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PQM Supplementary Notes: Quantum
Mechanics with Wavefunctions

(material from Part IB Quantum Mechanics, based on notes by Dr J.M. Evans)

1 Wavefunctions and Stationary States

The quantum mechanics of a single particle, or beam of particles, is described by a complex
wavefunction Ψ(x, t). Physical quantities become operators acting on the wavefunction; in
particular

Momentum : p → −ih̄∇ , Energy or Hamiltonian : H =
p2

2m
+V (x) → −

h̄2

2m
∇2+V (x)

Dynamics (evolution in time) is governed by the time-dependent Schrödinger equation

ih̄
∂Ψ

∂t
= HΨ = −

h̄2

2m
∇2Ψ + V (x)Ψ

Physical predictions and interpretations involve the probability density and probability
current

ρ(x, t) = |Ψ(x, t)|2 and j = −
ih̄

2m
(Ψ∗∇Ψ − Ψ∇Ψ∗)

and also the concepts of eigenvalue λ and eigenstate χ for an operator Q, defined by

Qχ = λχ .

Stationary states are solutions of the Schrödinger equation of the form

Ψ(x, t) = ψ(x)e−iEt/h̄ with Hψ(x) = Eψ(x) ,

the time-independent Schrödinger equation, and it follows that ρ = |Ψ|2 = |ψ|2 is indepen-
dent of time. Both Ψ and ψ are eigenstates of H and the eigenvalues E are the allowed
energy levels of the system. For a potential with V (x) → 0 as |x| → ∞ there are two kinds
of stationary state solutions.
(i) Bound states: E < 0 and discrete, or quantized, energy levels. The wave function is
normalisable so we can choose ∫

d3x |Ψ|2 = 1

and interpret ρ = |Ψ|2 as the probability density for the position of a single particle,
corresponding to a bounded classical orbit.
(ii) Scattering states: E > 0 and continuous energy levels. The wave function is not
normalisable, but the solution can be interpreted in terms of beams of particles with flux
(the number crossing unit area per unit time) given by j.

2 Observables and Measurements in General

A complex inner-product on wave functions is defined by

(Φ,Ψ) =
∫

d3xΦ(x, t)∗Ψ(x, t)
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It is (anti)linear in its arguments, hermitian, and positive definite:

( Φ, α1Ψ1 +α2Ψ2 ) = α1(Φ,Ψ1)+α2(Φ,Ψ2) , (β1Φ1 +β2Φ2,Ψ) = β∗
1(Φ1,Ψ)+β∗

2(Φ2,Ψ)

(Φ,Ψ) = (Ψ,Φ)∗ , (Ψ,Ψ) ≥ 0 and = 0 ⇐⇒ Ψ = 0 .

Given any linear operator Q, its hermitian conjugate, or adjoint, is an operator Q† defined
by

(Φ, Q†Ψ) = (QΦ,Ψ) = (Ψ, QΦ)∗ for all Ψ, Φ .

Measurable physical quantities or observables correspond to operators which are hermitian,
meaning that Q = Q† (e.g. position, momentum, energy, angular momentum). Q hermitian
implies

• The eigenvalues of Q are real.

• Eigenstates of Q corresponding to distinct eigenvalues are orthogonal.

Any wavefunction can be expanded as a sum of eigenstates of Q. These results ensure the
consistency of the following postulates for physical measurements. Assume, for simplicity,
that each eigenvalue λ of Q has a normalized eigenstate χ which is unique (up to a phase).
Then:

• The outcome of a measurement of Q is some eigenvalue λ.

• The result λ is obtained with probability |(χ, Ψ)|2, where Ψ is the normalized state
of the system

immediately before the measurement is made.

• The effect of the measurement is to force the system into the eigenstate χ: this is the
new state immediately after the measurement is made.

The expectation value (mean) and uncertainty (variance) when measuring Q are

〈Q〉Ψ = (Ψ, QΨ) , (∆Q)2
Ψ = 〈 (Q − 〈Q〉)2〉Ψ = 〈Q2〉Ψ − 〈Q〉2Ψ

When interpreting probabilities in terms of many, repeated measurements of Q, it is im-
portant to realize that the system must be prepared in the same state Ψ before each
measurement.

Observables A and B can be simultaneously measured if and only if their commutator
[A,B] = AB − BA vanishes. A related result, valid in any state Ψ, is

∆A ∆B ≥
1

2
| 〈 [A,B] 〉 |

In particular, the basic commutation relation for position and momentum operators in one
dimension

[x, p] = ih̄ ⇒ ∆x ∆p ≥ h̄/2

which is a mathematically precise formulation of the Uncertainty Principle.
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3 The Harmonic Oscillator

The harmonic oscillator in one dimension is a particle with Hamiltonian

H =
1

2m
p2 +

mω2

2
x2

Apart from piecewise flat potentials (steps, wells, barriers, δ-functions, etc.) this is the
simplest problem which can be solved exactly. Introducing a dimensionless variable y =
(mω/h̄)1/2x, the time-independent Schrödinger equation can be written

f ′′ − 2yf ′ + (2E − 1)f = 0 where ψ(x) = e−y2/2f(y) and E = h̄ωE .

The exponential factor is motivated by the large y behaviour of the equation and there
is, indeed, a normalizable solution with f constant and E = 1/2. More general solutions
are obtained by expanding f(y) as a power series: the resulting recurrence relation for
the coefficients reveals that f(y) will grow like ey2

for large y, rendering the solution non-
normalizable, unless the series terminates, which restricts the values of E . The resulting
normalizable solutions are of the form

f(y) = cnHn(y) , E = n + 1/2 , n = 0, 1, 2, . . .

where Hn are polynomials of degree n, the Hermite polynomials, and cn are normalization
constants. The energy levels of the oscillator are E = h̄ω(n + 1/2).

Angular Momentum and Spherically Symmetric
Potentials

(more material from Part IB Quantum Mechanics)

4 Angular Momentum and Spherical Harmonics

The orbital angular momentum operators are defined by

L = x × p = −ih̄x ×∇ or Li = εijkxjpk = −ih̄εijkxj
∂

∂xk

and L2 = L2 = LiLi .

These operators are hermitian and obey

[Li, Lj ] = ih̄εijkLk and [L2, Li] = 0 .

Different components of angular momentum cannot be measured simultaneously, but a
given component, L3 say, and the total angular momentum, L2, can.

In spherical polars (r, θ, φ) the angular momentum operators do not involve r:

L3 = −ih̄
∂

∂φ
, L± = L1±iL2 = ±h̄e±iφ

( ∂

∂θ
±i cot θ

∂

∂φ

)

, L2 = −h̄2
( ∂2

∂θ2
+cot θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2

)

.

Simultaneous eigenfunctions of L3 and L2 can be constructed by solving the differential
equations

L2Yℓm = h̄2ℓ(ℓ + 1)Yℓm , L3Yℓm = h̄mYℓm ,
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to obtain the spherical harmonic functions:

Yℓm(θ, φ) = cℓm eimφ Pm
ℓ (cos θ) with Pm

ℓ (u) = (1 − u2)|m|/2 d|m|

du|m|
Pℓ(u)

where Pℓ(u) are Legendre polynomials of degree ℓ, which obey Pℓ(−u) = (−1)ℓPℓ(u), and
Pm

ℓ (u) are called associated Legendre functions. The allowed eigenvalues are given by

ℓ = 0, 1, 2, . . . and m = 0, ±1, ±2, . . . , ±ℓ .

Note that m must be an integer to ensure the solution is periodic in φ with period 2π.
Other conditions on the eigenvalues arise from the termination of power series solutions to
prevent divergences at θ = 0, π or u = ±1.

5 Spherically Symmetric Potentials

The kinetic energy of a particle can be written

1

2m
p2 = −

h̄2

2m
∇2 = −

h̄2

2m

1

r

∂2

∂r2
r +

1

2mr2
L2 .

The L2 term is the rotational kinetic energy and involves the angular part of ∇2. If the
particle moves in a spherically symmetric potential V (r) then

H =
1

2m
p2 + V (r) ⇒ [Li, H] = [L2, H] = 0 .

Joint eigenstates ψℓm(x) with

Hψℓm = Eψℓm , L2ψℓm = h̄2ℓ(ℓ + 1)ψℓm , L3ψℓm = h̄mψℓm

can be found as separable wavefunctions

ψℓm(x) = R(r)Yℓm(θ, φ) with −
h̄2

2m

1

r

∂2

∂r2
(rR) +

( h̄2

2mr2
ℓ(ℓ + 1) + V (r)

)

R = ER

(rR(r) satisfies the radial Schrödinger equation). The energies E will depend on ℓ, in
general, but will be independent of m as a consequence of the rotational invariance of H.
Under spatial reflection

x 7→ −x or r 7→ r , θ 7→ π − θ , φ 7→ φ + π .

It follows from the definitions and properties above that

Yℓm(π − θ, φ + π) = (−1)ℓYℓm(θ, φ) and ψℓm(−x) = (−1)ℓψℓm(x) .

6 The Hydrogen(ic) Atom

The Coulomb potential for an electron of charge −e due to a nucleus of charge +Ze (at the
origin) is

V (r) = −
Ze2

4πǫ0r
.
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This is a hydrogenic, or hydrogen-like atom—for hydrogen itself, Z = 1. Following the
general approach to spherically symmetric potentials, we look for energy eigenstates with
definite values of ℓ and m. The solutions for the radial part of the wavefunction and the
corresponding energies are

Rnℓ(r) = Cnℓ exp(−Zr/na) rℓ L
(2ℓ+1)
n−ℓ−1(2Zr/na) , En = −

Z2

2n2

e2

4πǫ0a
,

where L(p)
q are associated Laguerre polynomials of degree q, Cnℓ are normalization constants,

a =
4πǫ0h̄

2

me2
, the Bohr radius , n = ℓ+1, ℓ+2, ℓ+3, . . . , the principal quantum number .

The solutions can be found using power series which, once again, must terminate in order
to give a physically sensible, normalizable wavefunction. It is a very special property of the
Coulomb potential that the energy En corresponding to Rnℓ is independent of ℓ.

In summary: the Hydrogenic wave functions and energies are

ψnℓm(x) = Rnℓ(r)Yℓm(θ, φ) , En = −
me4

32π2ǫ2
0h̄

2

Z2

n2
,

n = 1, 2, . . . ;
ℓ = 0, 1, . . . , n−1 ;

m = 0,±1,±2, . . . ,±ℓ .

The degeneracy of the energy level En is therefore

1 + 3 + . . . + (2n−1) = n2 ,

or double this if electron spin is taken into account.
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