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Chapter 1

Matrices, Determinants,
Eigenvalues and Eigenvectors
and all that

1.1 Matrices and their properties

1.1.1 Matrices

Systems of Linear Equations

At many occasions in physics and mathematics, systems of linear equations
emerge. These are, in general, m equations for n unknowns, i.e.

a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

...
...

. . .
...

...
am1x1 + am2x2 + . . . + amnxn = bm .

(1.1)

Introducing the matrix Âwithm rows, one for each equation, and n columns,
one for each unknown,

Â =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn ,

⎞
⎟⎟⎟⎠ (1.2)
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and the n-component vectors �x and �b, allows to represent equation systems
of this type like

Â�x = �b . (1.3)

Alternatively, the same set of equations can also be written as

n∑
k=1

alkxk =

n∑
k=1

xkalk = bl , (1.4)

where l ∈ [1, m]. Using Einsteins convention of summing over re-
peated indices this can be written as

alkxk = xkalk = bl . (1.5)

In the case considered here, a matrix with n columns and m rows, the matrix
is said to be of type (m, n) or just a (m, n)-matrix. The entries aij are
called the elements of the matrix. In the notation here, the first index
of the elements (i) denotes the row, whereas the second one (j) denotes
the column. Clearly, if there are more unknowns than equations, n > m
the system is under-determined. If, in contrast, m > n, the system is
over-determined and it is possible that no solution can be constructed. In
general, in this case the presence of viable solutions indicates that pairs of
rows are multiples of each other or that one row can be re-expressed through
a sum of other rows. In other words, in such a case, the rows are not linearly
independent. If m = n, the matrix is called quadratic of order n, and in
the general case of linearly independent rows and columns, a solution can
uniquely be found. If all entries aij with i �= j are zero, and entries with
i = j are non-zero, the matrix is called diagonal, and a solution is simple.
If such a diagonal matrix has all diagonal entries equal to one, i.e. aij = δij ,
it is called the unit matrix, often denoted by 1.
A standard method to solve such a system is called Gauss elimination. In
this method, basically the first row/equation is employed to eliminate the
first unknown, the (potentially altered) second row/equation is used for the
second unknown and so on. Thereby, the allowed operations here are:

• Interchanging two rows;

• Multiplying/dividing a row with/by a constant;
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• Adding and/or subtracting multiples of two rows.

Example:

• To see how this works, consider the three equations

2x − z = 2
6x + 5y + 3z = 7
2x − y = 4 .

(1.6)

To alleviate things, in a first step the first two rows are interchanged,
leaving

2x − z = 2
2x − y = 4
6x + 5y + 3z = 7 .

(1.7)

Eliminating the first unknown with the first equation implies subtract-
ing the first equation from the second, and subtracting three times the
first equation from the third, yielding

−y + z = 2
5y + 6z = 1 .

(1.8)

The second unknown is eliminated by adding five times the first row of
the emerging system to the second one, such that

11z = 11 and z = 1 . (1.9)

Reinserting then gives y = −1 and x = 3/2.

Properties of matrices

Matrices, such as Â in the previous section, allow a number of operations,
which will be briefly listed here:
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• Transposition:
A matrix can be transposed by interchanging rows and columns, i.e.

ÂT = {aij}T = {aji} . (1.10)

If ÂT = Â the matrix is called symmetric, if ÂT = −Â the matrix is
antisymmetric.

• Adjoint Matrix:
Given a matrix Â with complex elements, its adjoint matrix Â† is given
by transposing it and complex conjugation of each element:

Â† = {aij}† =
{
a∗ji

}
. (1.11)

Matrices which satisfy

Â† = Â (1.12)

are called Hermitian or self-adjoint. Such matrices play a central
role in Quantum Mechanics, because their eigenvalues (see below) are
guaranteed to be real. Also, their diagonal elements are real numbers.

• Addition:
Two matrices are added to yield another matrix,

Â + B̂ = Ĉ , (1.13)

where the elements of Ĉ are given by

cij = aij + bij . (1.14)

This obviously assumes that all three matrices are of the same type,
i.e. have the same number of rows and columns.

• Multiplication with a number:
A matrix can be multiplied by a number by multiplying each element
with this number:

cÂ = Âc = Ĉ = {cij} = {caij} . (1.15)
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• Multiplication:
Two matrices are multiplied to yield another matrix,

ÂB̂ = Ĉ , (1.16)

where the elements of Ĉ are given by

cij = aikbkj = bkjaik , (1.17)

i.e. to obtain the elements in the ith row and the jth column of Ĉ,
the elements in the ith row of Â are multiplied one-by-one with the
elements in the jth column of B̂, and the products are summed over.
This automatically implies that if Â and B̂ are of type (n, m) and
(k, l), respectively, then m = k and Ĉ is a (n, l)-matrix.

It is quite clear from the expression above that in general

ÂB̂ = aikbkj = bkjaik �= bikakj = akjbik = B̂Â . (1.18)

• Rank:
The rank of a matrix is given by a non-negative integer number, which
is given in the following way: Consider a (n, m)-matrix and take the
columns as vectors of dimension m. The rank of the matrix is then
given by the maximal number of linearly independent vectors in this
set. The rank of a matrix does not change under:

– permutation of the columns,

– multiplication of a column with any number c �= 0,

– addition of an arbitrary multiple of one row to any other row,

– transposition of the matrix,

– and, hence, permutation of the rows.

In addition, there are some properties which are defined for quadratic matri-
ces only:

• Trace:
The trace of a matrix is defined as the sum of its diagonal elements:

Tr(Â) = aii . (1.19)
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• Inverse:
The inverse of a matrix Â, Â−1, is defined such that

ÂÂ−1 = Â−1Â = 1 (1.20)

or, in components,

aija
−1
jk = δik . (1.21)

• Determinant:
See next section.

More complicated properties

Having defined the inverse and transposed (Hermitian conjugate) of a matrix
it is worth to state a few more important properties:

(ÂB̂)−1 = B̂−1Â−1 (1.22)

and

(ÂB̂)T = B̂T ÂT

(ÂB̂)† = B̂†Â† . (1.23)

In order to see this, let us start with the transposed:

(ÂB̂)T = (aijbjk)ki = ajibkj = bTjka
T
ji = B̂T ÂT . (1.24)

For the inverse consider the product

1 = (ÂB̂)−1(ÂB̂) = B̂−1Â−1ÂB̂ = B̂−1B̂ = 1 . (1.25)

1.1.2 Determinants

Definition

One of the most important properties of a quadratic matrix is its determi-
nant, a well-defined, unique real or complex number. It is denoted by

det(Â) = |Â| =

∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣∣∣∣∣∣∣∣∣
=
∑
Π

(−1)j(Π) a1i1a2i2 . . . anin .

(1.26)
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Here, the sum stretches over all n! possible permutations Π of the numbers
1 to n, and j(Π) is the sign of the respective permutation. In practise this
implies that each product consists of n elements in such a way that it contains
exactly one elements per row and column.
To underline this, just think of any matrix as being related to a “checker-
board” of the same size filled with + or − signs,⎛

⎜⎜⎜⎝
+ − + . . .
− + − . . .
+ − + . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠ . (1.27)

For calculating the determinant of a n×n-matrix, all possible combinations
must be summed of products with n matrix element, such that each prod-
uct contains exactly one matrix element per column and row. The overall
sign of such a product is then determined by the sign of the corresponding
checkerboard entries, which are all identical.

Example:

•

det

(
a b
c d

)
=

∣∣∣∣ a b
c d

∣∣∣∣ = ad− bc . (1.28)

Properties

Before discussing how a determinant can be calculated using the method of
Laplace, the properties of determinants will briefly be listed:

• Permutation of rows or columns does not change the absolute value
of the determinant but only its sign;

• multiplying a row by a number results in multiplying the determinant
with the same number;

• adding a multiple of one row to another row does not change the de-
terminant;
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• the determinant is zero if the rows are not linearly independent;

• the determinant is invariant under transposition.

There is yet another important property namely the behavior of the deter-
minant under multiplication:

det(ÂB̂) = det(Â)det(B̂) . (1.29)

This implies, in particular,

det(ÂÂ−1) = det(1) = det(Â)det(Â−1) (1.30)

and thus

det(Â−1) =
1

det(Â)
. (1.31)

Calculating determinants

In principle, determinants of 2×2- or 3×3-matrices can be calculated straight-
forwardly: ∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21 (1.32)

and∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23

a32 a33

∣∣∣∣ + a12

∣∣∣∣ a23 a21

a33 a31

∣∣∣∣ + a13

∣∣∣∣ a21 a22

a31 a32

∣∣∣∣
= a11[a22a33 − a32a23] + a12[a23a31 − a21a33] + a13[a21a32 − a31a22] .

(1.33)

In the calculation of the latter determinant, Laplace’s method already has
been indicated. The idea here is to use either a row or column (in the case
shown here, it was the first row) of an n× n-matrix, and to multiply each of
these elements with the determinant of the (n−1)× (n−1)-submatrix which
forms when ignoring the row and column of this element in the original ma-
trix. The determinant of this submatrix is sometimes denoted as the adjoint
of the element aij , denoted by Aij . This method is called development
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of the determinant according to the mth row or column, formally
speaking

detÂ =
∑
j

aijAij =
∑
i

aijAij , (1.34)

where the index i (j) is fixed to the row (column) in question.

Example:

• ∣∣∣∣∣∣
1 −5 2
7 3 4
2 1 5

∣∣∣∣∣∣ = 2

∣∣∣∣ 7 3
2 1

∣∣∣∣− 4

∣∣∣∣ 1 −5
2 1

∣∣∣∣ + 5

∣∣∣∣ 1 −5
7 3

∣∣∣∣
= 2 · 1 − 4 · 11 + 5 · 38 = 148 . (1.35)

• ∣∣∣∣∣∣∣∣
2 9 9 4
2 −3 12 8
4 8 3 −5
1 2 6 4

∣∣∣∣∣∣∣∣
c2→c2−c3+c4=

∣∣∣∣∣∣∣∣
2 4 9 4
2 −7 12 8
4 0 3 −5
1 0 6 4

∣∣∣∣∣∣∣∣
c3→c3/3

= 3

∣∣∣∣∣∣∣∣
2 4 3 4
2 −7 4 8
4 0 1 −5
1 0 2 4

∣∣∣∣∣∣∣∣
c1↔c2= −3

∣∣∣∣∣∣∣∣
4 2 3 4
−7 2 4 8
0 4 1 −5
0 1 2 4

∣∣∣∣∣∣∣∣
= −3

⎧⎨
⎩4

∣∣∣∣∣∣
2 4 8
4 1 −5
1 2 4

∣∣∣∣∣∣− (−7)

∣∣∣∣∣∣
2 3 4
4 1 −5
1 2 4

∣∣∣∣∣∣− 0 + 0

⎫⎬
⎭

= −3

⎧⎨
⎩4 · 0 + 7

∣∣∣∣∣∣
2 3 4
4 1 −5
1 2 4

∣∣∣∣∣∣
⎫⎬
⎭ r1→r1−r3= −21

∣∣∣∣∣∣
1 1 0
4 1 −5
1 2 4

∣∣∣∣∣∣
= −21

∣∣∣∣ 1 −5
2 4

∣∣∣∣ + 21

∣∣∣∣ 4 −5
1 4

∣∣∣∣
= −21(4 + 10) − 21(−5 − 16) = 147 . (1.36)
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Calculating the inverse of a matrix

The inverse of a matrix is defined through

ÂÂ−1 = 1 or aija
−1
jk = δik . (1.37)

For the determination of the inverse of a n × n-matrix, there are actually
three methods, which are related to each other:

1. Direct calculation:
The school book method is to calculate it directly through

Â−1 =
1

detÂ

⎛
⎜⎜⎜⎝

A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...
An1 An2 . . . Ann

⎞
⎟⎟⎟⎠
T

, (1.38)

where the Aij are the adjoints, i.e. determinants of (n − 1) × (n − 1)-
matrices.

Examples:

• 2 × 2-matrix:(
3 1
4 2

)−1

=
1

2

(
2 −4
−1 3

)T

=
1

2

(
2 −1
−4 3

)
. (1.39)

Obviously(
3 1
4 2

)
· 1

2

(
2 −1
−4 3

)
=

1

2

(
2 0
0 2

)
= 1 . (1.40)

• 3 × 3-matrix:⎛
⎝ 3 2 1

1 0 2
4 1 3

⎞
⎠

−1

=
1

5

⎛
⎝ −2 −5 4

5 5 −5
1 5 −2

⎞
⎠ . (1.41)
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2. Solving a system of linear equations:
Going back to the definition,

ÂX̂ = ÂÂ−1 = 1 (1.42)

it is clear that for the n2 entries of the unknown matrix X̂ (which is
supposed to become the inverse Â−1) there are n2 systems of linear
equations. Solving them yields the desired result.

3. “Back of the envelope” for small matrices:
This method is also known as Gauss-Jordan method. The idea here
is to have the original matrix and the unit matrix of the same size next
to each other, say, the original matrix to the left and the unit matrix
to the right. Then, on both matrices an identical series of steps is
performed such that the original matrix is manipulated such that the
unit matrix results. This is exemplified in Tab. 1.1.

At this point it should be stressed that in general the existence of the inverse
of a matrix is not guaranteed. This can be seen directly from the occurrence
of the determinant in the denominator in the first calculation method. It
also shows under which circumstances an inverse does not exist, namely if
the rank of the matrix is smaller than its actual dimension.

1.1.3 Solving systems of linear equations

This allows for the solution of systems of linear equations, i.e. of

Â�x = �b or aijxj = bi . (1.43)

If all elements of�b equal zero, bi = 0 then this is called a homogeneous system
of linear equations.

Behavior of the solutions

A number of points are worth noting:

1. If the system Â�x = �b is homogeneous, bi = 0, then there always is
a trivial solution, namely the null vector, i.e. xi = 0. The relevant
question therefore is whether there are other, non-trivial solutions.
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Example:⎛
⎝ 3 2 1

1 0 2
4 1 3

⎞
⎠

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠ exchange 1st and 2nd row

⎛
⎝ 1 0 2

3 2 1
4 1 3

⎞
⎠

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ subtract multiples of 1st row

⎛
⎝ 1 0 2

0 2 −5
0 1 −5

⎞
⎠

⎛
⎝ 0 1 0

1 −3 0
0 −4 1

⎞
⎠ subtract 3rd row from 2nd row

⎛
⎝ 1 0 2

0 1 0
0 1 −5

⎞
⎠

⎛
⎝ 0 1 0

1 1 −1
0 −4 1

⎞
⎠ subtract 2nd row from 3rd row

⎛
⎝ 1 0 2

0 1 0
0 0 −5

⎞
⎠

⎛
⎝ 0 1 0

1 1 −1
−1 −5 2

⎞
⎠ divide 3rd row by −5

⎛
⎝ 1 0 2

0 1 0
0 0 1

⎞
⎠

⎛
⎝ 0 1 0

1 1 −1
1/5 1 −2/5

⎞
⎠ subtract twice 3rd row

⎛
⎝ 1 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝ −2/5 −1 4/5

1 1 −1
1/5 1 −2/5

⎞
⎠

Table 1.1: ”Back of the envelope”-inversion of a matrix.
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2. If �x1 and �x2 are linearly independent solutions of the homogeneous
problem, then any linear combination of them is a solution of the ho-
mogeneous problem. This follows directly from the linearity.

3. If �xi is a solution of the inhomogeneous problem and �xh is a linearly
independent solution of the homogeneous problem, then any linear com-
bination of �xi and �xh is a solution of the inhomogeneous problem. This
follows directly from the linearity.

Let us consider the case where Â is quadratic. Then, obviously, multiplying
with Â−1 from the right yields

Â−1Â�x = �x = Â−1�b (1.44)

or

a−1
ij ajkxk = δikxk = xi = a−1

ij bj . (1.45)

In case the inverse of Â exists, the solution is unambiguous. This is obviously
not the case, if detÂ = 0 - in this case not all rows and columns of the matrix
are linearly independent, and therefore the system is under-determined.

Cramer’s rule

Another way to solve a system of n equations for n unknowns is based on
determinants and known as Cramer’s rule. Although, in principle, row reduc-
tion is superior in terms of calculation steps for matrices explicitly consisting
of numbers, Cramer’s method may be advantageous if the matrix elements
are not numerical but, e.g., functions. To see how this method works, how-
ever, numerical examples are best-suited. Therefore, consider the simplest
case, two equations for two unknowns

a11x1 + a12x2 = b1 (1.46)

a21x1 + a22x2 = b2 . (1.47)

Multiplying the first row by a22 and the second one by a12 and subtracting
both yields

x1 =
b1a22 − b2a12

a11a22 − a21a12
, (1.48)
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and, similarly,

x2 =
b2a11 − b1a21

a11a22 − a21a12
. (1.49)

Obviously, this is a viable solution only, if the denominator in both cases is
different from zero. This can be cast into

x1 =

∣∣∣∣ b1 a12

b2 a22

∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
, x2 =

∣∣∣∣ a11 b1
a21 b2

∣∣∣∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣
. (1.50)

The recipe which determinants to take for this and the general case reads as
follows: Take the matrix of the coefficients, Â. Its determinant in all cases
yields the denominator. For the solution of xm, replace the mth column of
Â, the aim with the inhomogeneous coefficients bi and form the determinant
of this new matrix. It yields the numerator.

1.2 Eigenvalues and Eigenvectors

1.2.1 Similarity Transformations

Linear Transformations of vectors

Consider the effect of a matrix Â on a vector �x: When correctly multiplied,
a new vector �x′ emerges, i.e.

aijxj = x′i (1.51)

or

�x′ = φ(�x) = Â�x . (1.52)

Clearly, the transformation law φ here has the following properties:

φ(�x+ �y) = Â�x+ Â�y = φ(�x) + φ(�y) (1.53)

and

φ(λ�x) = Â(λ�x) = λÂ�x , (1.54)
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where λ is a real number. These are exactly the properties of a linear trans-
formation, see below.
In general, linear transformations of a n-dimensional vector, where n may
be infinite, can be represented by n × n matrices. The result of such a
transformation is then obtained by multiplying the vector and the matrix (in
Quantum Mechanics the lingo will be that an operator acts on a vector).
To be more specific and, in fact, more intuitive, consider vectors of dimension
3 only, which can be used to specify, e.g., the position or momentum of a
particle or similar. The norm of such a three-vector is given by

||�x|| =
√
�x2 =

√
�x · �x =

√
xixi =

√
x2
i =

√
x2

1 + x2
2 + x2

3 . (1.55)

Clearly, the norm of such a vector is then identical to its length.

Orthogonal and unitary transformations

Linear transformations, acting on a real vector space, that leave the norm of a
vector unchanged are called Orthogonal Transformations. Such matrices
with real elements which represent transformations of real vectors that leave
the norm invariant, i.e.

�x′ · �x′ = x′i
T
x′i = (Aijxj)

T (Aikxk) = xjAjiAikxk = xixi (1.56)

have the following important property:

xjAjiAikxk = xixi =⇒ AjiAik = δjk =⇒ AT = A−1 . (1.57)

This, in fact, holds true for all orthogonal transformations.
Another important case occurs, if the transformations act on complex vector
spaces, such as Cn. In this case, the norm of a vector is defined through

|�v|2 =
n∑
i=1

|ai|2 = aia
∗
i , (1.58)

where the asterisk denotes complex conjugation. In this case, the transforma-
tions that leave the norm invariant are called Unitary Transformations,
and the corresponding matrices have the property

M̂ † = M̂−1 . (1.59)
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In both case, however, linear transformations which leave the norm of vectors
invariant have a determinant equal to ±1.

Example:
As an example, consider for a moment rotations of this vector, clearly leaving
its length unchanged and merely altering the direction. Such an operation
can be interpreted in two ways: Either the vector actually rotated and the
axes remained fixed, or the vector remained fixed, whereas the axes rotated
(in the other direction). So, it should not come as a surprise that the norm
of vectors remains unchanged.
As an example consider counterclockwise rotations by an angle φ around the
z-axis. Such transformations are mediated by matrices of the form

T̂φ =

⎛
⎝ cosφ − sinφ 0

sin φ cos φ 0
0 0 1

⎞
⎠ . (1.60)

It is simple to check that indeed T Tφ = T−1
φ and that detT̂φ = 1.

As a side-product, consider two subsequent rotations around the angles φ
and ψ around the z-axis. It is well-known that for sequences of rotations
around the same axis, the angles just add up, such that

T̂φ+ψ =

⎛
⎝ cos(φ+ ψ) − sin(φ+ ψ) 0

sin(φ+ ψ) cos(φ+ ψ) 0
0 0 1

⎞
⎠

= T̂φTψ =

⎛
⎝ cosφ − sinφ 0

sin φ cosφ 0
0 0 1

⎞
⎠
⎛
⎝ cosψ − sinψ 0

sinψ cosψ 0
0 0 1

⎞
⎠

=

⎛
⎝ cosφ cosψ − sin φ sinψ − cos φ sinψ − sinφ cosψ 0

sin φ cosψ + cosφ sinψ − sin φ sinψ + cos φ cosψ 0
0 0 1

⎞
⎠
(1.61)

From this, some trigonometric relations are readily identified, namely

cos(φ+ ψ) = cosφ cosψ − sinφ sinψ

sin(φ+ ψ) = sinφ cosψ + cosφ sinψ . (1.62)
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Properties of orthogonal and unitary matrices

One of the more interesting properties of orthogonal matrices is that multiply-
ing two of them again yields an orthogonal matrix. Consider two orthogonal
matrices Ô1 and Ô2 and their product (Ô1Ô2). Clearly,

1 =
(
Ô1Ô2

)(
Ô1Ô2

)−1

= Ô1Ô2Ô
−1
2 Ô−1

1 . (1.63)

Inserting that for orthogonal matrices ÔT = Ô−1 then yields

1 = Ô1Ô2Ô
T
2 Ô

T
1 =

(
Ô1Ô2

)(
Ô1Ô2

)T
, (1.64)

where Eq. (1.23) has been used. Therefore,

(
Ô1Ô2

)−1

=
(
Ô1Ô2

)T
, (1.65)

as advertised.
Similarly, it can be shown that the product of two unitary matrices again is
unitary. To this end, assume to unitary matrices Û1 and Û2. Obviously,

1 =
(
Û1Û2

)(
Û1Û2

)−1

= Û1Û2Û
−1
2 Û−1

1 = Û1Û2Û
†
2 Û

†
1 . (1.66)

Here the fact that for unitary matrices Û † = Û−1 has been used. Since
adjoint is - up to complex conjugation - nearly identical to transposition,

Û †
2 Û

†
1 =

(
Û1Û2

)†
, (1.67)

cf. Eqs. (1.23,1.24) and therefore

(
Û1Û2

)−1

=
(
Û1Û2

)†
, (1.68)

fulfilling the definition of unitary matrices.
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Group theory

Using the findings above, it is quite simple to show that the sets of all orthog-
onal or unitary transformations, respectively, which act on the same vector
space, form a non-abelian group under multiplication. The above reasoning
shows closure, i.e. the fact the product of two such orthogonal (unitary)
transformations again yields an orthogonal (unitary) transformation. Since
they are represented by matrices, their associativity,

Â(B̂Ĉ) = (ÂB̂)Ĉ (1.69)

is simple to show. The identiy element in both cases is the unit matrix
of corresponding dimension, and the inverse are uniquely defined and again
orthogonal or unitary matrices.

Linear Transformations, general definition

Unique maps φ relating two vector spaces V and V′ are called linear maps
if they enjoy the following properties:

φ(�x+ �y) = φ(�x) + φ(�y) ∀ �x, �y ∈ V ; (1.70)

and

φ(λ�x) = λφ(�x) ∀ �x ∈ V and ∀ real numbers λ . (1.71)

If, in addition, for a linear map φ the two vector spaces V and V′ are iden-
tical, V = V′ then the map is called Linear Transformation or Linear
Operator.

Examples:

• The map φ(x1, x2, x3) = (x1, x2), connecting the R3 with the R2 is
linear. But the vector spaces are not identical, therefore, this is not a
linear transformation.

• The map φ(x1, x2, x3) = (x1, 1), connecting the R3 with the R2 is not
linear, because

φ(�x+ �y) = (x1 + y1, 1) �= (x1, 1) + (y + 1, 1) = (x1 + y1, 2) . (1.72)
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From the properties above, it is clear that linear maps φ can be represented
by matrices:
If dim(V) = m and dim(V′) = n the matrix has dimensions n×m. In order
to see why a matrix is a good representation, it suffices to convince yourself
that each vector �x ∈ V can be written as a linear combination of the base
vectors of V:

�v =

m∑
i=1

ai�e
(V)
i (1.73)

and thus the essence of the linear transformation is in the information of how
the base vectors of V transform under φ. This representation is not quite
unique: Each map V → V′ is represented by a set of matrices, one per com-
bination of base vectors. The specific matrix then emerges in the following
way: The kth column of the matrix T̂ is given by the (n-dimensional) vector
in V′ emerging as a result of φ acting on the kth base vector of V:

tik = [φ(�e
(V)
k ]i = [T̂�e

(V)
k ]i . (1.74)

Thus, switching from one set of base vectors to another base set changes the
matrix T̂ representing φ.
However, a pair of matrices representing the same transformation but for
different choices of base vectors is called equivalent. Formally speaking, a
change of base can be realized by another linear transformation, represented
by a matrix Ŝ. Thus,

T̂B̄ = Ŝ−1
B→B̄

T̂BŜB→B̄ , (1.75)

where the old and new set of bases B and B̄ have been made explicit. Such
a transformation is called a Similarity Transformation.
It can be shown that such a similarity transformation leaves both the
determinant and the trace of a matrix invariant.

1.2.2 Eigenvalues and eigenvectors

Definition

Eigenvalues �λ(i) and eigenvectors λ(i) of a quadratic matrix Â are defined by

Â�λ(i) = λ(i)�λ(i) . (1.76)
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In other words: Eigenvectors are those vectors, which, when being subjected
to a matrix Â yield a multiple of themselves, where the multiple is the cor-
responding eigenvalue.
It is important to stress here that, if �λ(i) is an eigenvector, then also any
multiple c�λ(i) with c ∈ R is an eigenvector.
The equation above can also be written as

(Â− λ(i)1)�λ(i) = 0

(akl − λ(i)δkl)λ
(i)
l = 0 . (1.77)

This is a linear equation for each i. Solving it through determinants by
Cramer’s rule would yield only the trivial solution, λ

(i)
m = 0, unless the de-

terminant of the coefficients was equal to zero,

det(Â− λ(i)1) = 0 . (1.78)

In this case, the individual solutions would expressions of the type 0/0. How-
ever, in this case, the rows of the new matrix Â − λ(i)1 are not linearly in-
dependent, resulting in infinitely many solutions for each value λ(i) - which
is the desired result, since, if any vector is an eigenvector than also real
multiples of this vector is an eigenvector.
However, Eq. (1.78) often is called the characteristic equation for Â.

Examples:

• Consider

Â�λ(i) =

(
5 −2
−2 2

)(
x
y

)
= λ(i)

(
x
y

)
= λ(i)�λ(i) . (1.79)

Solutions for the eigenvalues are obtained by solving

det(Â− λ(i)1) =

∣∣∣∣ 5 − λ −2
−2 2 − λ

∣∣∣∣ = λ2 − 7λ+ 6 = 0 . (1.80)

Hence,

λ(1,2) =
7 ±√

49 − 24

2
=

7 ± 5

2
(1.81)

or

λ(1) = 6 and λ(2) = 1 . (1.82)
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This fixes the eigenvalues. In order to fix the eigenvectors, the following
two systems of linear equations must be solved

5x(1) − 2y(1) = 6x(1) 5x(2) − 2y(2) = x(2)

−2x(1) + 2y(1) = 6y(1) −2x(2) + 2y(2) = y(2) (1.83)

for (x(1,2), y(1,2)). Sets of solutions are given by one equation in each
case, namely

−x(1) = 2y(1) and 2x(2) = y(2) . (1.84)

This shows that the eigenvectors are multiples of

�λ(1) =
1√
5

( −2
1

)
and �λ(2) =

1√
5

(
1
2

)
, (1.85)

where a the vectors have already been normalized to unit length.

In order to diagonalise the matrix, build a transformation matrix T̂
from the eigenvectors and its inverse,

T̂ =
(
�λ(1) �λ(2)

)
=

1√
5

( −2 1
1 2

)
and T̂−1 =

1√
5

( −2 1
1 2

)
.(1.86)

Then

T̂−1M̂T̂ = · · · =

(
6 0
0 1

)
=

(
λ(1) 0
0 λ(2)

)
, (1.87)

as anticipated.

• As a 3-dimensional example consider the rotation matrix of the example
above,

T̂φ =

⎛
⎝ cosφ − sinφ 0

sin φ cos φ 0
0 0 1

⎞
⎠ . (1.88)

There the characteristic equation reads

0 = (cos φ− λ)2(1 − λ) + sin2 φ(1 − λ)

= (1 − λ)(1 − 2 cosφλ+ λ2) (1.89)
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leading to

λ(1) = 1 (1.90)

with

�λ(1) = �ez (1.91)

and

λ(2,3) = cosφ±
√

cos2 φ− 1 = cos φ± i sinφ . (1.92)

The occurrence of complex numbers is slightly disturbing here, but, of
course, this may happen. It should be noted that in this case usually
also the eigenvectors become complex.

Diagonalizing a matrix

In the most general case, a matrix M̂ may be diagonalized by invoking a
linear transformation represented by a matrix T̂ such that

T̂−1M̂T̂ = D̂ , (1.93)

where D̂ has diagonal form. The question is how the transformation matrix
and the diagonal matrix can be determined. To this end, write the equations
determining the n eigenvalues and eigenvectors in matrix form,

M̂

⎛
⎜⎜⎜⎝

λ
(1)
1 λ

(2)
1 . . . λ

(n)
1

λ
(1)
2 λ

(2)
2 . . . λ

(n)
2

...
...

. . .
...

λ
(1)
n λ

(2)
n . . . λ

(n)
n

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

λ
(1)
1 λ

(2)
1 . . . λ

(n)
1

λ
(1)
2 λ

(2)
2 . . . λ

(n)
2

...
...

. . .
...

λ
(1)
n λ

(2)
n . . . λ

(n)
n

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

λ(1) 0 . . . 0
0 λ(2) . . . 0
...

...
. . .

...
0 0 . . . λ(n)

⎞
⎟⎟⎟⎠ . (1.94)
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Simple inspection shows that T̂ can be constructed as a matrix, where the
columns are formed by the eigenvectors of M̂ , and D̂ is a diagonal matrix
with the eigenvalues as diagonal elements,

T̂ =
(
�λ(1) �λ(2) . . . �λ(n)

)
⎛
⎜⎜⎜⎝

λ
(1)
1 λ

(2)
1 . . . λ

(n)
1

λ
(1)
2 λ

(2)
2 . . . λ

(n)
2

...
...

. . .
...

λ
(1)
n λ

(2)
n . . . λ

(n)
n

⎞
⎟⎟⎟⎠ and D̂ =

⎛
⎜⎜⎜⎝

λ(1) 0 . . . 0
0 λ(2) . . . 0
...

...
. . .

...
0 0 . . . λ(n)

⎞
⎟⎟⎟⎠ .(1.95)

Example:

• In order to see how this works, take one of the previous examples, cf.
Eq. (1.83):

5x(1) − 2y(1) = 6x(1) 5x(2) − 2y(2) = x(2)

−2x(1) + 2y(1) = 6y(1) −2x(2) + 2y(2) = y(2) ,
(1.96)

which can be written as one matrix equation, namely(
5 −2
−2 2

)(
x1 x2

y1 y2

)
=

(
x1 x2

y1 y2

)(
1 0
0 6

)
. (1.97)

Clearly, multiplying from the left with a suitable inverse,(
x1 x2

y1 y2

)−1 (
5 −2
−2 2

)(
x1 x2

y1 y2

)

=

(
x1 x2

y1 y2

)−1 (
x1 x2

y1 y2

)(
1 0
0 6

)
=

(
1 0
0 6

)
(1.98)

yields the similarity transformation that transforms the original matrix
into a diagonal from with the eigenvalues on the diagonal.

In general, arbitrary n × n matrices Â, may be brought into diagonal form
by a similarity transformation

Ŝ−1ÂŜ = Âdiag. , (1.99)
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where the matrix Ŝ corresponding to the similarity transformation is just
given by the matrix whose rows are given by the eigenvectors of the original
matrix Â and the diagonal matrix is determined by the eigenvalues of Â. It
must be stressed, however, that it is not guaranteed that any matrix Â may
be diagonalized.
In any case, once a matrix can be diagonalized, it is straightforward to see
that its determinant equals the product of its eigenvalues. In addition, due
to the properties of the similarity transformation diagonalizing the matrix,
the trace of a matrix equals the sum of its eigenvalues.

Symmetric matrices and diagonalization

In this section, it will be proved that symmetric matrices can always
be diagonalized and that eigenvectors of different eigenvalues are
always orthogonal.
Proof: Consider the eigenvalue equation Â�λ = λ�λ in component notation,

Aijλj = λλi . (1.100)

Due to the symmetry property of Â, the eigenvalue equation can also be
applied in the form

�κT Â = κ�κT or κiAij = κκj (1.101)

Multiplying the first equation from the left with �κT and the second with �λ
form the right then yields, in components

κiAijλj = λκiλi and κiAijλj = κκjλj . (1.102)

Replacing the summation over j with a summation over i on the r.h.s. of the
second equation and subtracting both equations results in

0 = κiλi(λ− κ) = �κ · �λ(λ− κ) . (1.103)

This can be zero only, if either he two eigenvalues are identical or if the two
vectors are orthogonal, proving the theorem.
It is worth noting that a similar theorem also holds true for Hermitian ma-
trices: The eigenvalues of Hermitian matrices are real, and eigenvec-
tors corresponding to different eigenvalues are orthogonal.
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Physical applications of diagonalization

• Consider a body M which is made of a material with a constant mass
density ρ. Its inertial tensor is a matrix given by

mij =

∫
M

d3rρ(�r)(r2δij − xixj) . (1.104)

This is a diagonal matrix and hence can be diagonalized. It plays an
important role in rotations.

Since the angular momentum and velocity are related by

�L = M̂�ω (1.105)

this shows that they are parallel only if they point along one of the
eigenvectors of the inertial tensor. If, in contrast, they are not parallel
to one of these vectors, in general, ω will not be constant but rather
move in some precession or similar.

• Consider next an one-dimensional system where two masses are con-
nected by one spring each to a fixed wall and by one spring with each
other. Assume the masses and the spring constants to be identical.
Then, calling the excursion from rest of the two masses by x1 and x2

the systems Lagrangian is given by

L = T − V

=
m

2
(ẋ2

1 + ẋ2
2) −

k

2
[x2 + y2 + (x− y)2] . (1.106)

This can be written ion matrix form as

L = + (ẋ1, ẋ2)

(
m/2 0

0 m/2

)(
ẋ1

ẋ2

)

− (x1, x2)

(
2k/2 −k/2
−k/2 2k/2

)(
x1

x2

)
. (1.107)

The potential can be diagonalized with the eigenvalues

λ(1) = 1 and λ(2) = 3 . (1.108)

Now, whatever the similarity transformation is that diagonalizes the
matrix of the potential, it is clear that it also leaves the matrix of the
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kinetic energy in diagonal form, since it is proportional to the unit ma-
trix. Denoting the corresponding eigenvectors by �x and �y, the equations
of motion therefore read

�̈x+ ω2�x = 0 and �̈y + 3ω2�y = 0 , (1.109)

where ω2 = k/m. This immediately leads to two oscillation modes with
different frequency. The eigenvectors are given by

�x =
1√
2
(x1 − x2) and �y =

1√
2
(x1 + x2) , (1.110)

i.e. a slow oscillations, where both masses are oscillating back and forth
in parallel, and a fast oscillation, where the two masses oscillate against
each other.

26



Chapter 2

Fourier Series

2.1 Motivation

2.1.1 Simple harmonic motion

Many problems in physics are related to oscillations/vibrations. Examples
include the pendulum or harmonic oscillators, waves of sound or light, AC
electric currents, etc.. Other phenomena, such as heat expansion, the physics
of electric and magnetic fields, are, not so obvious, described through similar
equations. In general, these equations contain a second derivative, something
like d2/dt2 for the harmonic oscillator or, in three dimensions, the Laplace
operator, ∇2. Of course, in order to refer to physical situations, such equa-
tions are supplemented with boundary conditions. More than often, however,
the best way to solve such equations is through an expansion in harmonic
functions - a Fourier expansion.
Many ideas and a good part of the terminology used in this part of the lecture
will be borrowed from the discussion of simple harmonic motion and wave
motion. Hence, to begin with, these two topics will briefly be reviewed.
Suppose a particle P moves with constant speed around a circle with radius
R in the xy-plane. At the same time, let another particle, Q, move on the
y-axis between −R and R, such that the y-coordinates of P and R coincide at
all times. Such a motion is called simple harmonic motion, as exhibited,
for instance, by a harmonic oscillator without friction.
If the angular velocity of P is ω, and if P started at ϑ(t = 0) = 0, then the
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y-coordinate of P and Q read

y(t) = R sin(ωt) , (2.1)

and the x-coordinate of P is given by

x(t) = R cos(ωt) . (2.2)

In complex coordinates, one could also write the position of P as

z(t) = x(t) + iy(t)

R exp(iωt) = R cos(ωt) + iR sin(ωt) . (2.3)

It is often worthwhile to use the complex notation also for Q, understanding
that only the real or imaginary component are relevant for the discussion of
its motion.
In any case, the velocity of Q is given by the derivative w.r.t. the time t:

v(t) = ẏ(t) = Rω cosωt (2.4)

or the imaginary component of

ż(t) = Aiωeiωt . (2.5)

What do these quantities translate to? To see this, it is worthwhile to draw
the function y(t) in dependence of t. Quite obviously this function repeats
itself, it is periodic (see below) with a period of 2π/ω. Physically, it shows
the displacement of Q from y = 0, its equilibrium position. R, the maximal
displacement, is called the amplitude of the vibration or the displacement.
It is also called the amplitude of the function. Similarly, Rω is the maximal
velocity, or the velocity amplitude, of the motion. Note that the velocity has
the same period as the displacement, it is just shifted by some angle - the
difference of sin and cos. Now, if the mass of Q is m, the kinetic energy is
given by

Ekin =
m

2
ẏ2 =

mR2ω2

2
cos2(ωt) , (2.6)

and the maximal kinetic energy is given by

Emax
kin =

mR2ω2

2
. (2.7)

For an idealized harmonic oscillator which does not use energy due to friction
the total energy is always a constant, equal to the largest value of the kinetic
energy. It is interesting to note that the total energy is proportional to the
square of the velocity amplitude, waves behave in a similar manner.
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2.1.2 Waves

Waves are yet another example of an oscillation. To illustrate this, consider
highly idealized (“unrealistic” would put it better) water waves, following a
sine curve. Taking a photo of the water surface at some time t = 0 then
would reveal a function

z(x, t = 0) = A sin
2πx

λ
, (2.8)

where z represents the height of the water surface w.r.t. the equilibrium, x
is the horizontal distance in one dimension, and λ is the distance between
wave crests. Usually, λ is called the wave length of the waves.
Suppose now that another photo is taken at some time t �= 0. Assuming the
waves to travel with velocity v in positive x direction, the equation repre-
senting the water surface now reads

z(x, t) = A sin
2π(x− vt)

λ
. (2.9)

There’s another interpretation to this: Rather than waiting for a time t and
observe the change of the water surface at some fixed point x, one may also
fix the time t and consider changes under displacement along x. In other
words, the equation for z(t) above yields the function of the water surface in
dependence of both x and t and it is a mere question of circumstance which
aspect (t fixed, x variable or vice versa) is considered.

2.1.3 More frequencies

To carry this discussion further, consider a string instrument, such as a violin.
Again in extreme idealization, sound is produced in such instruments by
displacing a string and letting it go again. If there was no energy loss, again,
the string would continue to vibrate forever. But what are the allowed modes
of this vibration? The answer is quite simple. Assume that the string has a
length L. In equilibrium, it stretches along the x-coordinate, and it is fixed
at the positions x = 0 and x = L. Displacements in the, say, y direction,
can then be described in an oversimplified way as standing waves y(x) of the
string; but the boundary conditions are that y(0) = y(L) = 0. Functions
which satisfy this are sinnπx/L with n = 1, 2, 3, dots. It is not hard to
guess that in this oversimplified world all relevant oscillations of the string
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can be described as a superposition of these elementary modes. It is exactly
this transformation of arbitrary oscillations into sums of eigenmodes which
makes Fourier analysis such an important tool.

2.2 Trigonometric and Exponential functions

2.2.1 General properties of functions

Periodic functions

A function f(x) is called periodic with a period P > 0, if

f(x+ P ) = f(x) ∀ x , (2.10)

where P is a constant. The smallest value of P is called the least period or
just the period of f .

Examples:

• the function sin x has periods 2π, 4π, . . . , since, sin(x+ 2π) = sin(x+
4π) = · · · = sin x. Obviously, 2π is the least period of sin x;

• the functions sin(nx) and cos(nx) with a constant n have periods 2π/n;

• the function exp(ikx) with a real constant k and with real values of x
has period 2π/k;

• the period of tanx is π;

• constants have any positive number as period.

Piecewise continuous functions

A function f(x) is called piecewise continuous in an interval x ∈ I, if

1. the interval can be divided into a finite number of subintervals, in which
f(x) is continuous; and
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2. the limits of f(x) are finite as x approaches the subintervals’ endpoints.

Another, more pictorial way, of stating these conditions is to demand that
f(x) can be patched together with a finite number of patches with only finite
jumps in between them.
The limit of f(x) from the right is often denoted as

lim f(x+ 0) = lim
ε→0+

f(x+ ε) , (2.11)

where ε > 0. Similarly, the left limit is denoted as

lim f(x− 0) = lim
ε→0+

f(x− ε) = lim
ε→0−

f(x+ ε) . (2.12)

Odd and even functions

A function is called odd, if f(−x) = −f(x). If, on the other hand f(−x) =
f(x) then the function is called even.

Examples include:

• polynomials with even exponents only, such as a0 + a2x
2 + a4x

4 + . . . ,
where the ai are constants, are even. In contrast, polynomials with odd
exponents only, such as a1x+ a3x

3 + a5x
5 + . . . are odd functions;

• sin x is an odd function, whereas cosx is even.

It is quite simple to show that the product of two odd or two even functions
is even, whereas the product of an odd and an even function is odd. Also,

A∫
−A

dx f(x) =

⎧⎨
⎩

0 if f(x) is odd ,

2
A∫
0

dx f(x) if f(x) is even .
(2.13)

2.2.2 Some trigonometry

Euler’s identity

Euler’s identity states that

eiϑ = cosϑ+ i sinϑ . (2.14)
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This can be seen geometrically or using the Taylor expansion

f(x) = f(x0) + (x− x0)
d

dx
f(x)

∣∣∣∣
x=x0

+
(x− x0)

2

2

d2

dx 2
f(x)

∣∣∣∣
x=x0

+ . . .

=

∞∑
n=0

(x− x0)
n

n!

dn

dx n
f(x)

∣∣∣∣
x=x0

, (2.15)

where the obvious definition d0/dx 0f(x) = f(x) and 0! = 1 have been used.
Applying this on the functions above with ϑ0 = 0 yields

eiϑ = 1 + iϑ− 1

2
ϑ2 − 1

6
iϑ3 +

1

24
ϑ4 +

i

120
ϑ5 + . . .

cos(ϑ) = 1 − 1

2
ϑ2 +

1

24
ϑ4 + . . .

i sin(ϑ) = iϑ − i

6
ϑ3 +

i

120
ϑ5 + . . . . (2.16)

Euler’s identity above together with the properties sin(−ϑ) = − sin ϑ and
cos(−ϑ) = cos ϑ of the trigonometric functions implies that

e−iϑ = cos ϑ− i sinϑ (2.17)

and thus

cosϑ =
eiϑ + e−iϑ

2

sinϑ =
eiϑ − e−iϑ

2i
. (2.18)

Trigonometric functions: addition & subtraction

From the identities above, Eq. (2.18), it is easy to see that

sin(2ϑ) =
e2iϑ − e−2iϑ

2i

=
1

2i

[(
eiϑ

)2 − (
e−iϑ

)2
]

=
1

2i

[
(cos ϑ+ i sin ϑ)2 − (cosϑ− i sinϑ)2]

=
1

2i
[4i(cosϑ sin ϑ] = 2 cosϑ sin ϑ . (2.19)
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In a similar way,

sinϑ+ sinφ =
eiϑ − e−iϑ + eiφ − e−iφ

2i

=
1

2i

[
exp

(
i
ϑ+ φ

2
+ i

ϑ− φ

2

)
− exp

(
−iϑ+ φ

2
− i

ϑ− φ

2

)

+ exp

(
i
φ+ ϑ

2
+ i

φ− ϑ

2

)
− exp

(
−iφ + ϑ

2
− i

φ− ϑ

2

)]

=
1

2i

[
exp

(
i
ϑ+ φ

2

)
− exp

(
−iϑ + φ

2

)]

×
[
exp

(
i
ϑ− φ

2

)
+ exp

(
−iϑ− φ

2

)]

= 2 sin(ϑ+ φ) cos(ϑ− φ) . (2.20)

Also,

sin ϑ− sinφ = 2 cos(ϑ+ φ) sin(ϑ− φ)

cosϑ+ cosφ = 2 cos(ϑ+ φ) cos(ϑ− φ)

cosϑ− cosφ = −2 sin(ϑ+ φ) sin(ϑ− φ) . (2.21)

Trigonometric functions: products

Euler’s identity can also be employed to express products of trigonometric
functions by sums and differences. For instance,

sinϑ sinφ =
eiϑ − e−iϑ

2i

eiφ − e−iφ

2i

= −1

4

[
ei(ϑ+φ) − ei(ϑ−φ) − e−i(ϑ−φ) + e−i(ϑ+φ)

]
=

1

2
[cos(ϑ− φ) − cos(ϑ+ φ)] . (2.22)

Also,

sin ϑ cosφ =
1

2
[sin(ϑ− φ) + sin(ϑ+ φ)] =

1

2
[sin(φ+ ϑ) − sin(φ− ϑ)]

cosϑ cosφ =
1

2
[cos(ϑ− φ) + cos(ϑ+ φ)] . (2.23)
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In particular, this implies for the squares of sine or cosine functions that

sin2 ϑ =
1

2
(1 − cos 2ϑ)

cos2 ϑ =
1

2
(1 + cos 2ϑ) . (2.24)

Trigonometric functions: derivatives and integrals

Remember that

d sin(kx)

dx
= +k cos(x) and

d cos(kx)

dx
= −k sin(x) , (2.25)

where k is a constant.
Therefore, their definite integrals read

b∫
a

dx sin(kx) = −cos kb− cos ka

k

b∫
a

dx cos(kx) = +
sin kb− sin ka

k
. (2.26)

Choosing k = 1 and b− a = 2π immediately shows that the integrals of the
trigonometric functions over 2π vanish1.
For the integrals of the squared trigonometric functions, this however does
not hold true. There are different ways of calculating, say, the integral of
sin2(x). In particular, one of them is well worth knowing. It starts by
realizing that

sin2 x+ cos2 x = 1 . (2.27)

Also, when integrated over the full period, both sin2 x and cos2 x yield the

1It is important to distinguish between definite and indefinite integrals: The former
yields numbers as result, whereas the latter yield functions.

34



same result,

2π∫
0

dx sin2 x =

2π∫
0

dx cos2 x =

2π∫
0

dx (1 − sin2 x)

=⇒
2π∫
0

dx = 2π = 2

2π∫
0

dx sin2 x

=⇒ π =

2π∫
0

dx sin2 x =

2π∫
0

dx cos2 x . (2.28)

This immediately implies that the average value of sin2 x, denoted by 〈sin2 x〉,
is 1/2:

〈sin2 x〉 =
1

2π

2π∫
0

dx sin2 x =
π

2π
. (2.29)

Trigonometric functions: integrals of products

Finally, let us calculate the integral (average value) of products of trigono-
metric functions over a period. To start with, consider

2π∫
0

dx sin(nx) cos(mx) =
1

2

2π∫
0

dx {sin[(n+m)x] + sin[(n−m)x]} = 0 ,

(2.30)

where the identities of Eq. (2.23) have been used. With the same procedure,

2π∫
0

dx sin(nx) sin(mx) =

⎧⎨
⎩

0 for n �= m
π for n = m �= 0
0 for n = m = 0

2π∫
0

dx cos(nx) cos(mx) =

⎧⎨
⎩

0 for n �= m
π for n = m �= 0
2π for n = m = 0

(2.31)

can be obtained.
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2.3 Definition & convergence

2.3.1 Definition

Assume a function f(x) with the following properties:

• f(x) is defined in the interval [L, −L];

• f(x) is periodic with period 2L, i.e., f(x+ 2L) = f(x).

Then, the Fourier series (or Fourier series expansion) of f(x), here denoted
as f̃(x), is defined through

f̃(x) =
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
(2.32)

where the coefficients (also known as Fourier coefficients) are given by

an =
1

L

L∫
−L

dx f(x) cos
nπx

L

bn =
1

L

L∫
−L

dx f(x) sin
nπx

L
. (2.33)

A motivation of the special form of these coefficients will be given in the next
section, cf. Sec. .
This immediately gives an interpretation for the first term in the series ex-
pansion, a0/2. Using the form of the Fourier coefficients above, it is clear
that this term is nothing but the mean of f(x) in the interval [−L, L],

a0

2
=

1

2L

L∫
−L

dx f(x) cos
0πx

L
=

1

2L

L∫
−L

dx f(x) .

(2.34)

In writing down these expressions for the Fourier expressions, it has implicitly
been assumed that the function in question is continuous. If this is not the
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case, the coefficients are obtained through integration over the continuous
subintervals and adding the results.
It must be emphasized, however, that the Fourier series is only a series that
corresponds to f(x). It is not clear a priori (and in fact, counter examples
can be constructed), whether it converges or, even if it does so, whether it
converges to f(x).

Examples:

• Consider first a constant, like f(x) = c in the interval [−π, π]. Re-
peating itself with period 2π of course yields a constant function for
all values of x. The Fourier coefficients are then given just by the
respective integrals,

a0

2
=

c

2π

π∫
−π

dx = c ;

an =
c

π

π∫
−π

dx cos(nx) =
c

π

sin(nx)

n

∣∣∣∣
π

−π
= 0 ;

bn =
c

π

π∫
−π

dx sin(nx) = − c

π

cos(nx)

n

∣∣∣∣
π

−π
= 0 , (2.35)

and the Fourier series related to this function is the function itself.

• Consider now the function f(x) = xΘ(x) in the interval [−π, π], with
period 2π. Then

a0

2
=

1

π

π∫
0

dxx =
π

4
;

an =
1

π

π∫
0

dxx cos(nx) =
1

π

x sin(nx)

n

∣∣∣∣
π

0

− 1

π

π∫
0

dx
sin(nx)

n

=
1

π

cos(nx)

n2

∣∣∣∣
π

0

=
1

πn2
[(−1)n − 1] =

⎧⎨
⎩

−2

n2π
for n odd

0 for n even ;
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bn =
1

π

π∫
0

dxx sin(nx) = −1

π

x cos(nx)

n

∣∣∣∣
π

0

+
1

π

π∫
0

dx
cos(nx)

n

= −1

π

(
x cos(nx)

n
+

sin(nx)

n2

)∣∣∣∣
π

0

= −(−1)n

n
. (2.36)

In all cases, integration by parts has been used. Taken together, the
Fourier series then reads

f̃(x) =
π

4
+

∞∑
n=1

[
−1 − (−1)n

πn2
cos(nx) − (−1)n

n
sin(nx)

]
.(2.37)

• As a next example, take the function f(x) = x in the interval [0, π],
repeating itself with period π. Obviously, the interval is not symmetric
around 0, but this merely changes the region of integration and the co-
efficients of the sine and cosine functions. Then, the Fourier coefficients
are given by

a0

2
=

1

π

π∫
0

dxx =
π

2
;

an =
2

π

π∫
0

dxx cos(2nx) =
2

π

x sin(2nx)

2n

∣∣∣∣
π

0

− 2

π

π∫
0

dx
sin(2nx)

2n

=
2

π

cos(nx)

n2

∣∣∣∣
π

0

= 0

bn =
2

π

π∫
0

dxx sin(nx) = −2

π

x cos(2nx)

2n

∣∣∣∣
π

0

+
2

π

π∫
0

dx
cos(2nx)

2n

= −2

π

(
x cos(nx)

2n
+

sin(2nx)

(2n)2

)∣∣∣∣
π

0

= −1

n
. (2.38)

The related Fourier series thus reads

f̃(x) =
π

2
−

∞∑
n=1

sin(2nx)

n
. (2.39)
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• Now, take the function f(x) = x2 in the interval [−π, π], extended
periodically with period 2π. The Fourier coefficients read

a0 =
2π2

3

an =
4(−1)n

n2

bn = 0 . (2.40)

Thus, the Fourier series is given by

f̃(x) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx) . (2.41)

It will be left as a problem to check this.

• Consider the Heavyside (or step) function

Θ(x) :=

{
0 for x ≤ 0
1 for x > 0

(2.42)

in the interval [−π, π] and repeat it periodically with period 2π. Its
Fourier coefficients read

a0

2
=

1

2π

π∫
−π

dxΘ(x) =
1

2
;

an =
1

π

π∫
−π

dxΘ(x) cos(nx) =
1

π

π∫
0

dx cos(nx) =
sin(nx)

πn

∣∣∣∣
π

0

= 0 ;

bn =
1

π

π∫
−π

dxΘ(x) sin(nx) =
1

π

π∫
0

dx sin(nx) = − cos(nx)

nπ

∣∣∣∣
π

0

=

⎧⎨
⎩

2

nπ
for n odd

0 for n even .
(2.43)

Hence, the Fourier series related to the step function reads

f̃(x) =
1

2
+

∞∑
n=1

1

(2n− 1)π
sin((2n− 1)x)

=
1

2
+

2

π

[
sin(x) +

sin(3x)

3
+

sin(5x)

5
+ . . .

]
. (2.44)
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Note that for x = 0 this yields f̃(0) = 1/2, quite in contrast to the
value of f(x = 0) = Θ(0) = 0.

2.3.2 The form of the Fourier coefficients

To convince oneself that the form of the Fourier coefficients, cf. Eq. (2.33, is
indeed correct, consider the Fourier series of a function f(x) (Eq. (2.32)),

f̃(x) =
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)
, (2.45)

multiply it with cos(mπx/L) and integrate over x in the interval [−L, L].
This yields

L∫
−L

dx f̃(x) cos
mπx

L

=

L∫
−L

dx cos
mπx

L

[
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)]

=
La0

2mπ
sin

mπx

L

∣∣∣∣
L

−L
+

∞∑
n=1

⎡
⎣an

⎛
⎝ L∫
−L

dx cos
nπx

L
cos

mπx

L

⎞
⎠

+ bn

⎛
⎝ L∫
−L

dx sin
nπx

L
cos

mπx

L

⎞
⎠
⎤
⎦

=

∞∑
n=1

anLδnm = amL , (2.46)

where in the last step the properties of Sec. 2.2.2 have been employed. This
immediately yields

am =
1

L

L∫
−L

dx f̃(x) cos
mπx

L
. (2.47)
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Similar statements of course hold true also for the coefficients bn. In other
words, assuming the Fourier series to coincide with the original function,
i.e. f̃(x) = f(x), fixes the expansion coefficients. So, again, the question
remains, when the Fourier expansion coincides with the original function.
This is answered in the next section.

2.3.3 Convergence: Dirichlet conditions

The Dirichlet conditions below answer the question, whether the Fourier
series converges at all.
Suppose f(x) fulfils the following conditions:

1. f(x) is defined and single valued in the interval [−L, L] except at a
finite number of values;

2. f(x) has a period of 2L;

3. both f(x) and its first derivative f ′(x) are piecewise continuous in
[−L, L].

Then the Fourier series converges such that

f̃(x) −→
{
f(x) if x is a point of continuity;
f(x+ 0) + f(x− 0)

2
if x is a point of discontinuity.

(2.48)

An example for such a point of discontinuity is x = 0 for the Heavyside
function, Θ(x). As could be seen from Eq. (2.44), its Fourier series there
yields 1/2, in accordance with the above statements.

The three conditions above are sufficient but not necessary: it is possible
to have convergence without some of them. However, if they are met by
the function f(x), one may substitute f(x) with the series expansion at the
function’s points of continuity. In any case, it is interesting to note that
continuity of f alone does not guarantee the convergence of the series and
that rather also its first derivative must be piecewise continuous.
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2.3.4 Uniform convergence of series

Suppose an infinite series

ũ(x) =
∞∑
n=1

un(x) . (2.49)

The Rth partial sum SR(x) of the series is then defined as the sum of the R
first terms,

SR(x) =

R∑
n=1

un(x) . (2.50)

Now, by definition, the series ũ(x) converges to a function u(x) in some
interval, if for any value of x in the interval and for any positive number ε
there exists a positive number N , such that

|SR(x) − u(x)| < ε ∀ R > N . (2.51)

In general, this number N depends on both ε and the possible values of x.
Anyways, u(x) will be called the sum of the series in the following.
An important case, namely uniform convergence, occurs, when N does not
depend on the range of possible x but on ε only. Such uniform convergent
series have two important properties, namely

1. If each term of an infinite series (i.e. each of the un(x)) is continuous in
an interval ]a, b[ and if the series ũ(x) is uniformly convergent to the
sum u(x), then

• u(x) is also continuous in the interval;

• the series can be integrated term by term in this interval,

b∫
a

dx

( ∞∑
n=1

un(x)

)
=

∞∑
n=1

⎛
⎝ b∫

a

dxun(x)

⎞
⎠ . (2.52)

In other words, in this case, summation and integration commute
- they are interchangeable operations.
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2. If, in addition, each term of this series has a derivative and if the
series of derivatives is uniformly convergent, then the series can be
differentiated term by term,

d

dx

( ∞∑
n=1

un(x)

)
=

∞∑
n=1

(
dun(x)

dx

)
. (2.53)

2.3.5 The Weierstrass M-test

There are various ways to prove uniform convergence, the most obvious being
to actually find SR(x) in closed form and then apply the definition directly.
Another, more powerful way is to use the Weierstrass M-test:
If there exists a set of constants Mn with n = 1, 2, 3, dots such that

|un(x)| ≤ Mn ∀x ∈ [a, b] (2.54)

and if furthermore the sum
∞∑
n=1

Mn converges, then

ũ(x) =
∞∑
n=1

un(x) (2.55)

converges uniformly in the interval [a, b]. In fact, in this case, ũ(x) is abso-
lutely convergent, i.e. also the sum

∞∑
n=1

|un(x)| (2.56)

of the absolute values of the terms is convergent.

Example: Consider the series
∞∑
n=1

sin(nx)
n2 . It converges uniformly in [−π, π]

(in fact, everywhere), because a set of constants Mn = 1/n2 can be found,
such that ∣∣∣∣sin(nx)

n2

∣∣∣∣ ≤ 1

n2
and

∞∑
n=1

1

n2
=
π2

6
. (2.57)
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2.4 Simple properties

2.4.1 Parseval’s identity

Parseval’s identity states that, if a function f(x) satisfies the Dirichlet
conditions,

1

L

L∫
−L

dx [f(x)]2 =
a2

0

2
+

∞∑
n=1

(a2
n + b2n) , (2.58)

where the an and bn are the Fourier coefficients defined in Eq. (2.33), which
correspond to f(x).
The proof of this identity will be left as a problem.

2.4.2 Sine and Cosine series

Expanding even and off functions

Remember the properties of even and odd functions, when multiplied with
each other, cf. Sec. 2.2.1. If the function f(x) is an even function in the
interval [L, −L] (i.e. f(−x) = f(x)) and periodic with period 2L, its Fourier
transform will contain only the cos-terms. This is quite simple to see: An
even function (like f(x)) when multiplied with an odd function (like sin(kx))
yields an odd function. And odd function vanish, when integrated over a
symmetric interval like [−L, L]. Hence, in this case, all coefficients bn equal
0, and thus all sin terms vanish. In this case, the Fourier series reduces to a
Cosine series.
On the other hand, if f(x) is an odd function in the interval, all its Fourier
coefficients an equal 0, and thus the Fourier series reduces to a Sine series.

Examples:

• Consider first the function

f(x) = x (2.59)

in the interval [−π, π] and re-express is as either a Sine or Cosine series.
Clearly, this is an odd function, therefore it can be expected that all
coefficients an vanish.
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From the definition of the Fourier coefficients, Eq. (2.33), one finds

a0

2
=

1

2π

π∫
−π

dx f(x) =
1

2π

π∫
−π

dxx =
x2

4π

∣∣∣∣
π

−π
= 0 ;

an =
1

π

π∫
−π

dx f(x) cos(nx) =
1

π

π∫
−π

dxx cos(nx)

=
1

π

x sin(nx)

n

∣∣∣∣
π

−π
− 1

π

π∫
−π

dx
sin(nx)

n
=

1

π

cos(nx)

n2

∣∣∣∣
π

−π
= 0 ;

bn =
1

π

π∫
−π

dx f(x) sin(nx) =
1

π

π∫
−π

dxx sin(nx)

= −1

π

x cos(nx)

n

∣∣∣∣
π

−π
+

1

π

π∫
−π

dx
cos(nx)

n
= −2(−1)n

n
. (2.60)

Hence the Fourier expansion of f(x) = x looks like

f̃(x) = −2
∞∑
n=1

(−1)n

n
sin(nx)

= 2

[
sin(x) − sin(2x)

2
+

sin(3x)

3
+ . . .

]
. (2.61)

• On the other hand, consider the function

f(x) = |x| (2.62)

in the interval [−π, π] and re-express is as either a Sine or Cosine series.
Since this function is even, it can be expected that now all coefficients
bn vanish.

From the definition of the Fourier coefficients, Eq. (2.33), one finds

a0

2
=

1

2π

π∫
−π

dx f(x) =
1

2π

π∫
−π

dx |x| = − 1

2π

0∫
−π

dxx+
1

2π

π∫
0

dxx

= − x2

4π

∣∣∣∣
0

−π
− x2

4π

∣∣∣∣
π

0

=
π

2
;
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an =
1

π

π∫
−π

dx f(x) cos(nx) = −1

π

0∫
−π

dxx cos(nx) +
1

π

π∫
0

dxx cos(nx)

= − x sin(nx)

nπ

∣∣∣∣
0

−π
−

0∫
−π

dx
sin(nx)

nπ
− x sin(nx)

nπ

∣∣∣∣
π

0

+

π∫
0

dx
sin(nx)

nπ

= − cos(nx)

n2π

∣∣∣∣
0

−π
+

cos(nx)

n2π

∣∣∣∣
π

0

=
2(cosnπ − 1)

n2π

=

{
− 4

n2π
if n is odd

0 if n is even ;

bn =
1

π

π∫
−π

dx f(x) sin(nx) = −1

π

0∫
−π

dxx sin(nx) +
1

π

π∫
0

dxx sin(nx)

=
x cos(nx)

nπ

∣∣∣∣
0

−π
−

0∫
−π

dx
cos(nx)

nπ
− x cos(nx)

nπ

∣∣∣∣
π

0

+

π∫
0

dx
cos(nx)

nπ

=
(−1)nπ

nπ
− (−1)nπ

nπ
− sin(nx)

n2π

∣∣∣∣
0

−π
+

sin(nx)

n2π

∣∣∣∣
π

0

= 0 . (2.63)

Hence, in this case, the Fourier transform of f(x) looks like

f̃(x) =
π

2
+

4

π

∞∑
n=0

cos[(2n+ 1)x]

(2n+ 1)2

=
π

2
+

4

π

[
cos(x) +

cos(3x)

9
+

cos(5x)

25
+ . . .

]
. (2.64)

Half-range expansions

Assume now that a function is given as periodic over a range [−L, L], but
specified only in the interval [0, L]. In this case, one may use the freedom
of defining the function in the other half of the period in a way such that
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its Fourier expansion can be written entirely as a sine- or cosine series. The
trick here is to define the function in [−L, 0] such that it, taken over the full
period, f(x) is either even or odd.
Due to the symmetry properties of even and odd functions, f±

ext(x), being
multiplied with cosine or sine functions one finds

{
an
bn

}
=

1

L

L∫
−L

dxf±
ext(x)

{
cosnx
sinnx

}
=

2

L

L∫
0

dxf(x)

{
cosnx
sinnx

}
, (2.65)

potentially alleviating the task of calculating the Fourier coefficients.

Examples:

• Consider first the function f(x) = x in [0, 2] with period 4. An
odd expansion is to define f−

ext(x) = x, whereas an even expansion
is f+

ext(x) = |x|. In both cases, the Fourier expansion reads

f̃−
ext = −4

π

∞∑
n=1

(−1)n

n
sin

nπx

2

=
4

π

(
sin πx2 − 1

2
sin 2πx2 +

1

3
sin 3πx2 − 1

4
sin 4πx2 + . . .

)
(2.66)

and

f̃+
ext = 1 +

4

π2

∞∑
n=1

(−1)n − 1

n2
cos

nπx

2

= 1 − 8

π2

(
cosπx2 +

1

32
cos 3πx2 +

1

52
cos 5πx2 + . . .

)
,

(2.67)

respectively.

• Maybe even more instructive is the expansion of the function f(x) =
sin(x), x ∈ [0, π] in terms of a cosine series. To this end the full 2π
period is covered by defining f(x)+

ext = | sin x|, i.e. by extending the
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half-range sine to an even full-range function. Then

a0

2
=

1

π

π∫
0

dx sin x =
2

π
,

an =
2

π

π∫
0

dx sin x cos(nx) =
1

π

π∫
0

dx [sin(x+ nx) + sin(x− nx)]

=
1

π

[
−cos[(n + 1)x])

n+ 1
+

cos[(n− 1)x]

n− 1

]π
0

= −2[1 + (−1)n]

π(n2 − 1)
if n �= 1 ,

a1 =
2

π

π∫
0

dx sin x cos x =
2

π

sin2 x

2

∣∣∣∣
π

0

= 0 . (2.68)

Therefore,

f̃+
ext(x) =

2

π

[
1 −

∞∑
n=2

1 + (−1)n

n2 − 1
cosnx

]

=
2

π
− 4

π

[
cos 2x

22 − 1
+

cos 4x

42 − 1
+

cos 6x

62 − 1
+ . . .

]
. (2.69)

2.4.3 Integration and differentiation

Integration and differentiation of Fourier series can be justified through the
theorems of Sec. 2.3.4. In other words: If the Fourier series is uniformly
convergent in its interval [−L, L] it can be integrated term by term. Hence,
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in this case

L∫
−L

dx f̃(x) =

L∫
−L

dx

[
a0

2
+

∞∑
n=1

(
an cos

nπx

L
+ bn sin

nπx

L

)]

=
a0

2

L∫
−L

dx +
∞∑
n=1

⎡
⎣ L∫
−L

dx
(
an cos

nπx

L
+ bn sin

nπx

L

)⎤⎦

=
a0x

2

∣∣∣L
−L

+
∞∑
n=1

⎡
⎣an

L∫
−L

dx cos
nπx

L
+ bn

L∫
−L

dx sin
nπx

L

⎤
⎦

= a0L+

∞∑
n=1

[
anL

nπ
sin

nπx

L
− bnL

nπ
cos

nπx

L

]L
−L

= a0L . (2.70)

This shows that, if the Fourier series is converging to the original function, the
integral of both, function and Fourier transform, over the full period coincide
and equal the first term in the Fourier series (the mean of the function) times
the size of the interval. This should not come as a surprise at this stage.

Example: Consider the Fourier expansion of the function f(x) = x, cf. Eq.
(2.61),

f̃(x) = 2

[
sin(x) − sin(2x)

2
+

sin(3x)

3
+ . . .

]
. (2.71)

Integrating this yields∫
dx f̃(x) = 2

∫
dx

[
sin(x) − sin(2x)

2
+

sin(3x)

3
+ . . .

]

= 2

[
− cos(x) +

cos(2x)

4
− cos(3x)

9
+ . . .

]
= 2

n∑
n=1

(−1)n cos(nx)

n2
.

(2.72)

Since f(x) satisfies the Dirichlet conditions, f̃(x) can be replaced by f(x)
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and thus

x2

2
= 2

n∑
n=1

(−1)n cos(nx)

n2

∣∣∣∣
x

0

= 2

n∑
n=1

(−1)n cos(nx)

n2
− 2

n∑
n=1

(−1)n

n2
. (2.73)

Adding in that

n∑
n=1

(−1)n

n2
= 1 − 1

4
+

1

9
− 1

16
+ · · · =

π2

12
(2.74)

yields

x2 =
π2

3
+ 4

n∑
n=1

(−1)n cos(nx)

n2
, (2.75)

where the r.h.s. is exactly the Fourier expansion for x2, cf. Eq. (2.41.
It must be stressed here however that in general the term-by-term integra-
tion of a Fourier series does not reproduce the Fourier expansion of the corre-
sponding integrated function; this is due to the presence of the a0-term which
results in something like a0L, where L is the length of the integration interval.

If in addition, also the derivatives are uniformly convergent, the series can
also be differentiated term by term. But it is by no means guaranteed that
the differentiated series has anything to do with the derivative of the original
function.

Example: As an example for this consider again

x = 2

[
sin(x) − sin(2x)

2
+

sin(3x)

3
+ . . .

]
, (2.76)

cf. Eq. (2.61). Differentiating on both sides w.r.t. x clearly yields 1 for the
l.h.s.. The right hand side, however, reads

2 [cos(x) − cos(2x) + cos(3x) + . . . ] , (2.77)
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clearly different from 1. Even worse, this series does not converge at all.

Nevertheless, if both the function itself, f(x) and its derivative, f ′(x), satisfy
the Dirichlet conditions in the interval in question then term-by-term differ-
entiation of the Fourier series of f(x) is permissible in the sense that it leads
to the Fourier series of f ′(x).
The catch here is that the Dirichlet conditions demand continuity of the
function, even when expanded with its given periodicity. Simple inspection
shows that for f(x) = x2 in the interval [−π, π] this holds true, basically
because f(π) = f(−π). In contrast for the function f(x) = x in the same
interval, there are discontinuities at the boundaries of the period.

2.4.4 Complex notation

Another form of the Fourier series can be obtained by using Euler’s relation

eiϑ = cosϑ+ i sinϑ (2.78)

and its inverse

cosϑ =
eiϑ + e−iϑ

2
and sin ϑ =

eiϑ − e−iϑ

2i
. (2.79)

These can easily be inserted into the Fourier expansion and, also, in the ex-
pressions determining the Fourier coefficients. But, of course, the coefficients
can also be found directly and, using Euler’s equation, the original sine and
cosine terms can be recovered.
It is instructive to see how the coefficients of the complex Fourier series
expansion emerge. To that end, consider a series of the form

f(x) = c0 + c1e
ix + c−1e

−ix + c2e
2ix + c−2e

−2ix + · · · =
∞∑

n=−∞
cne

inx (2.80)

of a function f(x) satisfying Dirichlet’s conditions in the interval [−π, π].
Direct calculation (and previous experience with the trigonometric functions)
shows that indeed

π∫
−π

dx eikx = 0 (2.81)
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for all integer values of k different from 0. Hence, integrating over the period
yields

π∫
−π

dx f(x) = 2πc0 (2.82)

and thus

c0 =
1

2π

π∫
−π

dx f(x) , (2.83)

the average value of the function in the interval.
To find any of the cn the recipe clearly is to compensate for the exp(inx) term
on the r.h.s. of the equation above. This is most easily done by multiplying
with exp(−inx) before integrating. Thus

π∫
−π

dx f(x)e−inx =

π∫
−π

dx cne
inxe−inx = 2πcn (2.84)

and therefore

cn =
1

2π

π∫
−π

dx f(x)e−inx (2.85)

for all values of n.
Note that this equation automatically contains the c0 term as well, there are
no factors of 1/2 to be concerned about. Also,

c−n = c∗n if f(x) is real . (2.86)

Example: Consider, once more, the Heavyside function in the interval [−π, π].
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Its complex Fourier expansion reads

c0 =
1

2π

π∫
−π

dxΘ(x) =
1

2

cn =
1

2π

π∫
−π

dxΘ(x)e−inx

=
1

2π

π∫
0

dx e−inx = −e
−inx

2inπ

∣∣∣∣
π

0

=
1 − einı

2inπ
=

⎧⎨
⎩

1

inπ
for n odd

0 for n even and n �= 0 .
(2.87)

Hence,

f(x) =
1

2
+

2

π

[
eix − e−ix

2i
+

1

3

e3ix − e−3ix

2i
+

1

5

e5ix − e−5ix

2i
+ . . .

]

=
1

2
+

2

π

[
sin x+

sin 3x

3
+

sin 5x

5
+ . . .

]
, (2.88)

as before, cf. Eq. (2.44).

2.4.5 Double and multiple Fourier series

It is straightforward to extent the idea of Fourier expansion of a function
of one variable to functions with more variables. As an example consider a
function f(x, y) defined in {x, y} ∈ [−π, π] and periodic with period 2π in
each dimension. Such a function can be expanded in a double Fourier series,
like e.g.

f(x, y) =

∞∑
n=−∞

∞∑
m=−∞

cnme
inxeimy =

∞∑
n,m=−∞

cnme
inx+imx , (2.89)
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where the coefficients are given by

cnm =
1

(2π)2

π∫
−π

dx

π∫
−π

dyf(x, y)e−inx−imy . (2.90)

2.5 Some applications

2.5.1 Full wave rectifier

Wave rectifiers translate alternating into direct current (AC→DC). An inter-
esting question related to this is how well the resulting current approaches
direct current. As a toy example consider a wave rectifier, which lets positive
parts of a sine wave pass and which inverts the negative parts,

sin(ωt)
Rect.−→ f(t) =

{
+ sin(ωt) for 0 ≤ ωt < π
− sin(ωt) for − π ≤ ωt < 0 .

(2.91)

Since the result is an even function, there won’t be any sin-parts in the
Fourier series of the result. Consequently, only the an need to be calculated,

a0

2
= − 1

2π

0∫
−π

d(ωt) sin(ωt) +
1

2π

π∫
0

d(ωt) sin(ωt) =
2

π
;

an = −1

π

0∫
−π

d(ωt) sin(ωt) cos(nωt) +
1

π

π∫
0

d(ωt) sin(ωt) cos(nωt)

=

⎧⎨
⎩ − 4

(n2 − 1)π
for n even

0 for n odd .
(2.92)

Hence, the resulting series is

f(t) =
2

π
− 4

π

∞∑
n=2,4,6...

cos(nωt)

n2 − 1
=

2

π

[
1 − 2 cos(2ωt)

3
− 2 cos(3ωt)

8
− . . .

]
,

(2.93)

which is clearly dominated by the first few terms. Also, the original frequency
ω has been eliminated and replaced by its higher harmonics 2ω, 3ω etc..
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2.5.2 Quantum mechanical particle in a box

Sketching the physical problem

A good example for the merit of applying Fourier expansions, consider the
quantum mechanical problem of a particle in a box. Such problems are often
described by the time-independent Schrödinger equation. In one dimension,
it reads

�
2

2m

d2

dx2
uE(x) = [V (x) − E]uE(x) , (2.94)

where the uE(x) are the energy eigenfunctions. They are related to the full
wave function by

ψ(x, t) =
∑
E

e−iEtuE(x) (2.95)

with the sums stretching over all allowed energy eigenvalues of the problem.
The box can now be represented by a potential of the form

V (x) =

{
0 for x ∈ [−a, a]
V else ,

(2.96)

with V = ∞. This infinitely high potential confines the particle to the region
between −a and a, it cannot penetrate the potential walls. According to the
probabilistic interpretation of the wave function, its value

ψ(x, t) = e−iE/�tuE(x) = 0 for x /∈ [−a, a] (2.97)

translates into the particle being in the region. Therefore, suitable boundary
conditions for the wave function inside the region [−a, a] are

uE(−a) = uE(a) = 0 . (2.98)

General solution of the differential equation

A suitable ansatz for its solution is

uE(x) = B+ exp(ikx) +B− exp(−ikx) , (2.99)

where

k =

√
2mE

�2
. (2.100)

55



Plugging this into the Schrödinger equation, translates into

− �
2

2m
(ik)2 [B+ exp(ikx) +B− exp(−ikx)]

= E[B+ exp(ikx) +B− exp(−ikx)] (2.101)

in the region x ∈ [−a, a], proving the validity of the ansatz.

Adding in boundary conditions

Adding in boundary conditions

uE(±a) = B+ exp(±ika) +B−(∓ika) = 0 (2.102)

implies there are two sets of solutions, namely

• Sine-type solutions:

B+ = −B− ≡ A− and k =
2nπ

2a

=⇒ uE(x) = A−
[
exp

(
2niπx

2a

)
− exp

(
−2niπx

2a

)]
(2.103)

• Cosine-type solutions:

B+ = B− ≡ A+ and k =
(2n− 1)π

2a

=⇒ uE(x) = A+

[
exp

(
(2n− 1)iπx

2a

)
+ exp

(
−(2n− 1)iπx

2a

)]
(2.104)

In both cases, n = 1, 2, 3, . . . .

Brief discussion of the physics

These two sets of solutions, +- and −-types, correspond to sinoidal and
cosinoidal solutions and, ultimately, to different parities. Here, parity is the
property of an object under spatial reflection, i.e. under the transformation
�x → −�x, or, in one dimension, x → −x. More precisely, parity is defined
through

O �x→−�x−→ PO . (2.105)
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Then clearly, the ±-parts have parity P = ±. Thus the ±-label also labels
the parity of the respective eigenmode.
The corresponding energy eigenmodes have kinetic energies only (the poten-
tial vanishes), namely

E−
n =

�
2k2

2m
=

�
2

2m

(2n)2π2

(2a)2

E+
n =

�
2k2

2m
=

�
2

2m

(2n− 1)2π2

(2a)2
. (2.106)

Hence, each individual mode can also be written as

u−En
(x) = 2A−

n sin
2nπx

2a

u+
En

(x) = 2A+
n cos

(2n− 1)πx

2a
. (2.107)

To fix the amplitudes, it must be taken into account that the energy eigen-
modes are also normalized, implying

1 ≡
a∫

−a

dx|u±En
(x)|2 = 4a|A±n |2 (2.108)

leading to

An =
1

2
√
a

(2.109)

Taken everything together yields

u±n (x) =
1√
a

⎧⎪⎨
⎪⎩

cos
(2n− 1)πx

2a

sin
2nπx

2a
.

(2.110)

for each allowed value n ∈ N. This can easily be generalized to the case of
more than one dimension, i.e. a three-dimensional box with dimensions a, b
and c.
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2.5.3 Heat expansion

Sketching the physical problem

Heat conduction can be described by

∂u(�x, t)

∂t
= κ∇2u(�x, t) , (2.111)

where the function u(�x, t) denotes the temperature at position �x at a given
time t, and the constant κ is called diffusity and is related to

κ =
K

σμ
, (2.112)

where K is the thermal conductivity, σ is the specific heat, and μ denotes
the density of the material in question. The expression ∇2 is called the
Laplacian, given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (2.113)

To see how this works, consider the one-dimensional case of a slab with length
L. Both its ends and the entire surface are insulated, translating into no heat
transferred beyond the edges of the slab. In mathematical form this can be
expressed as

u′(0, t) = u′(L, t) = 0 . (2.114)

Assume also that the slab has some initial temperature, say at time t = 0,
then

u(x, 0) = f(x) ., (2.115)

General solution of the differential equation

Let us see now, how Fourier expansion helps us to determine the subsequent
temperature, i.e. u(x, t) with t > 0. The starting point will be an inves-
tigation of the general anatomy of the solutions of the differential equation
describing heat conduction. For this, the ansatz

u(x, t) = X(x)T (t) (2.116)
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will be employed, leading to

XT ′ = κX ′′T (2.117)

when put into the equation of heat conduction, Eq. (2.111) . This can be
re-expressed as

T ′

κT
=
X ′′

X
. (2.118)

Since T is a function of t only and X merely depends on x, it should be clear
that the equality can be realized only, if both sides equal a constant for all
values of t and x, respectively. Setting this constant to be −λ2, therefore

T ′ + κλ2T = 0 and X ′′ + λ2X = 0 . (2.119)

Solutions for these two equations are given by

T = C exp(−κλ2t) and X = A cos(λx) +B sin(λx) , (2.120)

yielding

u(x , t) = exp(−κλ2t) [a cos(λx) + b sin(λx)] , (2.121)

with the constants a = AC and b = BC.

Adding in boundary conditions

These constants as well as the constant −λ2 need to be determined from the
boundary conditions:

• The condition u′(0, t) = 0 enforces all sine terms to vanish, because
their derivative would yield a cosine, which does not vanish for its
argument being 0. Hence

b = 0 . (2.122)

• The condition u′(L, t) = 0 thus translates into

cos′(λL) ∝ sin(λL)
!
= 0 =⇒ λL = mπ rm with m = 1, 2, 3, . . .(2.123)

and therefore

λ =
mπ

L
. (2.124)
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• Finally, the boundary condition u(x, 0) = f(x) must be met. Hence

u(x, 0) = f(x) =
a0

2
+

∞∑
m=1

am cos
(mπx

L

)
, (2.125)

the result for t = 0. It looks like a Fourier cosine series, with coefficients
thus given by

a0

2
=

1

L

L∫
0

dx f(x)

am =
1

L

L∫
0

dx f(x) sin
(mπx

L

)
, (2.126)

cf. Eq. (2.33).

Hence,

u(x, t) =
1

L

L∫
0

dx f(x)

+
∞∑
m=1

⎧⎨
⎩
⎡
⎣ 1

L

L∫
0

dx f(x) sin
(mπx

L

)⎤⎦ · cos
(mπx

L

)
exp

(
−κm

2π2t

L2

)⎫⎬
⎭ .

(2.127)

2.5.4 Electrostatic potential

Sketching the physical problem

In the previous example, it has been seen that partial differential equations
can sometimes be solved by separating the variables. By using this method,
one often encounters sets of orthogonal functions, which are of great impor-
tance by themselves. In the following, this method will be applied once more,
this time to the case of electrostatics. In the static case, the electric field �E
is determined through Gauss’ law. In differential form it is given by

ε0�∇ �E = ρ , (2.128)
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where ρ(x) is the fixed charge density giving rise to the field. A nice way
of solving this problem is to realize that the rotor of the electric field in the
static case vanishes, allowing to introduce the electrostatic potential φ. It
relates to the electric field through

�E = −�∇φ . (2.129)

The potential is thus determined through the inhomogeneous Laplace equa-
tion

∇2φ = −ε0ρ , (2.130)

encountered before. This equation is of great importance in physics.

Homogeneous Laplace equation

Let us now consider a case, where the potential φ(�x) can be written in Carte-
sian coordinates as a product of three functions, one for each coordinate,

φ(�x) = X(x)Y (y)Z(z) . (2.131)

Setting the charge density to zero for a moment, the (homogeneous) Laplace
equation reads

1

X

d2X

d2x
+

1

Y

d2Y

d2y
+

1

Z

d2Z

d2z
= 0 . (2.132)

Here the partial differentials became total ones, since the functions depend
on one variable only. In order to guarantee a solution for all �x, the following
system has to be solved

1

X

d2X

d2x
= α2

1

Y

d2Y

d2y
= β2

1

Z

d2Z

d2z
= γ2 , (2.133)

with the constraint that

α2 + β2 + γ2 = 0 . (2.134)

A general solution for the homogeneous Laplace equation therefore reads

φ(�x) = φ0e
±αxe±βye±i

√
α2+β2z , (2.135)

with φ0 the potential at �x = 0.

61



A physical problem and its solution

In order to determine α and β, boundary conditions need to be specified.
As an example consider a cuboid with dimensions a × b × c in x-, y, and
z-direction, respectively. Furthermore, assume that all sides are on potential
zero, apart from the one at z = c, which has a fixed potential Vz=c(x, y).
What is the potential inside the cuboid? The constraint that φ = 0 for
x = 0, y = 0, z = 0 implies

X = sin(αx) , Y = sin(βy) , Z = sinh(
√
α2 + β2z) . (2.136)

The additional constraint that φ = 0 for x = a, y = b yields

αa = nπ and βb = mπ , (2.137)

where n and m are integers. From these identification of the frequencies, the
expansion coefficients of the Z function can be inferred. They read

γnm =
√
α2 + β2 = π

√
n2

a2
+
m2

b2
. (2.138)

Thus, the potential can be written as a sum of components, where each of
which is given by

φnm = Anm sin
(nπx

a

)
sin

(mπy
b

)
sinh (γnmz) . (2.139)

By construction this potential vanishes for x = 0, a, y = 0, b, and for z = 0.
The coefficients Anm can now be fixed such that∑

nm

φnm(x, y, z = c) = Vz=c(x, y) . (2.140)

This seems horrible at first. By taking a closer look, however, it becomes
clear that it is just a double Fourier series for the function Vz=c. Thus, the
coefficients Anm are given by

Anm =
1

sinh (γnmc)
· 4

ab

a∫
0

dx

b∫
0

dyVz=c(x, y) sin
(nπx

a

)
sin

(mπy
b

)
.

(2.141)

If the potential is different from zero on all sides of the cuboid, then the
overall potential can be constructed from the superposition principle: Just
repeat this procedure for the other five sides, and add the partial results.
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Chapter 3

Fourier transforms

3.1 Definitions and properties

3.1.1 The Fourier integral

The need for Fourier integrals

So far, Fourier series have been defined for periodic functions with period L.
A natural question to ask is what happens, if L → ∞. It will turn out that
in such cases, the Fourier series becomes a Fourier integral, where
the sum over discrete frequencies is replaced by an integral over a
continuum of frequencies. This Fourier integral may be used to represent
also non-periodic functions, such as a single voltage pulse or a flash of light,
and it also represents contiuous spectra of frequencies, like whole ranges of
tones or colours. In that respect it is often used for the description of a wide
range of physical phenomena.
In addition, especially in Quantum Mechanics, it is used to connect the
description of physical problems in position space with the corresponding
description in momentum space.

Definition

To keep things short at this stage, let us begin by defining the Fourier integral.
Fourier’s integral theorem states that functions f(x) enjoing the following
properties

• f(x) and f ′(x) are piecewise continuous in any finite interval, and
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• the integral of f(x) is absolutely convergent, i.e.

∞∫
−∞

dx|f(x)| = M , where |M | <∞ (3.1)

can be represented as

f(x) =

∞∫
0

dk [A(k) cos(kx) +B(k) sin(kx)] . (3.2)

Here, the coefficent functions read

A(k) =
1

π

∞∫
−∞

dx f(x) cos(kx)

B(k) =
1

π

∞∫
−∞

dx f(x) sin(kx) . (3.3)

It must be stressed, however, that the representation above holds true only
for points of continuity of f(x). If, in contrast, f(x) is discontinuous at a
point x, then the representation above will yield

lim
y→x+

f(y) + lim
y→x−

f(y)

2
=

∞∫
0

dk [A(k) cos(kx) +B(k) sin(kx)] . (3.4)

The similarity of the Fourier integral defined here with the Fourier series
considerred in the previous chapter is apparent - this is why more than often
the term Fourier expansion is used for both the discrete series and for the
integral presented here.

Equivalent forms & a simple motivation

There is a number of equivalent forms for the above Fourier integral, one of
which will be discussed below. As a side-product, some further motivation
for the Fourier integral and its specific form will emerge. It should be kept in
mind, however, that the following is just a sketch of a more formal derivation.
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The starting point of the reasoning is the Fourier series of a function f(x),

f(x) =
1

2L

L∫
−L

dz f(z) +
1

L

∞∑
m=1

cos
mπx

L

⎡
⎣ L∫
−L

dzf(z) cos
mπz

L

⎤
⎦

+
1

L

∞∑
m=1

sin
mπx

L

⎡
⎣ L∫
−L

dzf(z) sin
mπz

L

⎤
⎦ .

(3.5)

Combining two of the equations in Eq. (2.21), namely

cosϑ+ cosφ = 2 cos(ϑ+ φ) cos(ϑ− φ)

cos ϑ− cosφ = −2 sin(ϑ+ φ) sin(ϑ− φ) (3.6)

yields

cosα cosβ + sinα sin β = cos(α− β) (3.7)

and thus

f(x) =
1

2L

L∫
−L

dz f(z) +
1

L

∞∑
m=1

⎡
⎣ L∫
−L

dzf(z) cos
mπ(x− z)

L

⎤
⎦ . (3.8)

Consider now the case, where L→ ∞. Setting

k =
mπ

L
and Δk =

π

L
(3.9)

and using

cosα =
eiα + e−iα

2
(3.10)

yields

f(x) =
1

2L

L∫
−L

dz f(z) cos
mπ(x− z)

L

∣∣∣∣
m=0

+
1

2L

∞∑
m=1

⎡
⎣ L∫
−L

dzf(z)

(
cos

imπ(x− z)

L
+ cos

−imπ(x− z)

L

)⎤⎦ ,
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allowing to write

f(x) =
1

2L

∞∑
m=0

⎡
⎣ L∫
−L

dzf(z)

(
exp

imπ(x− z)

L
+ exp

−imπ(x− z)

L

)⎤⎦ .

In other words, the sum stretches now from 0 rather than from 1 to infinity.
Then, transforming the exponentials back to cosines,

f(x) −→
∞∑
m=0

Δk

π

∞∫
−∞

dzf(z) cos[k(x− z)]

Δk→0−→ 1

π

∞∫
0

dk

∞∫
−∞

dzf(z) cos[k(x− z)] . (3.11)

Employing symmetry arguments, i.e. cos(−x) = cosx, this can be cast into

f(x) =
1

2π

∞∫
−∞

dk

∞∫
−∞

dzf(z) cos[k(x− z)] . (3.12)

Using again the identity

cos(α− β) = cosα cosβ + sinα sin β (3.13)

yields the desired result.
It is straightforward to convince oneself that application of the same relations
of sine and cosine function will yield the original form of the Fourier integral
above.

Complex form

At this point it is worthwhile to notice that the integrand above, f(z) cos[k(x−
z)] is an even function of k and, hence, yields a non-vanishing contribution
when integrated over k. In contrast, f(z) sin[k(x− z)] is an odd function in
k, yielding a zero result after integration over k. Therefore, there’s no harm
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in adding, say, f(z)i sin[k(x− z)] to the integrand above. Thus,

f(x) =
1

2π

∞∫
−∞

dk

∞∫
−∞

dzf(z) cos[k(x− z)]

=
1

2π

∞∫
−∞

dk

∞∫
−∞

dzf(z) {cos[k(x− z)] + i sin[k(x− z)]}

=
1

2π

∞∫
−∞

dk

∞∫
−∞

dzf(z) exp[ik(x− z)] =
1

2π

∞∫
−∞

dkeikx
∞∫

−∞

dzf(z)e−ikz .

(3.14)

Thus, in its complex form, the Fourier transform can be written as

f(x) =
1

2π

∞∫
−∞

dkeikx
∞∫

−∞

dzf(z)e−ikz ≡ 1

2π

∞∫
−∞

dkeikxF (k) .

(3.15)

Due to its definition, the Fourier transform

F (k) =

∞∫
−∞

dzf(z)e−ikz (3.16)

enjoys the following property

F (−k) = F ∗(k) , (3.17)

where the ∗ denotes complex conjugation, i.e. the operation i→ −i.

3.1.2 Detour: The δ-function

Let’s go back to the derivation above, specifically, consider

f(x) =
1

2π

∞∫
−∞

dk

∞∫
−∞

dzf(z) exp[ik(x− z)]

=

∞∫
−∞

dz f(z)

⎧⎨
⎩ 1

2π

∞∫
−∞

dk eik(x−z)

⎫⎬
⎭ (3.18)
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Apparently, the expression in the curly brackets depends on the difference z−
x; morevore it obviously projects out the value of f(z = x) in the remaining z
integral. This is exactly the behaviour of Dirac’s δ-function (which in fact for
mathematicians is a distribution rather than a function). It has the property
that

∞∫
−∞

dz f(z)δ(x− z) = f(x) , (3.19)

if f is continuous at the point x. Anyway, written in this fashion, the way
the δ-function behaves becomes more obvious: it acts under integration in
the same way a Kronecker-δ does under summation.
To properly define the δ function:

b∫
a

dx f(x)δ(x− y) =

{
f(y) if y ∈ [a, b]
0 else .

(3.20)

Representations

The form given above in the curly brackets serves as one way (among others)
of representing this δ-function:

δ(x) =
1

2π

∞∫
−∞

dk eikx . (3.21)

It must be stressed, however, that anything said here about this function is
valid only under an integration over x.
There’s yet another way to look at it. To this end, consider a sequence of
δn(z − x) defined through

δn(z − x) =
sin[n(z − x)]

π(z − x)
=

1

2π

n∫
−n

dk eik(z−x) . (3.22)

With some effort, it can be shown that

f(x) = lim
n→∞

∞∫
−∞

dz f(z)δn(z − x) . (3.23)
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Taking this as a starting point, inserting the definition of the δn from above,
and reshuffling the order of integration yields

f(x) =
1

2π
lim
n→∞

∞∫
−∞

dz f(z)

n∫
−n

dk eik(z−x)

=
1

2π
lim
n→∞

n∫
−n

dk

∞∫
−∞

dz f(z)eik(z−x) =
1

2π

∞∫
−∞

dke−ikx
∞∫

−∞

dz f(z)eikz ,

(3.24)

exactly the form of the Fourier integral encountered in Eq. (3.14).

Important properties

The first property, concerns the integral over a product of a function and the
derivative of the δ-function. Understanding the δ function with the help of
the representation above, it is clear that partial integration can be applied,
leading to ∫

dxf(x)δ′(x− a) = −f ′(a) . (3.25)

If the argument of the δ-function itself is again a function, say g(x), then

∞∫
−∞

dx f(x)δ(g(x)) =
∑
xi

∣∣∣∣∣
[
dg(x)

dx

]
x=xi

∣∣∣∣∣
−1

f(xi) , (3.26)

where the xi are the (simple) zeroes of g(x): g(xi) = 0. In particular,

∞∫
−∞

dx f(x)δ(x2 − a2) =
f(x− a) + f(x+ a)

2|a| . (3.27)

In more dimensions, the δ-function is just the product of δ-functions in the
corresponding dimensions:

δ(�x) = δ(x)δ(y)δ(z) . (3.28)
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3.1.3 Fourier transforms

Fourier transforms and their inverse

In the previous section the Fourier integral has been discussed; in its complex
form it has been given by

f(x) =

∞∫
−∞

dk F (k)eikx , (3.29)

where the coefficient function F (k) has been defined through

F (k) =
1

2π

∞∫
−∞

dx f(x)e−ikx . (3.30)

In order to pronounce the symmetry of the two forms, the normalisation
factor 1/2π neccessary to go from arguments x to the arguments k and back,
can be re-distributed. The weay how to that is purely conventional, any
choice will do, as long as one sticks to it. A natural choice is to distribute it
evenly between the two:

f(x) =
1√
2π

∞∫
−∞

dk F (k)eikx

F (k) =
1√
2π

∞∫
−∞

dx f(x)e−ikx . (3.31)

This is actually the choice that will be used in the following.
In any case, the function F (k) is known as the Fourier transform of f(x),
and, vice versa, f(x) is the Fourier transform of F (k).

A cool example

Consider the function

f(x) =

{
1 for |x| < a
0 for |x| > a ,

(3.32)
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where a > 0. Its Fourier transform is

F (k) =
1√
2π

∞∫
−∞

dxf(x)e−ikx

=
1√
2π

a∫
−a

dxe−ikx =
1√
2π

e−ikx

−ik
∣∣∣∣
a

−a

=
1√
2π

2 sin(ka)

k
if k �= 0 . (3.33)

For k = 0, F (k) = 2a/
√

2π can be obtained by taking the limit and applying
the rule of l’Hopital.
So far, so good. But how can this result be used for something more interest-
ing? After all, the title of this paragraph is “A cool example”. To see this,
remember the inverse Fourier transform. It connects the integral

f(x) =
1√
2π

∞∫
−∞

dkF (k)eikx

=
1

2π

∞∫
−∞

dk
2 sin(ka)

k
eikx =

⎧⎨
⎩

1 for |x| < a
1/2 for |x| = a
0 for |x| > a ,

(3.34)

with a finite value. The catch here is that there seems to be a pole at k = 0.
To proceed, let us go back to the inverse Fourier transform and replace the
exponential first with sines and cosines:

f(x) =
1

2π

∞∫
−∞

dk
2 sin(ka)

k
eikx =

1

2π

∞∫
−∞

dk
2 sin(ka)

k
[cos(kx) + i sin(kx)]

=
1

2π

∞∫
−∞

dk
2 sin(ka) cos(kx)

k
(3.35)

because the integrand in the second term is an odd function of k. This implies
that

∞∫
−∞

dk
sin(ka) cos(kx)

k
=

⎧⎨
⎩

π for |x| < a
π/2 for |x| = a
0 for |x| > a .

(3.36)
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Choosing now x = a, using

sin(ka) cos(ka) =
1

2
[sin(ka− ka) + sin(ka+ ka)] =

sin(2ka)

2
(3.37)

and employing the symmetry of the integral implies that

π =

∞∫
0

dk
sin(ka) cos(ka)

k
=

∞∫
0

dk
sin(2ka)

2k
(3.38)

and hence

π

2
=

∞∫
0

dk
sin(ka)

k
. (3.39)

So far, a > 0 has been assumed. Similar reasoning shows that for a < 0, the
value of the integral merely changes sign and therefore

∞∫
0

dk
sin(ka)

k
=

{
+π

2
for a > 0

−π
2

for a < 0

}
=
π

2
[Θ(a) − Θ(−a)] . (3.40)

Fourier Sine and Cosine transforms

Similar to the case of Fourier series, it is tempting to use the symmetry prop-
erties of the function f(x) in order to alleviate the Fourier transformation;
the symmetry in question is, of course, the parity of the function.
For even or odd functions f±(x) (i.e. functions with positive or negative
parity), it is sufficient to consider Fourier Cosine or Fourier Sine Trans-
forms, respectively. They are given by

f+(x) =
1√
2π

∞∫
−∞

dk F+(k) cos(kx) =
2√
2π

∞∫
0

dk F+(k) cos(kx)

F+(k) =
1√
2π

∞∫
−∞

dk f+(x) cos(kx) =
2√
2π

∞∫
0

dk f+(x) cos(kx)

(3.41)
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and

f−(x) =
1√
2π

∞∫
−∞

dk F−(k) sin(kx) =
2√
2π

∞∫
0

dk F−(k) sin(kx)

F−(k) =
1√
2π

∞∫
−∞

dk f−(x) sin(kx) =
2√
2π

∞∫
0

dk f−(x) sin(kx)

(3.42)

However, there are cases, discussed below, where Fourier Sine and Cosine
Transforms may be sensible independent of the parity of the function.

Example:

• The Fourier Cosine Transform of

f(x) = e−mx , with m > 0 (3.43)

is given by

Fc(k) = F+(k) =

√
2

π

∞∫
0

dxe−mx cos(kx)

=
1√
2π

∞∫
0

dxe−mx[eikx + e−ikx]

= − 1√
2π

[
e−(m−ik)x

m− ik
+
e−(m+ik)x

m+ ik

]∞
0

=

√
2

π

m

m2 + k2
. (3.44)

This can be used to show that
∞∫

0

dk
cos(kx)

m2 + k2
=

√
π

2

1

m

√
2

π

∞∫
0

dk
m cos(kx)

m2 + k2
=

π

2m
e−mx ,

(3.45)

where in the last transformation the inverse Fourier Transformation
has been used.

With similar tricks a large number of integrals involving trigonometric
functions can be solved.
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Parseval’s identity, once again

In Sec. 2.4.1 Parseval’s identity for Fourier series has been discussed. In this
section, an analogous expression for Fourier transforms will be presented:
If F (k) and G(k) are Fourier transforms of f(x) and g(x), respectively, then

∞∫
−∞

dxf(x)g(x)

=

∞∫
−∞

dx

⎧⎨
⎩
⎡
⎣ 1√

2π

∞∫
−∞

dkF (k)eikx

⎤
⎦
⎡
⎣ 1√

2π

∞∫
−∞

dk′G(k′)eik
′x

⎤
⎦
⎫⎬
⎭

=
1

2π

∞∫
−∞

dkdk′F (k)G(k′)

∞∫
−∞

dxei(k+k
′)x .

At this point, it is worthwhile to remember the representations of the δ-
function to yield

∞∫
−∞

dxf(x)g(x) =
1

2π

∞∫
−∞

dkdk′F (k)G(k′)δ(k + k′)

=
1

2π

∞∫
−∞

dkF (k)G(−k) =
1

2π

∞∫
−∞

dkF (k)G∗(k) , (3.46)

where the ∗ denotes the complex conjugate, obtained by replacing i with −i.
In particular, if f(x) = g(x) is a real function, then

∞∫
−∞

dx|f(x)|2 =
1

2π

∞∫
−∞

dk|F (k)|2 . (3.47)

74



Convolution theorem

In a similar fashion, the convolution theorem can be proved. A convolution
of two functions, (f ∗ g)(x) is defined through

(f ∗ g)(x) ≡
∞∫

−∞

dyf(y)g(x− y) . (3.48)

The Fourier Transform of such a convolution reads

(F ∗G)(k) = (2π)F (k)G(k) . (3.49)

To see this consider

(2π)F (k)G(k) =
2π

2π

∞∫
−∞

dyeikyf(y)

∞∫
−∞

dzeikzg(z)

=

∞∫
−∞

dydzeik(y+z)f(y)g(z) (3.50)

and transform from y, z to x = y + z, y. Then

(2π)F (k)G(k) =

∞∫
−∞

dxdyeikxf(y)g(x− y)

=

∞∫
−∞

dxeikx

⎡
⎣ ∞∫
−∞

dyf(y)g(x− y)

⎤
⎦

=

∞∫
−∞

dxeikx(f ∗ g)(x) = (F ∗G)(k) . (3.51)

In other words, up to a factor of 2π the Fourier Transform of a convolu-
tion of two functions equals the product of their Fourier Transforms taken
individually,

(F ∗G)(k) = 2πF (k)G(k) . (3.52)
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3.2 Applications

3.2.1 Finite wave train

An important application of Fourier transforms is the resolution of a finite
pulse into a continous spectrum of sinusoidal waves. To highlight this, imag-
ine an infinite wave train with frequency ω0 is cut such that

f(t) =

{
sin(ω0t) for |t| < nπ

ω0

0 else .
(3.53)

This corresponds to cutting out n cyxcles of the original wave train.
Since, obviously, f(t) is odd, it is sufficient to analyse its Fourier sine trans-
form, given by

F−(ω) =

√
2

π

∞∫
0

dt sin(ωt)f(t)

=

√
2

π

nπ/ω0∫
0

dt sin(ωt) sin(ω0t)

=
1√
2π

nπ/ω0∫
0

dt [cos(ω − ω0)t− cos(ω + ω0)t]

=
1√
2π

⎡
⎢⎢⎣

sin
nπ(ω − ω0)

ω0

ω − ω0
−

sin
nπ(ω + ω0)

ω0

ω + ω0

⎤
⎥⎥⎦ . (3.54)

It is quite interesting, how this depends on frequency: For ω = ω0 + δ and δ
small compared to ω and ω0, the first term dominates. Then

F−(ω) ≈ 1√
2πδ

sin
nπδ

ω
, (3.55)

yielding zeroes for

δ = ω − ω0 = ±ω
n
, ±2ω

n
, . . . . (3.56)
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In fact, this corresponds very well to the amplitude curve for the single slit
diffraction pattern, exhibiting the same zeroes. It is worth noting that the
maximum is given for δ = 0, i.e. for a resonance. In this case,

F−
max(ω) =

nπ√
2πω

. (3.57)

In any case, it is tempting to take the dfistance to the first zero as a measure
for the spread of the wave pulse. It is given by

Δω =
ω

n
(3.58)

and is small for large trains and large for small trains.

3.2.2 Infinite string

Sketching the physical problem

Consider an infinitely long string, stretched along the x-axis. Displacements,
say in y-direction at one point of this string will then propagate along it,
such that they satisfy a wave equation with

1

α2

∂2y

∂t2
=
∂2y

∂x2
. (3.59)

Here, α plays the role of an inverse wave velocity.
A simple way to initiate a wave on this string is to just displace it at some
time t = 0 according to a function y(x, 0) = f(x) with ∂y(x, 0)/∂t = 0. It
makes perfect sense to assume that this initial displacement is of only limited
amplitude, i.e. |y(x, t) < M .

General solution

To find a general solution, let’s again use a separation ansatz,

y(x, t) = X(x)T (t) =
[
A+(k)eikx + A−(k)e−ikx

] [
B+(ω)eiωt +B−(ω)e−iωt

]
,(3.60)

where, in principle the coefficients A± and B± are functions of k and ω, re-
spectively. However, plugging this into the differential equation above yields

ω2

α2
= k2 . (3.61)
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In other words,

1

α
=
k

ω
. (3.62)

Since k and ω are connected by a mere constant, the dependence on the
former can easily be replaced by a dependence on the latter (or vice versa).

Including boundary conditions

The boundary conditions read

v(x, 0) = f(x) =
[
A+(k)eikx + A−(k)e−ikx

] [
B+(k) +B−(k)

]
vt(x, 0) = 0 =

[
A+(k)eikx + A−(k)e−ikx

]
iω

[
B+(k) − B−(k)

]
,(3.63)

yielding

B+(k) = B−(k) = B(k) (3.64)

and, renaming A±(k) → A±(k) = B(k)A±(k) yields

f(x) = A+(k)eikx + A−(k)e−ikx = X(x) (3.65)

and something like

y(x, t) = f(x) cos(kαt) . (3.66)

This already looks very nice, but there’s even more that can be gained. In
order to do so, let us Fourier expand f(x):

f(x) =
1√
2π

∞∫
−∞

dk [C(k) cos(kx) + S(k) sin(kx)] (3.67)

with

C(k) =
1√
2π

∞∫
−∞

dxf(x) cos(kx)

S(k) =
1√
2π

∞∫
−∞

dxf(x) sin(kx) . (3.68)
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Putting everything together yields

y(x, t) =
1

2π

∞∫
−∞

dk

∞∫
−∞

dx′f(x′) [cos(kx) cos(kx′) + sin(kx) sin(kx′)] cos(kαt) .

(3.69)

Employing, once more,

cosα cos β + sinα sin β = cos(α− β) , (3.70)

this yields

y(x, t) =
1

2π

∞∫
−∞

dk

∞∫
−∞

dx′f(x′) cos[k(x− x′)] cos(kαt)

=
1

4π

∞∫
−∞

dk

∞∫
−∞

dx′f(x′) {cos[k(x− x′ + αt)] + cos[k(x− x′ − αt)]} ,

(3.71)

where in the last step

cosα cosβ =
1

2
[cos(α− β) + cos(α + β)] (3.72)

has been used. Changing the order of integration results in

y(x, t) =
1

4π

∞∫
−∞

dx′
∞∫

−∞

dkf(x′) cos[k(x− x′ + αt)]

+
1

4π

∞∫
−∞

dx′
∞∫

−∞

dkf(x′) cos[k(x− x′ − αt)]

=
1

2
f(x+ αt) +

1

2
f(x− αt) . (3.73)

This last line shows that, if the string is distorted for instance by a δ-like
“kick”, this kick will propagate with half the amplitude to the left and the
right.
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3.3 Green functions

Green functions are extremely useful in the solution of partial differential
equations, but of course they can also be used in order to solve ordinary
differential equations.

3.3.1 Green function for the driven harmonic oscillator

What is the Green function?

This will be discussed employing the example of a driven harmonic oscillator.
Ignoring damping, the driven harmonic oscialltor is described by

y′′ + ω2y = f(t) . (3.74)

Let us discuss the case where the oscillator initially is at rest, i.e.

y(0) = y′(0) = 0 . (3.75)

Since the driving force f(t) can be rewritten as a sequence of “kicks” through

f(t) =

∞∫
0

dt′f(t′)δ(t− t′) , (3.76)

it is sufficient to construct the most general solution for

y′′ + ω2y = δ(t− t′) (3.77)

instead. Denoting this solution by G(t, t′), i.e.

d2G(t, t′)
dt2

+ ω2G(t, t′) =

(
d2

dt2
+ ω2

)
G(t, t′) = δ(t− t′) (3.78)

the true solution y(t) can be obtained by “adding up the kicks”,

y(t) =

∞∫
0

dt′G(t, t′)f(t′) . (3.79)
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In order to see this, insert this form of y(t) into the original differential
equation:

y′′(t) + ω2y(t) =

(
d2

dt2
+ ω2

) ∞∫
0

dt′G(t, t′)f(t′)

=

∞∫
0

dt′
(

d2

dt2
+ ω2

)
G(t, t′)f(t′) =

∞∫
0

dt′δ(t− t′)f(t′) = f(t) .

(3.80)

The function G(t, t′) is called the Green function of the problem. It is the
response of the system to a unit impulse at t = t′.
It is quite simple to show that

G(t, t′) = G(t− t′) =

{
0 for 0 < t < t′

sin[ω(t− t′)]
ω

for t′ < t

=
sin[ω(t− t′)]

ω
Θ(t− t′) (3.81)

is a solution of (
d2

dt2
+ ω2

)
G(t, t′) = δ(t− t′) . (3.82)

For 0 < t < t′ (
d2

dt2
+ ω2

)
G(t, t′) = 0 , (3.83)

because in iths case, G(t− t′) = 0, whereas for t′ < t(
d2

dt2
+ ω2

)
G(t, t′) =

(−ω2 + ω2
)
G(t, t′) = 0 , (3.84)

as demanded.

Explicit construction of the Green function

But how can such a solution be constructed? In order to do so, let us Fourier
transform the full equation. As has been seen in Sec. 3.1.2, a representation
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of the δ-function is given by the exponential

δ(t− t′) =
1

2π

∞∫
−∞

dEeiE(t−t′) =
1√
2π

∞∫
−∞

dEeiE(t−t′)Δ(E) (3.85)

such that its Fourier transform Δ(E) is readily identified with 1/
√

2π. For
the l.h.s. of Eq. (3.78), it is useful to realise first that it must be a function
of t − t′, since also the r.h.s. of this equation is a function of t − t′. Then,
Fourier transforming G(t, t′) = G(t− t′) yields

G(t− t′) =
1√
2π

∞∫
−∞

dEeiE(t−t′)G(E) . (3.86)

Plugging this into the equation above results in(−E2 + ω2
)
G(E) = 1/

√
2π (3.87)

and thus

G(E) = − 1√
2π

1

E2 − ω2
. (3.88)

This now needs to be inserted into the equation for G(t− t′):

G(t− t′) = − 1

(
√

2π)2

∞∫
−∞

dE
eiE(t−t′)

E2 − ω2

= − 1

2π

∞∫
−∞

dE
1

2ω

[
eiE(t−t′)

E − ω
− eiE(t−t′)

E + ω

]

= − 1

4πω

∞∫
−∞

dy

[
eiy(t−t

′)eiω(t−t′)

y
− eiy(t−t

′)e−iω(t−t′)

y

]

= −2i sin[ω(t− t′)]
4πω

∞∫
−∞

dy
eiy(t−t

′)

y
. (3.89)
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The remaining integral is, formally speaking, ill-defined. For our purpose,
however, it suffices to realise that the integral of the δ-function is the Heavyside-
or Θ-function1,

Θ(x) =

∫
dxδ(x) . (3.94)

Adding in one of the representations of the δ-function, namely

δ(t− t′) =
1

2π

∞∫
−∞

dy eiy(t−t
′) (3.95)

immediately shows that

i

∞∫
−∞

dy
eiy(t−t

′)

iy
= i

∞∫
−∞

dy

∫
d(t− t′)eiy(t−t

′)

= 2πi

∫
d(t− t′)δ(t− t′) = 2πiΘ(t− t′) , (3.96)

1Alternatively, it can be done by help of residues,

∞∫
−∞

dy
eiy(t−t′)

y
= 2πi

k∑
ν=1

Res

[
eiy(t−t′)

y
; yν

]
, (3.90)

where the sum stretches over all zeroes of the function (i.e. over the zero at y = 0), and
the residuum is given by

Res [f(x); xν ] =
1

(m − 1)!
lim

x→xν

dm−1[(x − xν)mf(x)]
dxm−1

. (3.91)

In the case considered here,

Res

[
eiy(t−t′)

y
; 0

]
=

1
0!

lim
y→0

d0[(y − 0)1 eiy(t−t′)
y ]

dx0
= lim

y→0
eiy(t−t′) = 1 . (3.92)

Then,

∞∫
−∞

dy
eiy(t−t′)

y
= 2πi (3.93)
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and thus

G(t− t′) = −2i sin[ω(t− t′)]
4πω

2πiΘ(t− t′) =
sin[ω(t− t′)]

ω
Θ(t− t′) , (3.97)

as advertised.

Using the Green function

Let us go back to Eq. (3.79),

y(t) =

∞∫
0

dt′G(t, t′)f(t′) =

t∫
0

dt′
sin[ω(t− t′)]

ω
f(t′) (3.98)

after the form of the Green function of the driven harmonic oscillator has
been inserted, cf. Eq. (3.81).
This enables us to immedaitely write the solution for the driving force

f(t) = sin(ω0t) for t > 0 , (3.99)

where again the boundary conditions y(0) = y′(0) = 0 have been employed.
It reads

y(t) =

t∫
0

dt′
sin[ω(t− t′)]

ω
sin(ω0t

′)

=
1

2ω

t∫
0

dt′ {cos[ω(t− t′) − ω0t
′] − cos[ω(t− t′) + ω0t

′]}

=
1

2ω

[
−sin[ωt− (ω + ω0)t

′]
ω + ω0

+
sin[ωt− (ω − ω0)t

′]
ω − ω0

]t
0

=
1

2ω

[
sin(ω0t) + sin(ωt)

ω + ω0

+
sin(ω0t) − sin(ωt)]

ω − ω0

]

=
1

ω

⎡
⎢⎣sin

(ω + ω0)t

2
cos

(ω − ω0)t

2
ω + ω0

−
sin

(ω − ω0)t

2
cos

(ω + ω0)t

2
ω − ω0

⎤
⎥⎦

(3.100)

It is tedious but simple to prove that this is indeed a solution to the problem.
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