66)

and from (4.64) and the inverse transform we have:

u = E2
0 exp

[
∫ βx

0

σ(η; ζ)d(βx′)

σ(0, 0)

]

= E2
0 exp

[

−βx

(

1 − σ(η; ζ)

σ(0, 0)

)]

. (4.67)
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4.2 Propagation in an extended random medium

Solution of the fourth moment equation(non-examinable)
We shall now seek a solution of equation (4.56):

∂m4

∂x
= − i

2k0

(∇2
T1 −∇2

T3 + ∇2
T3 −∇2

T4)m4

− k2
0µ

2σ0(2 + f13 + f24 − f12 − f14 − f23 − f34)m4 , (4.68)

We shall follow similar steps to those used to find a solution of the second
moment equation, so we shall first make an appropriate change of variables,
then use Fourier transforms.
Denote by L the scale size of the inhomogeneities transverse to the direction
of propagation x, and define a new variable, scaling x by the so-called ’Fresnel
length’ kL2:

X =
x

kL2
(4.69)

Introduce also the following scaled variables:

ζa = (z1 − z2 − z3 + z4)/2L

ζb = (z1 + z2 − z3 − z4)/2L

ζc = (z1 − z2 + z3 − z4)/2L (4.70)

Z = (z1 + z2 + z3 + z4)/L

and analogous ones relating in the y coordinate:

ηa = (y1 − y2 − y3 + y4)/2L

ηb = (y1 + y2 − y3 − y4)/2L

ηc = (y1 − y2 + y3 − y4)/2L (4.71)

Y = (y1 + y2 + y3 + y4)/L

We shall also define the parameter

Γ = k3µ2σ0L
2 (4.72)

For simplicity, we shall restrict the following to 2 dimensions, in the plane
(x, z). It will be straightforward to extend the final result to include the y
coordinate. In this case then, and with the new variables defined above, the
fourth moment equation becomes

∂m4

∂X
= −i

(

∂2m4

∂ζa∂ζ2

+
∂2m4

∂ζc∂Z

)

− 2Γ(1 − g(ζa, ζb, ζc))m4 , (4.73)

We shall now seek the solution in 2D, for a plane wave of unit amplitude
normally incident onto the half-space x > 0. Equation (4.68) then simplifies
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4.2 Propagation in an extended random medium

further, since in this case the 4th moment is independent of the transverse
direction Z, and all the field quantities in (4.73) can be written as functions
of 2 new variables only. We have:

∂m4

∂X
= −i

∂2m4

∂ζa∂ζ2

− 2Γ(1 − g(ζa, ζb))m4 , (4.74)

where now

g = f(ζa) + f(ζB) + −1

2
f(ζa + ζb/2) − 1

2
f(ζa − ζb/2)

Similarly to the procedure followed to find the solution for the second mo-
ment, set

m4e
2ΓX = m ,

then use this in (4.74), and multiply the resulting equation by e−2ΓX , to
obtain

∂m

∂X
= −i

∂2m

∂ζa∂ζ2

+ 2Γgm , (4.75)

Again we transform this equation using Fourier transforms:

M =
1

2π

∫ ∫

m(ζa, ζb, X)e−i(νaζa+νbζb)dζadζb ,

G =
1

2π

∫ ∫

g(ζa, ζb)e
−i(νaζa+νbζb)dζadζb ,

and obtain

∂M

∂X
= iνaνbM + 2Γ

∫ ∫

G(νa − ν
′

a, νb − ν
′

b)M(ν
′

a, ν
′

b, X) (4.76)

In order to solve this integrodifferential equation, we shall now represent M
as a series:

M =
∞

∑

n=0

Mn , (4.77)

where
M0 = M(νa, νb, 0) = δ(νa)δ(νb) , (4.78)

which we take as the initial condition for (4.76). Using now the series (4.77)
in (4.77) gives:

∂Mn

∂X
= iνaνbMn + 2Γ

∫ ∫

G(νa − ν
′

a, νb − ν
′

b)Mn−1(ν
′

a, ν
′

b, X) (4.79)

Part III - Waves 74 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

9 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

4.2 Propagation in an extended random medium

We can solve (4.79) starting from M1:

∂Mn

∂X
= iνaνbMn + 2ΓG(νa, νb) , (4.80)

with initial condition M1(νa, νb, 0) = 0. This has solution

M1(νa, νb, X) = 2Γ

∫ X

0

G(νa, νb)e
νaνb(X−X1)dX1 (4.81)

Now we can use M1 to solve for M2:

∂M2

∂X
= iνaνbM2 + 2Γ

∫ ∫

G(νa − ν
′

a, νb − ν
′

b)M1(ν
′

a, ν
′

b, X)dν
′

adν
′

b (4.82)

with initial condition M2(νa, νb, 0) = 0. This has solution

M2(νa, νb, X) =

(2Γ)2

∫ X

0

∫ ∞

−∞

∫ ∞

−∞
G(νa − νa1

, νb − νb1)M1(νa1
, ν

′

b, X2)e
iνaνb(X−X2)dX2dνa1

dνb1

= (2Γ)2

∫ X

0

∫ X2

0

∫ ∞

−∞

∫ ∞

−∞
G(νa − νa1

, νb − νb1)G(νa − νa1
, ν

1
b,X2) ×

eiνaνb(X−X2)+iνa1
νb1

(X2−X1)dX2dνa1
dνb1

and the nth term in the series is:

Mn(νa, νb, X) = (2Γ)n

∫ X

0

∫ Xn

0

...

∫ X2

0

∫ ∞

−∞
...

∫ ∞

−∞
G(νa1

, νb1)

× G(νa2
− νa1

, νb2 − νb1)

× G(νa3
− νa2

, νb3 − νb2)

.

.

.

× G(νa − νan−1
, νb − νbn−1

)

× ei(νa1
νb1

(X2−X1)+νa2
νb2

(X3−X2)+...+νaνb(X−Xn)

× dνa1
...dνan−1

dνb1...dνbn−1
dX1...dXn

Replacing all the terms G by their inverse transform and carrying out all the
possible integrals gives:

Mn(νa, νb, X) =
(2Γ)n

(2π)2n+2

∫ X

0

∫ Xn

0

...

∫ X2

0

∫ ∞

−∞
...

∫ ∞

−∞

n
∏

j=1

g(ζa1
, ζb + Qj)

× eiζaj
(νaj

−νaj−1
)−iνbζb

× dζbdζa1
...dζan

× dνa1
...dνan−1

dX1...dXn ,
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4.2 Propagation in an extended random medium

where

Qj = (νa(X − Xn) + νan−1
(Xn − Xn) + ... + νaj

(Xj+1 − Xj)) . (4.83)

It is useful to interpret the subscripts n as the number of times that the
field is scattered, contributing to a given term in the series, Mn. The “single
scatter” approximation then corresponds to taking just the first term in the
series, which is

M1(νa, νb, X) = 2Γ

∫ X

0

G((νa, nub)e
i(νaνb(X−X1)dX1 (4.84)

and we recover the Born approximation.

In order to obtain higher order terms in the sum, further approximations are
necessary, which of course involve further errors, beyond those incurred in
truncating the series.

Considerations on the numerical solution of the moment equations
Because of the necessity for several approximations at each step, and because
of the quite complicated analytical form of the higher order corrections, which
do not readily yield physical insight, calculations for the fourth moment are
most usefully carried out using numerical approximations.
We can write the equation for the fourth moment (equation (4.74)) in terms
of operators as:

∂m4

∂X
= (A(X) + B(Γ, X)) m4 , (4.85)

where

A = i
∂2

∂ζa∂ζb

; B = −2Γ(1 − g(ζa, ζb))m . (4.86)

We can write C = A + B. Difficulties can arise in the numerical solution for
C, particularly for large values of Γ, when semi-discretization leads to a stiff
system of differential equations. Furthermore, since there are two transverse
variables, the matrices which operate on this system are of order N4, where
N is the number of points in the discretization along each axis.
The formal solution of equation (4.85) over the range (X,X + ∆X) is

m4(ζa, ζb, X + ∆X) = e
R X+∆X

X
C(Γ,X′)dX′

m4(ζa, ζb, X) . (4.87)

In the case of a plane wave, C does not vary with X, so
∫

CdX = ∆XC
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4.2 Propagation in an extended random medium

and the exact formal solution is

m4(ζa, ζb, X + ∆X) = e∆X(A+B)m4(ζa, ζb, X) (4.88)

=

(

1 + ∆X(A + B) +
(∆X)2

2
(A + B)2 + ...

)

m4(ζa, ζb, X).

We first approximate this with the ’operator splitting’ solution given by

m4(ζa, ζb, X + ∆X) = e∆XAe∆XB)m4(ζa, ζb, X) (4.89)

=

(

1 + ∆XA +
(∆X)2

2
A2 + ...

) (

1 + ∆XB +
(∆X)2

2
B2 + ...

)

m4(ζa, ζb, X).

This is exact only if the operators A and B commute. We can see, by
expanding the terms in (4.88) and comparing with (4.89),that the step-wise
error in (4.89) is O[(∆X)3]. However, the overall accuracy depends on the
degree of commutativity between A and B in the strong operator topology
or, in other words, on the quantity ‖ (AB − BA)m4 ‖. This quantity is
indeed very small, so the method is very accurate.

This operator splitting can be applied when the irregularities in the medium
have any given autocorrelation function with an outer scale, even if it is
range-dependent.

The method is unconditionally stable and convergent, and can be applied
even when there is strong scattering.

The method allows comparison of analytical and numerical intensity fluctu-
ation spectra over a wide range of Γ and X.

Scattering effect of extended irregularities
It is interesting, and useful for acquiring some insight, to investigate heuristi-
cally the effect of the horizontal length scale. For a given form of the medium
W and its statistics, what is the effect of changes in the length scale H?
For the following heuristic analysis we shall ignore diffraction and examine
only the scattering term in the parabolic equation for the wavefield (4.24).
Consider therefore a vertical layer consisting of the region [x, x+d]. Subdivide
this into n thin subregions each of width ∆x = d/n.
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4.2 Propagation in an extended random medium

Each of these subregions, for j = 1, ..., n, imposes a normally-distributed
phase change φj(z) with mean zero, whose variance is assumed to be given,
say:

〈φj〉 = 0,
〈

φ2
j(z)

〉

= δ2. (4.90)

So since we are ignoring diffraction the wave emerging at x + d has the form

E(x + d, z) = E(x, z) eiφ(z) (4.91)

where

φ(z) =
n

∑

i=1

φi(z).

Now, since φ is normally distributed, the mean of this phase modification is

〈

eiφ
〉

= e−<φ2>/2 (4.92)

so we want to examine the dependence of < φ2 > on H. Consider two
extreme cases:

(1) H small, say H ≤ ∆x: Then we can treat φi, φj as independent for
all i 6= j, so that

〈

φ2
〉

=

〈(

n
∑

i=1

φi(z)

)2〉

=
n

∑

i=1

〈

φ2
i (z)

〉

(4.93)

= nδ2

so that scattering scales linearly with n

(2) H large, say H ≫ d: Then we can suppose that the medium at each
depth z is approximately constant over the interval [x, x + d],

φi(z) = φj(z) for all i, j,

so that
< φ2 > =

〈

[nφ1(z)]2
〉

= n2 δ2. (4.94)

Thus, increasing H magnifies the scattering effect of the medium.
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4.2 Propagation in an extended random medium

The scintillation index

The scintillation index S2
I is the normalised variance (sometimes referred to

as ‘mean square’) of the intensity fluctuations:

S2
I =

< I2 > − < I >2

< I >2
, (4.95)

where the intensity I is given by

I = EE∗ .

S2
I is a measure of the fluctuations of the received signal by most devices,

and is of course a fourth moment of the field.
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5 The inverse scattering problem

We have so far only considered the direct scattering problem, i.e., given a
wavefield ui incident upon an inhomogeneity (this could be an interface such
as an infinite surface or a finite, closed object, or an extended inhomogeneity
such as a medium with varying refractive index), we have considered ways of
finding the scattered field us, or equivalently the total field u = ui + us.

The inverse scattering problem starts from the knowledge of the scattered
field us, and asks questions about the inhomogeneities that produced it (for
example their shape, or their refractive index) and about the source field.

This area of research is fairly new, because the nature of the problem gives
rise to a mathematical problem which is ill-posed, and until about the ’60’s
was not considered worth studying from a mathematical point of view.

Let’s see what ’well-posed’ means. According to Hadamard, a problem is
well-posed if

1. There exists a solution to the problem (existence)
2. There is at most one solution (uniqueness)
3. The solution depends continuously on the data (stability)

For a problem expressed as
Ax = y , (5.1)

where A is an operator from a normed space X into a normed space Y , A :
X 7→ Y the requirements listed above translate into the following properties
of the operator A:

1. A is surjective. If it isn’t, then equation (5.1) is not solvable for all
y ∈ Y (non-existence).

2. A is injective. If it isn’t, then equation (5.1) may have more than
one solution (non-uniqueness)

3. The solution depends continuously on y, i.e. ∀ sequences xn ∈ X
with Axn → Kx as n → ∞, it follows that xn → x as n → ∞. If this
is not the case, then there may be cases when for ‖ y′ − y ‖≪ 1 we have
‖ x′ − x ‖≫ 1, small differences in y (e.g. small errors in the measurement
or in the numerical computation give rise to large errors in the solution
(instability).
Absence of even one of these properties is likely to pose considerable difficul-
ties in finding the solution to a problem.
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5.1 Tikhonov regularisation

If all the above properties apply, then the inverse operator A−1 : Y 7→ X
exists and is bounded, and

‖ x ‖≤ C ‖ y ‖ , (5.2)

where C =‖ A−1 ‖.

If an inverse does exist for some y, but is not bounded, then there does not
exist a constant C for which (5.2) holds for all y ∈ A(X).
It is possible, though, even when A−1 is not bounded, but has dense range,
to construct a family of bounded approximation to A−1. A strategy for
achieving this is the Tikhonov regularisation procedure, which provides
a mean to cope with ill-posedness.

5.1 Tikhonov regularisation

Definition A regularisation strategy for A : X 7→ Y is a family of bounded
linear operators Rα : Y → X for α > 0 such that

Rαy → A−1y as α → 0 (5.3)

When it is not clear whether a solution to the inverse scattering problem for
(5.1) exists, it is natural, as a first attempt at computing an approximate
solution, to try to find an x to minimise ‖ Ax − y ‖.
It is possible to demonstrate that (Theorem): For every y ∈ Y , then
x′ ∈ X satisfies

‖ Ax′ − y ‖≤‖ Ax − y ‖ .

if and only if x′ solves the normal equation

A∗Ax′ = A∗y , (5.4)

where A∗ : Y 7→ X.

Equation (5.4) is still ill-posed, if the original scattering problem was ill-
posed, but this ill-posedness can be removed by introducing a small per-
turbation, so replacing the original problem with the slightly perturbed one
below:

αxα + A∗Axα = A∗y (5.5)

for some small α > 0.
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5.1 Tikhonov regularisation

It is possible to prove that (Theorem):
If α > 0, then the operator (αI + A∗A) : X 7→ X has an inverse, which is
bounded, with ‖ (αI + A∗A)−1 ‖≤ α−1.
Given a linear bounded operator A : X 7→ Y , and y ∈ Y , the Tikhonov

functional is defined by

Jα =‖ Ax − y ‖2 +α ‖ x ‖2 ∀x ∈ X (5.6)

For α > 0, the Tikhonov functional Jα, as defined above, has a unique
minimum xα given as the unique solution of the equation

αxα + A∗Axα = A∗y . (5.7)

The solution of this equation can be written as xα = Rαy, with

Rα = (αI + A∗A)−1A∗ : Y 7→ X. (5.8)

xα = Rαy is referred to as the Tikhonov regularisation solution of (5.1).
This strategy then approximates the actual solution x = A−1y by the reg-
ularised solution xα, given y. In general, a yδ will be known, which differs
from y by some error δ (for example because it is experimental data):

‖ yδ − y ‖≤ δ . (5.9)

It is useful to be able to approximate the error involved in the regularisation,
and to relate it to the error associated with incorrect initial data δ. Let’s
write

xα(δ) − x = Rαyδ − Rαy + RαAx − x . (5.10)

Then, by the triangle inequality we have the estimate

‖ xα(δ) − x ‖≤ δ ‖ Rα ‖ + ‖ RαAx − x ‖ (5.11)

This decomposition shows that the error consists of two parts: the first term
reflects the influence of the incorrect data, and the second term is due to the
approximation error between Rα and A−1.
The regularisation scheme requires a strategy for choosing the parameter α
on the basis of the error δ in the data, in order to achieve an acceptable total
error for the regularised solution.
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6 Methods for solving the inverse scattering

problem

Inverse problems have a variety of very important practical applications,
ranging from the detection of land mines, to medical imaging, analysis of sub-
surface strata for oil and gas recovery, reconstruction and detection of craft,
missiles and submarines, non-destructive testing of materials and structures,
and many more.
As mentioned previously, there are several types of inverse scattering prob-
lems. We shall concentrate first on the problem of reconstructing the geome-
try of the scatterer, then we shall consider the problem of reconstructing the
refractive index. We shall only present a few simple results.
The main book available on inverse scattering is ”Inverse Acoustic and Elec-
tromagnetic Scattering”, by Colton and Kress [4], which is very good, but
far beyond the scope of this course. Several good and useful reviews are also
available, for example: Sleeman BD (1982) IMA J. Appl. Math.29 113-142,
Colton D (2003) Inside Out: Inverse Problems 47 67-110, Potthast R (2006)
Inverse Problems 22 R1-R47.

Inverse problems have been treated from many points of view.

• Some exact solutions, depending on the geometry of the scatterer, are
available. They are usually based on expressing the surface of the
scatterer parametrically in a coordinate system in which the Helmholtz
equation is separable.

• Some methods exploit the properties of the far field in order to con-
struct an analytical continuation of the far field into the near field of
the scatterer, and the circle of minimum radius enclosing the scatterer,
then determine enough points on the scatterer to approximate its shape
sufficiently. The method of Imbriale and Mittra comes in this cat-
egory.

These methods need some a priori knowledge of the boundary condition
at the surface of the scatterer, so will not work for many real problems
where only very limited of the scatterer is available.

They will usually not work in the ’resonance region’, where the size of
the incident wavelength is comparable to the size of the scatterer.

• Other methods which exploit the properties of the far field use an ’indi-
cator function’ to construct the shape of the scatterer on a grid covering
some area which is ’searched’ for the unknown scatterer. The linear
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sampling method and some of its variants are in this category. They
are usually based on a factorization of the ’far field operator’, which
maps the incident field onto the far field.

They do not need a priori knowledge of the scatterer

They can be used in the resonance region, and can also be used for
scatterer which are not simply connected.

In principle, though, these methods need knowledge of the far field in
all direction, which of course is very often impossible to obtain.

• A number of methods based on iterative procedures are also available.
They need some a priory knowledge to make an initial ’guess’. In
practice, this often means linearising the problem.

They usually need to solve the forward problem at least once at each
iteration step

When the data are sufficiently good, and the scatterer or inhomo-
geneities sufficiently ’smooth’, they can provide very high-quality re-
construction.

These methods are particularly suited to lower frequencies, and for
problems of scattering by extended inhomogeneities.

They will not work, in general, for many practical problems where only
limited knowledge of the scatterer is available, also not for high fre-
quencies, nor in the ‘resonance region’ where the size of the incident
wavelength is comparable to the size of the scatterer or of the inhomo-
geneities.

The first two methods we are going to present here are based on the properties
of the far field. Therefore, before we proceed, we shall first consider some
important results concerning the far field amplitude. Recall that, in the
direct scattering problem, given an incident (time-harmonic) field φi with
direction defined by the incident wavevector k on a (bounded) scatterer with
boundary ∂V , we seek the total field

φ = φi + φs ,

such that φs obeys the Helmholtz equation with suitable boundary conditions
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on ∂V , and the radiation condition at infinity, which can be expressed as

r1/2

(

∂φs

∂r
− ikφs

)

→ 0 as r → ∞ (in 2D) (6.1)

r

(

∂φs

∂r
− ikφs

)

→ 0 as r → ∞ (in 3D), (6.2)

with k = |k|. Then there exists a function f(x̂,k) such that

φs(x̂,k) =
ekr

r1/2

(

f(x̂,k) + O

(

1

r1/2

))

(in 2D) (6.3)

φs(x̂,k) =
ekr

r

(

f(x̂,k) + O

(

1

r

))

(in 3D) (6.4)

as r → ∞. Here x̂ = x/|x|, and r = |x|.
The function f is called the far field amplitude, or also directivity pat-

tern. It is sometimes useful to expand f(x̂,k) in terms of spherical harmon-
ics:

f(x̂,k) =
∞

∑

n=0

n
∑

m=−n

AnmY m
n (x̂) (6.5)

It is well known and it can be proven (see, e.g., Colton and Kress 1992), that

Theorem: exact knowledge of the far field amplitude f uniquely determines
the scatterer V .
Note that this tells us that we can use f to determine the scatterer, but it
doesn’t tell us how! nor does it tell us whether we can still reconstruct the
scatterer without exact knowledge of f , which is always the case in real life,
where the far field is known only at a finite, discrete number of points, and
with some experimental error and noise.

Another theorem, due to Müller (1955), characterises the functions admissi-
ble as far field amplitudes.
Theorem: A necessary and sufficient condition in n dimension for a func-
tion f(x̂,k) defined on the unit sphere Sn−1 to be a far field amplitude is
that:

there exists a harmonic function H(x̂,k), analytic for all x ∈ Rn,
and such that H(x̂,k) = f(x̂,k) on Sn−1, and further has the property:

∫

r=R

|H(x̂,k)|2ds = O
(

e2|k|CR
)

, (6.6)

where C is a non-negative constant.
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When this condition is satisfied, there exists a unique function Φ(x̂,k) which
satisfies the Sommerfeld radiation condition and is a regular solution of the
Helmholtz equation for |x| > C, such that

Φ(x̂,k) =
eikr

r1/2

(

f(x̂,k) + O

(

1

r1/2

))

(in 2D) (6.7)

Φ(x̂,k) =
eikr

r

(

f(x̂,k) + O

(

1

r

))

(in 3D) (6.8)

as r → ∞.

The constant C in (6.6) gives the radius of the sphere outside which Φ(x̂,k) is
defined. In other words, the sources generating the given far field are located
within a sphere of radius C.
From the uniqueness of Φ(x̂,k) and φs(x̂,k), it follows that

φs(x̂,k) = Φ(x̂,k) for |x| > C . (6.9)

Thus, an important problem to be considered is that of locating the region
containing the sources that generate Φ(n,k). Some methods, which we shall
not consider here, seek to construct an analytic continuation of Φ(n,k) into
the region |x| ≤ C. In these methods, the total field is usually expanded in
a series, then the geometry of a sound-soft scatterer is then determined by
locating points at which the total field vanishes. They cannot treat scatterers
with other boundary conditions, and they rely on the series expansion for
the total field to be rapidly convergent. Procedures based on analytical
continuations are inherently ill-posed and subject to numerical instability.
Other methods, such as optimization and linear sampling, don’t rely on a
priory knowledge of the scatterer, can treat both Dirichlet and Neumann
boundary conditions, and are more stable. They usually rely, though, on
knowledge of the far field in all directions.

Before describing other methods, we shall define the far field operator and
the Herglotz function.
Given a far field amplitude f(ŷ, kx̂), the Far Field Operator F is defined
by:

(Fg)(x̂) =

∫

S1

f(ŷ, kx̂)g(ŷ)ds(ŷ) , (6.10)

where S1 is the unit sphere, and g(ŷ) is a suitably well-behaved function on
S1 (g ∈ L2(S1)).
The Herglotz wave function with kernel g is defined by

vg(x̂) =

∫

S1

e−ikŷ·x̂g(ŷ)ds(ŷ) . (6.11)
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It is effectively a superposition of plane waves. Herglotz wave functions
satisfy the Helmholtz equation. Corresponding to an incident Herglotz wave
function vi

g in a scattering problem, we can associate a scattered field vs
g and

a far field amplitude v∞
g .

The Far Field Operator (6.10) can be seen to be the scattered field corre-
sponding to an incident field defined by a Herglotz function with kernel g:
vg(x̂), given by (6.11) above.

The following theorem is important for deriving some of the inverse methods
illustrated here. It relates the far field (rather surprisingly!) to the solutions
of the Dirichlet problem inside the scatterer V (interior Dirichlet problem).
Theorem: The Far Field Operator F for the exterior Dirichlet problem is
injective with dense range

if and only if
∄ a non-trivial Herglotz wavefunction that vanishes on ∂V
(i.e. which is a solution of the interior Dirichlet problem)

This means that for the far field patterns to be complete in L2(S1), the
eigenvalue k2 must not coincide with the eigenvalues of the interior Dirichlet
problem.
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6.1 Optimization method

6.1 Optimization method

A method which was described by Colton & Monk (1987), for the scattering
from an acoustically soft surface S, recasts the inverse scattering problem in
terms of an optimization.
Suppose that a time-harmonic plane wave

φi = eikw·x (6.12)

is incident upon a scattering surface S that encloses the origin. The total
potential φ = φi + φs satisfies the Helmholtz equation and the boundary
condition

φ(x) = 0 , for x on S . (6.13)

We make the following assumptions:
1. k2 is not one of the interior eigenvalues of the interior Dirichlet problem
(this is necessary for existence and uniqueness of the solution, but in practice
the errors in a numerical calculations will be sufficient to ensure that the
eigenvalues of the interior Dirichlet problem are avoided);
2. the scatterer is ”starlike”, i.e. its surface S can be represented in the form

x = rs(e)e ,

where e = x/(|x|), and rs is single-valued (i.e. the surface of the scatterer
can be parametrised by a single-valued function of angle - this is not strictly
necessary, but is convenient for the calculations).

Given the far field amplitude f(w, e, k) (in 3D) defined by

φs ∼
(

1

kr

)

eikrf(w, e, k) as kr → ∞ , (6.14)

at fixed k, the problem is to determine the function rs(e) that specifies the
scattering surface S.
Colton & Monk relate the far field f(w, e, k) to a function ψ(x, k) that cor-
respond to the scattered potential inside S induced by a point at the origin,
i.e the function ψ(x, k) which satisfies

(∇2 + k2)ψ(x, k) = 0 x inside S , rs =| x | , (6.15)

with

ψ(x, k) =
eikrs

4πrs

, x on S , (6.16)
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6.1 Optimization method

By using Green’s function formalism applied to the potential φ(x), with the
Green’s function

G(x,y) =
eikr

4πr
, with r = |y − x| ,

in the region outside S, we can write

φ(x) = φi(x) − 1

4π

∫

S

eikr

r

∂φ(y)

∂n
ds(y) , (6.17)

where n denotes the outward normal from s. It follows that the far field
amplitude f has the representation

f(w, e, k) = − k

4π

∫

S

e−ike·y ∂φ(y)

∂n
ds(y) . (6.18)

Now define S1 to be the sphere of unit radius and centre at the origin. The
above identity (6.18) can be multiplied by a suitable function g(e) and inte-
grated with respect to e over the unit sphere S1, to get

−4π

k

∫

S1

f(w, e, k)g(e)ds(e) =

∫

S

ψ(y)
∂φ(y)

∂n
ds(y) . (6.19)

where

ψ(y) =

∫

S1

g(e)e−ike·yds(e) (6.20)

is a Herglotz wave function and satisfies the Helmholtz equation if the kernel
function g(e) is sufficiently smooth.

It is now assumed that the domain inside S is such that the interior potential
ψ(x) defined by (6.16) and (6.18) can be represented as an Herglotz function.
In this case, the integral (6.19) has value unity. This follows since, from (6.19)
and (6.16), and using the boundary condition, we have:

−4π

k

∫

S1
f(w, e, k)g(e)de =

1

4π

∫

S

eikr

r

∂φ(y)

∂n
ds(y)

=
1

4π

∫

S

[

∂φ

∂n

eikr

r
− φ

∂

∂n

(

eikr

r

)]

ds(y)

=
1

4π

∫

S

[

∂φi

∂n

eikr

r
− φi

∂

∂n

(

eikr

r

)]

ds(y) (6.21)

The last step follows from the fact that the integral

I =

∫

S′

[

G
∂φs

∂n

]

ds(y) , (6.22)
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6.1 Optimization method

is invariant with respect to any surface S ′ on or outside S, by virtue of Green’s
formula applied to φs and G. Taking S ′ to be a sphere of large radius R0,
one finds, by using the radiation condition satisfied by φs, that I → 0 as
R0 → ∞, hence I ≡ 0. Finally, the integral (6.21) is seen to have the value
φi(0) = 1, from Green’s formula applied to φi and G, with (∇2+k2)G = δ(x).
Thus

−4π

k

∫

S1

f(w, e, k)g(e)ds(e) = 1 (6.23)

for all directions of incidence w.

The problem is now specified by the two identities (6.23) and (6.16), which
can be used to determine first g(e), then rs.
Colton & Monk (1987) accordingly formulate the optimization problem to
minimise

N
∑

n=1

∣

∣

∣

∣

∫

S1

4π

k
f(wn, e, k)g(e)ds(e) + 1

∣

∣

∣

∣

2

(6.24)

with respect to g(e) from a suitable function class, for a finite number N
of incident directions. Given g, hence ψ from equation (6.20), the second
identity (6.16) leads to the optimization problem of minimizing

∫

S1

∣

∣

∣

∣

ψ (rs(e)) − eikrs

4πrs

∣

∣

∣

∣

2

ds(e) (6.25)

with respect to rs(e) from a suitable function class.
The estimate for rs gives an approximation to the surface S.

Colton & Monk (1987) give results for several axially symmetric problems,
using trial functions in the form of Fourier series in the azimuthal angle.
Their results give excellent reconstructions for a variety of shapes, such as
the oblate spheroid, the ”peanut” shape, and the ”acorn” shape.
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6.2 The linear sampling method

6.2 The linear sampling method

This method, first proposed by Colton and Kirsch (1996), is also based on
the properties of the far field pattern used in the previous section. The
basic idea behind it, as its name suggests, is to choose points z in a range
known to include the scatterer and provide a scheme for deciding whether the
point is on the scatterer. It allows scatterers which are not simply connected,
either penetrable or impenetrable, and - when impenetrable - does not require
knowledge of the boundary conditions. It was originally started by numerical
observations about the behaviour of the kernel of the integral equation for
the far field of a point source, and has been successfully applied in a variety of
cases. Its mathematical basis hasn’t yet been rigourously proven, but we can
see how it can be heuristically justified with relatively simple observations.

The linear sampling method therefore also makes use of the Far Field Oper-
ator defined earlier:

(Fg)(x̂) =

∫

S1

f(ŷ, kx̂)g(ŷ)ds(ŷ) , (6.26)

where f(ŷ, kx̂ is the measured (known) far field, g(ŷ) is a suitably well-
behaved function on S1, but S1 is now the unit sphere centred on an arbitrary
point z.
It is then concerned with solving the integral equation

(Fg)(x̂) = G∞(x̂, z) . (6.27)

where F is the Far Field Operator, and G∞(ŷ, z) is the far field pattern

G∞(x̂, z) =
1

4π
e−ikx̂·z (6.28)

of a point source centred at z:

G(x, z) =
1

4π

e−ik|x−z|

| x − z | , x 6= z , (6.29)

and we assume z is on the scatterer D.

Under the assumption that k2 is not a Dirichlet eigenvalue of the negative
Laplacian in D (i.e. not an eigenvalue of the internal Dirichlet problem, as
before), it can be shown that
Theorem: if z ∈ D, ∀ǫ > 0 ∃ a solution g(·, z) of the inequality

‖Fg − G∞‖ < ǫ (6.30)
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6.2 The linear sampling method

such that
‖g(·, z)‖ → ∞ and ‖vg(·, z)‖ → ∞ as z → ∂D , (6.31)

where vg(·, z) is the Herglotz function with kernel g(·, z).

This theorem effectively states that, whatever the incident field on a scatterer
D, the far field is arbitrarily close to the far field of a point source centred
in D, thus providing a way of calculating the Herglotz kernel g that relates
the far field to the incident field. It further provides a way of identified the
surface of the scatterer D as the region where ‖g(·, z)‖ becomes unbounded.

The linear sampling method consists in the following steps:

First, find a g that minimises

‖Fg − G∞‖

This problem is ill-posed, and a solution therefore is found by regularising
and minimising

||Fg − G∞||2 + α||g||2 (6.32)

The solution is sought for each z on a grid covering some area where we
search for the unknown scatterer, hence the name ‘sampling method’.

Secondly, the unknown boundary of the scatterer ∂D is then found by looking
for the points z where ‖g(·, z)‖ begins to increase sharply.

There are mathematical difficulties with this scheme, because in fact a so-
lution to the minimisation problem is not guaranteed to exist if z is not
on ∂D. To avoid these problems, a modified scheme has been proposed,
which factorises the operator F using self-adjoint operators defined on ∂D
(‘factorisation method’, Kirsch 1998). Other modified schemes are also in
use.
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6.3 Inverse scattering in the Born approximation

6.3 Inverse scattering in the Born approximation

When the scattering is sufficiently weak, the inverse scattering problem can
be linearised and solved using the first Born (or Rytov) approximation (see
Chapter 3, were these approximations are introduced for the direct scattering
problem). In this case, the (known) scattered field is written as the first
Born (or Rytov) solution of the direct scattering problem, then the Fourier
transform of the scattered field is related to the Fourier transform of the
‘scattering potential’ of the object, or medium, thus formally solving the
inverse problem.
We shall consider first the Born approximation. We recall (see Chapter
3) that, given some inhomogeneity with refractive index n(r), and a non-
scattering background with refractive index 1, the the total field satisfies

∇2ψ + k2(r)ψ = 0 , (6.33)

where
k(r) = k0n(r) = k0(1 + nδ(r)) , (6.34)

We shall assume nδ(r) ≪ 1. Substituting k0n(r) into (6.33) we get:

∇2ψ + k2
0(r)ψ = −k2

0(n
2(r) − 1)ψ ≡ −V (r)ψ , (6.35)

and the scattered field is then given by

ψs(r) =

∫

G(r − r′)[V (r′)ψ(r′)]dr′ . (6.36)

The total field is then given by

ψ = ψi(r) +

∫

G(r − r′)[V (r′)ψ(r′)]dr′ , (6.37)

and the scattered field can be approximated first Born approximation by

ψs(r) =

∫

G(r − r′)[V (r′)ψi(r
′)]dr′ , (6.38)

Here G(r − r′) is the free space Green’s function in 3 dimension, i.e.

G(r − r′) =
eik0r

r
. (6.39)

We shall now use the following representation for

eik0r

r
:
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6.3 Inverse scattering in the Born approximation

(see, e.g. Banos 1966, Wolf 1969):

G(r − r′) =
ik0

2π

∫ ∫ ∞

−∞

1

m
eik0[p(x−x′)+q(y−y′)+m(z−z′)]dpdq , (6.40)

where:

m = (1 − p2 − q2)1/2 when (p2 + q2) < 1 (6.41)

m = i(p2 + q2 − 1)1/2 when (p2 + q2) > 1 (6.42)

If we now substitute this expression for the Green’s function into equation
(6.38), we obtain:

ψs(r) =

∫ ∫ ∞

−∞
A(±)(p, q; p0, q0)e

ik0(px+qy±mz)dpdq , (6.43)

where

A(±)(p, q; p0, q0) = − ik0

8π2m

∫

V r′eik0[(p−p0)x′+(q−q0)±(m−m0)z′]dr′ . (6.44)

Here, the upper sign(+) applies in the region R+ where z − z′ > 0, and the
lower one (-) in the region R− where z − z′ < 0. Equation (6.43) represents
the scattered field as an angular spectrum of plane waves, and the spectral
amplitude function A(±)(p, q; p0, q0) is expressed in term of the scattering
potential by (6.44). For homogeneous waves, i.e. when m is real, we obtain
the relation:

A(±)(p, q; p0, q0) = − ik0

8π2m
F̂ [k0[(p − p0), k0(q − q0), k0 ± (m − m0)] , (6.45)

where F̂ is the Fourier inverse of F :

F̂ (u, v, w) =
1

(2π)3

∫

F (x, y, z, )eik0(ux+vy+wz)dxdydz . (6.46)

Consider now the scattered field ψs in two fixed planes z = z+ and z = z−,
situated respectively in R+ and R− .

Now, by taking the inverse Fourier transform of (6.43), with z at the fixed
values z+ and z−, we obtain

A(±)(p, q; p0, q0) = k2
0e

∓ik0mz±ψ̂s(k0p, k0q, z
±) , (6.47)

where

ψ̂s(u, v, z±) =
1

(2π)2

∫ ∫ ∞

−∞
e−i(ux+vy)dxdy (6.48)

Part III - Waves 94 O.Rath-Spivack@damtp.cam.ac.uk



C
op

yr
ig

ht
 ©

 2
00

9 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

6.3 Inverse scattering in the Born approximation

is the inverse Fourier transform of ψs with respect to the variables x and y.
Now, comparing (6.47) and (6.47), and using m = (1− p2 − q2)1/2, we obtain

V̂ (u′, v′, w′±) =
iw

π
e∓iwz±ψ̂s(u, v, w±) , (6.49)

where

u′ = u − k0p0

v′ = v − k0q0 (6.50)

w′ = ±w − k0m0

and
w = (k2

0 − u2 − v2)1/2 . (6.51)

Equation (6.49) shows that some of the three-dimensional Fourier compo-
nents of the scattering potential v, and therefore the unknown refractive
index, can be immediately determined by the two-dimensional components
of the scattered field in the two planes z = z+ and z = z−.

Note that (6.49) is valid only for those two-dimensional Fourier components of
ψ̂s and ψs about which the information is carried by homogeneous waves, i.e.
those for which u2+v2 ≤ k2

0. In general, it is impossible to reconstruct inverse
data associated with the high spectral components for which the information
is carried by evanescent waves, because these waves decay very rapidly from
the scatterer and do not contribute to the far field. This limitation arises
because the problem is ill-posed.
We saw earlier that one way to obviate the limitations caused by ill-posedness
is to use the Tikhonov (or other) regularization. In this case then, if we
represent by A the integral operator in (6.38):

AV (r) =

∫

G(r − r′)V (r′)ψi(r
′)dr′ , (6.52)

then the problem we need to solve is

d = AV (r) (6.53)

where d is the vector of the scattered field measurements. This can be
regularised by minimising the Tikhonov functional

Jα =‖ AV (r) − d ‖2 +α ‖ x ‖2 (6.54)

with the penalty parameter α usually chosen based on knowledge of the noise
level.
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6.3 Inverse scattering in the Born approximation

Using the first Born approximation for the inverse scattering problem reduces
the non-linear inverse problem to a completely linear one.
We can retain some non-linearity either by adding higher order terms in
the Born approximation, or by using the distorted-wave Born approxi-

mation (DWBA). In the DWBA, instead of approximating the ‘zero order’
solution with the incident field as in the first Born illustrated above, we start
with a perturbed field, in other words, instead of writing the refraction index
as

n(r) = 1 + nδ , (6.55)

we write
n2(r) = n2

0(r) + ǫn1 + ǫ2n2 + . . . (6.56)

The DWBA then is obtained by seeking a solution of the Helmholtz equation
(6.33) in the form:

ψ(r) = ψ0(r) + ǫψ1(r) + . . . (6.57)

The solution terms in this series can be computed by solving:

(∇2 + k2
0n

2
0r)ψ0 = 0

(∇2 + k2
0n

2
0r)ψ1 = −k2

0n1ψ0

(∇2 + k2
0n

2
0r)ψ2 = −k2

0n2ψ0 − k2
0n1ψ1

. . . (6.58)

So the integral equation corresponding to (6.38) is now:

ψs(r) =

∫

G(k)(r − r′)[V (r′)ψi(r
′)]dr′ , (6.59)

and G(k)(r−r′) is not the free space Green’s function any more. If n2
0(r) = 1,

then the DWBA coincides with the Born approximation. In the DWBA it is
also possible of course to go to higher terms and include more iterations.
It should be noted, though, that in general, if the measured data is contam-
inated with noise, so that the actual total field ψa is:

ψa(r) = ψ(r) + ∆(r) , (6.60)

where ∆(r) is the noise, then

ψs(r) = ψ(r) − ψi(r) + ∆(r) . (6.61)

Hence, as successive iterations improve on ψi(r) so that it is closer to ψ(r),
ψs(r) is swamped by noise. Other variants of the Born iterative method are
more robust and also less time-consuming, especially in higher dimensions.
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