
C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Mathematical Tripos IB

Michaelmas 2007

Quantum Mechanics

Professor N. Dorey

DAMTP, University of Cambridge

email: n.dorey@damtp.cam.ac.uk

Recommended books

• S. Gasiorowicz, Quantum Physics, Wiley 2003.

• P. V. Landshoff, A. J. F. Metherell and W. G. Rees, Essential Quantum Physics,

Cambridge University Press 1997.

• A. I. M. Rae, Quantum Mechanics, IOP Publishing 2002.

• L. I. Schiff, Quantum Mechanics, McGraw Hill 1968.

Useful more advanced references

• P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1967,

reprinted 2003.

• L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), But-

terworth Heinemann 1958, reprinted 2003.

For an alternative perspective see Chapters 1-3 of,

• R. P. Feynman, R. B. Leighton and M. Sands, The Feynman Lectures on Physics,

Volume 3, Addison-Wesley 1970.



C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Motivation

Successes of QM,

• Atomic structure → Chemistry

• Nuclear structure

• Astrophysics, Cosmology: Nucleosynthesis

• Condensed Matter: (semi-)conductors, insulators

• Optics: Lasers

Conceptual/philosophical aspects,

• Probabilistic not deterministic

• Role of observer

Mathematical aspects,

• States live in complex vector space

• Observables ←→ Operators

Non-commutative algebra

Outline

1) Introduction: the need for a quantum theory

2) Wave Mechanics I: Schrödinger equation and solutions

Scattering and bound state problems in one dimension

3) Operators and expectation values

Postulates of QM

Heisenberg uncertainty

4) Wave Mechanics II: Boundstate problems in three dimensions

The Hydrogen atom
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e−

Figure 1: Incident light expels electron from metal.

1 Introduction

QM introduces a single new constant of fundamental nature: Planck’s constant

~ = 1.055 × 10−34 Joule s

We will also use Planck’s original constant h = 2π~

Dimensions: [~] = ML2T−2 × T = ML2T−1

Photoelectric effect

• To liberate electron from metal requires energy E ≥ E0 > 0. Threshold energy E0 is

different for different metals.

• Shine monochromatic light at a metal plate (see Fig 1),

– Intensity I

– Angular frequency ω. Here ω = 2πc/λ where λ is the wavelength of the light.

Find,

1. Liberation of electron requires ω ≥ ω0 where,

~ω0 = E0

Independent of intensity, I

2. Number of electrons emitted ∝ I.

2
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e−

γ

Before After

Figure 2: Collision of photon and electron.

EK

ωω0

Figure 3: Plot of EK against ω

Explanation (Einstein 1905)

Electromagnetic radiation of angular frequency ω made up of discrete quanta of energy,

E = ~ω

Quanta known as photons (denoted γ). Intensity of light corresponds to the total number of

photons emitted per second

Basic process: photon absorbed by electron (see Figure 2).

• Conservation of energy implies,

EK = ~ω − E0 = ~(ω − ω0)

where EK is the kinetic energy of the ejected electron (See Figure 3). This relation

agrees well with experiment.

• Number of electrons emitted ∼ Number of collisions ∼ Number of incident photons ∼
Intensity, I.

Wave-particle duality

Light exhibits wave-like properties,

3
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• Refraction

• Interference

• Diffraction (see Appendix)

• Polarization

Beam of monochromatic light corresponds to plane waveform1,

E, B ∼ ℜ [exp (ik · x − iωt)]

describes light of wavelength λ = 2π/|k| Here k is the wave-vector and ω = c|k| is the

angular frequency.

However, light also some times acts like a beam of particles (photons),

• Photoelectric effect

• Spectral lines

Corresponding particle has energy, E = ~ω and momentum p = ~k.

Check: as we have ω = c|k|, we find that E = c|p| which is the correct dispersion relation

for a massless particle in Special Relativity.

The Hydrogen atom

Planetary model (see Fig 4),

• As me/mp ≃ 1/1837 << 1 treat proton as stationary.

• Attractive force, F , between electron and proton given by Coulomb’s law,

F = − e2

4πε0r2

where r is distance between the electron and proton. Minus sign denotes attractive

force. Here ε0 is the vacuum permittivity constant.

1The following equation indicates the x and t dependence of each of the components of the vector fields

E and B. ℜ denotes the real part of the expression in brackets.

4
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Figure 4: Planetary model of the Hydrogen atom.

• Assume electron follows circular orbit of radius r at speed v. Thus have centipetal

acceleration a = −v2/r. (Negative sign corresponds to acceleration towards center of

circle.) Newton’s second law implies,

F = − e2

4πε0r2
= me ×−v2

r

Can then express radius r of orbit in terms of angular momentum,

J = mevr (1)

as,

r =
4πε0J

2

mee2
(2)

• Electron energy,

E = KE + PE

=
1

2
mev

2 − e2

4πε0r
(3)

eliminating v and r using Eqns (1) and (2), we obtain,

E = − mee
4

32π2ε2
0J

2

In classical physics the angular mometum J can take any value which implies a continuous

spectrum of possible energies/orbits.

Problems

• Hot Hydrogen gas radiates at a discrete set of frequencies called spectral lines,

5
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Figure 5: Classical instability of the Hydrogen atom.

Empirical formula for emitted frequencies νmn labelled by two positive integers m >

n,

νmn = R0 c

(

1

n2
− 1

m2

)

(4)

where R0 ≃ 1.097 × 107 m−1 is known as the Rydberg constant.

• Electron in circular orbit experiences centripetal acceleration a = −v2/r. Classical

electrodynamics implies that accelerating electric charges radiate EM waves. Hence

the electron will lose energy and collapse into the nucleus (see Fig 5). This would mean

that the atom was highly unstable which obviously disagrees with observation.

Bohr postulate

These two problems are solved by a simple but rather ad hoc postulate,

• The angular momentum of the electron is quantized according to the rule,

J = n~

where n = 1, 2, 3, . . ..

Check dimensions: the angular momentum J = mevr has dimensions,

[J ] = M × LT−1 × L = ML2T−1 = [~]

6
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E

0

n = 1

n = 2

n = 3

Figure 6: Energy levels of the Hydrogen atom.

Consequences

• Quantized energy levels Setting J = n~ in equation (3), we immediately find a

discrete set of allowed energy levels, E1 < E2 < E3 . . . where,

En = − mee
4

32π2ε2
0~

2
× 1

n2

• Radii of orbit are quantized,

rn =
4πε0~

2

mee2
× n2 = n2r1

The radius of the lowest orbit,

r1 =
4πε0~

2

mee2
≃ 0.529 × 10−9 m (5)

is known as the Bohr radius.

• Spectral lines correspond to transitions between energy levels, electron emits a pho-

ton γ of frequency νmn

hνmn = ~ωmn = Em − En

thus we have,

νmn =
mee

4

8ε2
0h

3

(

1

n2
− 1

m2

)

(6)

we can check that,

mee
4

8ε2
0h

3c
≃ 1.097 × 107 m−1 ≃ R0

Thus (6) agrees with the empirical formula (4).

7
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Figure 7: Transition between energy levels.

⇒ Bohr postulates ”explain”

• stability of atoms

• observed spectral lines

Problems

• why/when do classical laws fail?

• why only circular orbits? What about elliptical orbits, orbits in different planes?

• fails for multi-electron atoms.

In fact Bohr model is not correct (but energy levels are).

de Broglie waves

We saw that EM waves of wavelength λ sometimes behave like particles of momentum,

p =
h

λ
(7)

L. de Broglie (1924) proposed that conversely particles such as e−, p+ sometimes exhibit

the properties of waves of wavelength,

λ = ~|k| =
h

p
(8)

where p = |p|

8
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Figure 8: De Broglie argument

Figure 9: Electron diffraction from a crystal

This idea leads directly to Bohr’s postulate.

• electron orbits should correspond to integer numbers of wavelengths (see Fig 8),

2πrn = nλ =
nh

p
=

nh

mev

⇒ rnmev =
nh

2π

⇒ J = n~

Experimental confirmation Davisson-Germer experiment electrons of energy E ≃
1eV = 1.6 × 10−19 J have de Broglie wavelength,

λ =
h

p
=

h√
2meE

∼ 10−9 m

are diffracted by atoms in a crystal (atomic spacing d ∼ 10−9 m). See Figure 9

9
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Figure 10: A double-slit experiment for electrons

Figure 11: Double-slit diffraction pattern: plot of N against x

Double slit experiment

The optical double-slit diffraction experiment is reviewed in the Appendix.

• A source of electrons creates a beam which is diffracted through two slits (see Figure

10)

• The electrons are detected at a screen on the other side of the slits.

• Detectors count number, N , of electrons detected as a function of the transverse co-

ordinate x. Resulting graph is shown in Figure 11. Identical to corresponding optical

diffraction pattern.

10
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Important points

• Diffraction effects are observed even when strength of the the beam is reduced so that

there is only a single electron passing through the apparatus at any one time.

• We cannot predict with certainty where a given electron will be detected.

• Over a long time the total number N detected as a function of x gives a probability

distribution for the position on the screen at which each electron is detected.

Suggests that the probability that the electron is detected at a particular point is given by

(amplitude)2 of a wave.

2 Wave mechanics I

Describe particle by introducing a complex wave-function,

ψ : R3 −→ C

such that the probability of finding a the particle in volume dV is,

|ψ(x)|2 dV

Thus we should impose normalization condition,

∫

R3

|ψ(x)|2 dV = 1

”The particle must be somewhere”

Then ρ(x) = |ψ(x)|2 is a probability density

11
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Slightly different formulation: Consider possible wavefunctions,

ψ : R3 −→ C

which are not identically zero. If,

∫

R3

|ψ(x)|2 dV = N < ∞

then we say that the wavefunction ψ(x) is normalisable. The corresponding normalised

wavefunction,

ψ̃(x) =
1√
N

ψ(x)

then obeys the normalisation condition,
∫

R3

|ψ̃(x)|2 dV = 1

Caveat For brevity we will not always denote a normalised wavefunction by ψ̃

Postulate Time evolution of wavefunction ψ(x, t) governed by the Schrödinger equa-

tion. For a non-relativistic particle of mass m moving in a potential U(x) this reads,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U(x)ψ (9)

• First order in t ⇒ ψ(x, t) uniquely determined by Eqn (9) and initial value ψ(x, 0)

• Second order in x. Asymmetry between x and t ⇒ Eqn (9) is non-relativistic.

Example Free particle ⇒ U(x) ≡ 0. Schrödinger equation becomes,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ (10)

Look for plane-wave solution,

ψ0(x, t) = A exp (ik · x − iωt) (11)

solves Eqn (10) provided we set,

ω =
~|k|2
2m

(12)

12
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Interpretation: use de Broglie relations for energy and momentum of the corresponding

particle,

E = ~ω , p = ~k

then, from (12), we find,

E =
|p|2
2m

which is the correct dispersion relation for a free non-relativistic particle.

However note that plane-wave solution is non-normalizable,

|ψ0|2 = ψ0ψ
∗
0 = |A|2

⇒
∫

R3

|ψ0|2 dV = |A|2
∫

R3

dV = ∞

We will discuss the correct resolution of this problem below.

Conservation of probability

Consider a wavefunction which is normalized at t = 0,

∫

R3

|ψ(x, 0)|2 dV = 1. (13)

Now allow ψ to evolve in time according to the Schrödinger equation (9).

We define,

ρ(x, t) = |ψ(x, t)|2

Thus, from eqn (13), ρ(x, 0) is a correctly normalized probability density. We will now show

that this remains true at all subsequent times, provided |ψ(x, t)| → 0 sufficiently fast as

|x| → ∞.

13
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Differentiating ρ wrt time we get,

∂ρ(x, t)

∂t
=

∂

∂t

(

|ψ|2
)

=
∂ψ

∂t
ψ∗ + ψ

∂ψ∗

∂t
(14)

Now use the Schrödinger equation and its complex conjugate,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U(x)ψ

−i~
∂ψ∗

∂t
= − ~2

2m
∇2ψ∗ + U(x)ψ∗ (15)

to eliminate time derivatives in (14) to obtain,

∂ρ

∂t
=

i~

2m

[

ψ∗∇2ψ − ψ∇2ψ∗
]

=
i~

2m
∇ · [ψ∗∇ψ − ψ∇ψ∗]

This yields the ”conservation equation”,

∂ρ

∂t
+ ∇ · j = 0 (16)

where we define the probability current,

j(x, t) = − i~

2m
[ψ∗∇ψ − ψ∇ψ∗]

• Consider a closed region V ⊂ R3 with boundary S, se Figure (12) The probability of

finding the particle inside V is,

P (t) =

∫

V

ρ(x, t) dV

and we find that,

dP (t)

dt
=

∫

V

∂ρ(x, t)

∂t
dV = −

∫

V

∇ · j dV = −
∫

S

j · dS

where the second and third equalities follow from Eqn (16)and Gauss’ theorem (also

known as the divergence theorem) respectively.

14
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V

S = ∂V

d~S

Figure 12: Gauss’ Theorem

Interpretation: ”Rate of change of the probability P (t) of finding the particle in

V ≡ total flux of the probability current j(x, t) through the boundary S”

Integrating Eqn (16) over R3,
∫

R3

∂ρ

∂t
= −

∫

R3

∇ · j dV

= −
∫

S2
∞

j · dS

where the second equality follows from Gauss’ theorem. Here S2
∞ is a sphere at infinity.

More precisely, let S2
R be a sphere in R3 centered at the origin having radius R. Then we

define,
∫

S2
∞

j · dS = lim
R→∞

∫

S2

R

j · dS

Provided that j(x, t) → 0 sufficiently fast as |x| → ∞, this surface term vanishes and we

find,

d

dt

∫

R3

ρ(x, t) dV =

∫

R3

∂ρ

∂t
dV = 0. (17)

If the initial wavefunction is normalized at time t = 0,
∫

R3

ρ(x, 0) dV =

∫

R3

|ψ(x, 0)|2 dV = 1,

then (17) implies that it remains normalised at all subsequent times,

∫

R3

ρ(x, t) dV =

∫

R3

|ψ(x, t)|2 dV

Equivalently ρ(x, t) is a correctly normalized probability density at any time t.

15
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Postulates of wave mechanics

• Any normalizable wavefunction ψ(x, t),

∫

R3

|ψ(x, t)|2 dV = N < ∞, (18)

(which is not identically zero), obeying the Schrödinger equation (9),

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U(x)ψ

corresponds to a possible state of the system.

• As before, the probability distribution for the particle position in this state is deter-

mined by the corresponding normalized wavefunction,

ψ̃(x) =
1√
N

ψ(x)

as ρ(x, t) = |ψ̃(x, t)|2

• Wave function ψα(x, t) = αψ(x, t) corresponds to the same state for all α ∈ C∗ =

C − {0}.

Check: ψα(x, t) obeys Schrödinger equation as ψ(x, t) does (by linearity of (9)) and

is also normalizable,

∫

R3

|ψα(x, t)|2 dV = |α|2
∫

R3

|ψ(x, t)|2 dV = |α|2N < ∞

corresponding normalised wavefunction,

ψ̃α(x, t) =
ψα(x, t)
√

|α|2N
=

α

|α| ψ̃(x, t) (19)

only depends on α through the complex phase α/|α| and therefore yields the same

probability distribution,

ρ(x, t) = |ψ̃α(x, t)|2 = |ψ̃(x, t)|2

for all values of α

16
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Principle of Superposition

• If ψ1(x, t) and ψ2(x, t) correspond to allowed states of the system then so does,

ψ3(x, t) = αψ1(x, t) + βψ2(x, t) 6= 0

for arbitrary complex numbers α and β.

Proof

– ψ3 satisfies (9) if ψ1 and ψ2 do.

– Also easy to check that ψ3 satisfies normalizability condition (18) if ψ1 and ψ2 do.

. . . To see this let
∫

R3

|ψ1|2 dV = N1 < ∞

∫

R3

|ψ2|2 dV = N2 < ∞

For any two complex numbers z1 and z2. The triangle inequality states that,

|z1 + z2| ≤ |z1| + |z2| (A)

also,

(|z1| − |z2|)2 ≥ 0 ⇒ 2|z1||z2| ≤ |z1|2 + |z2|2 (B)

Apply these relations with z1 = αψ1 and z2 = βψ2

∫

R3

|ψ3|2 dV =

∫

R3

|αψ1 + βψ2|2 dV

≤
∫

R3

(|αψ1| + |βψ2|)2 dV

=

∫

R3

(

|αψ1|2 + 2|αψ1||βψ2| + |βψ2|2
)

dV

≤
∫

R3

(

2|αψ1|2 + 2|βψ2|2
)

dV

= 2|α|2N1 + 2|β|2N2 < ∞ ¤

17
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• Comments marked by *....* are beyond the scope of the course but might be useful.

*The superposition principle implies that the states of a quantum system naturally

live in a complex vector space,

– Usually infinite dimensional.

– Extra structure: +ve definite inner product (+completeness2 ) ⇒ Hilbert space.

The relation between states and vectors has two subtleties. First, the ”zero vector”

ψ ≡ 0 does not correspond to a state of the system. Also the correspondence between

states and vectors is not one to one because, as explained above the vectors ψ and αψ

represent the same state for any non-zero complex number α. A more precise statement

is that states correspond to rays in Hilbert space. A ray, [ψ], is an equivalence class of

a vector ψ under the equivalence relation*,

ψ1 ∼ ψ2 iff ψ1 = αψ2 for some α ∈ C − {0}

Stationary states

Time-dependent Schrödinger equation,

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U(x)ψ

Seperation of variables,

ψ(x, t) = χ(x) e−iωt

Eliminate angular frequency ω using de Broglie relation E = ~ω to write,

ψ(x, t) = χ(x) exp

(

− iEt

~

)

(20)

Substituting for (20) for ψ in the Schrödinger equation yields the time-independent

Schrödinger equation,

− ~2

2m
∇2χ + U(x)χ = Eχ (21)

2This is a technical requirement for infinite sequences of vectors in a Hilbert space which demands that

the limit of the sequence, if it exists, is contained in the space.
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Remarks

• Typically (for boundstate problems) Eqn (21) has normalisable solutions only for cer-

tain allowed values of E.

• States of the special form (20) are known as stationary states. They are states of

definite energy E. We will refer to χ(x) as the stationary-state wavefunction in the

following.

• In a stationary state the position probability density,

ρ(x, t) = |ψ(x, t)|2 = |χ(x)|2

is time-independent.

• The general solution of the time-dependent Schrödinger equation is a linear superpo-

sition of stationary states,

ψ(x, t) =
∞

∑

n=1

anχn(x) exp

(

− iEnt

~

)

where χn(x) solve (21) with E = En and an are complex constants. In general this is

not a stationary state and thus does not have definite energy. Instead the probability

of measuring the particles energy as E = En is proportional to |an|2 (See Section 3).

Free particles

Free particle ⇒ U(x) ≡ 0. Stationary state wave function χ(x) satisfies time-independent

Schrödinger equation,

− ~2

2m
∇2χ = Eχ (22)

This equation has a plane-wave solution,

χ(x) = A exp(ik · x)

This satisfies (22) provided

E =
~2|k|2
2m

19
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• E only depends on |k| so there is a large degeneracy of states at each value of the

energy.

• Complete wave-function,

ψk(x, t) = χ(x) exp

(

− iEt

~

)

= A exp(ik · x) × exp

(

−i
~|k|2t
2m

)

coincides with our earlier result (11,12).

As before the plane-wave solution is non-normalizable and thus does not give an accept-

able probability density. There are several ways to resolve this problem. We will consider

two of these,

• The plane wave solution ψk is treated as a limiting case of a Gaussian wavepacket

describing a localized particle.

• The plane wave solution is interpreted as describing a beam of particles rather than

a single particle

The Gaussian wave-packet

Schrödinger equation for ψ(x, t) in one spatial dimension (x ∈ R)

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂x2
+ U(x)ψ

In one dimension we have a free particle stationary state,

ψk(x, t) = exp(ikx) × exp

(

−i
~k2t

2m

)

In one dimension the wavevector reduces to a single component k ∈ R.

As in the previous section we can construct new solutions of the Schrödinger by taking a

linear superposition,

ψ =
∑

n

an ψkn
(x, t)
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A

kk0

1/
√

σ

Figure 13: Gaussian distribution of wave numbers.

However, as k is a continuous variable we can also make a linear superposition by integration,

ψ(x, t) =

∫

dk A(k) ψk

=

∫

dk A(k) × exp(ikx) exp

(

−i
~k2t

2m

)

(23)

where A(k) should go to zero sufficiently fast that the integral exists.

The Gaussian wave packet corresponds to the choice,

A(k) = exp
[

−σ

2
(k − k0)

2
]

(24)

where σ > 0 which looks like a Gaussian distribution of wave numbers k centered at k = k0

with width ∼ 1/
√

σ (See figure (13)) We will now evaluate the resulting wave-function by

substituting (24) for A in (23),

ψ(x, t) =

∫ +∞

−∞

dk exp (F (k))

where the exponent in the integrand is,

F (k) = −σ

2
(k − k0)

2 + i

(

kx − ~k2

2m
t

)

= −1

2

(

σ +
i~t

m

)

k2 + (k0σ + ix)k − σ

2
k2

0
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Completing the square gives,

F (k) = −α

2

(

k − β

α

)2

+
β2

2α
+ δ

where

α = σ +
i~t

m
β = k0σ + ix δ = −σ

2
k2

0

Hence,

ψ(x, t) = exp

(

β2

2α
+ δ

)
∫ +∞

−∞

dk exp

(

−1

2
α

(

k − β

α

)2
)

= exp

(

β2

2α
+ δ

)
∫ +∞−iν

−∞−iν

dk̃ exp

(

−1

2
αk̃2

)

where k̃ = k − β/α and ν = ℑ[β/α]. The integral can be related to the standard Gaussian

integral (Eqn (119) in the Appendix) by a straightforward application of the Cauchy residue

theorem. An alternative, more elementary, approach to evaluating the integral is described

in the Appendix. The result is,

ψ(x, t) =

√

2π

α
× exp

(

β2

2α
+ δ

)

• This wavefunction decays exponentially at x → ±∞ and is therefore normalizable.

• The resulting position probability density is,

ρ(x, t) = |ψ̃(x, t)|2 = ψ̃(x, t)ψ̃∗(x, t)

where ψ̃ is the normalised wavefunction corresponding to ψ(x, t). After some algebra,

we obtain,

ρ(x, t) =
C

√

σ2 + ~2t2

m2

exp

[

−σ
(

x − ~k0

m
t
)2

σ2 + ~2t2

m2

]

.

Exercise: The constant C is fixed by the normalization condition,

∫ +∞

−∞

dx ρ(x, t) = 1 ⇒ C =

√

σ

π

• ρ(x, t) defines a Gaussian probability distribution for the position of the particle

(see Figure (14)).
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ρ

x〈x〉

∆x

Figure 14: The probability distribution.

– The center 〈x〉 of the distribution corresponds to the average value of position.

〈x〉 =
~k0

m
t

which moves constant speed,

v =
~k0

m
=

〈p〉
m

Here 〈p〉 = ~k0 denotes the average value of the momentum.

– The width of the distribution, ∆x (also known as the standard deviation) corre-

sponds to the uncertainty in the measurement of position,

∆x =
√

〈x2〉 − 〈x〉2 =

√

1

2

(

σ +
~2t2

m2σ

)

increases with time. (This is not a stationary state).

• Physically, the Gaussian wavepacket corresponds to a state in which the particle is

localized near the point 〈x〉 with an uncertainty ∆x in the measurement of its position.

• The plane wave-solution ψk(x, t) is a limiting case of the Gaussian wavepacket where

the uncertainty in position ∆x becomes infinite. This an idealized state in which the

momentum takes the definite value p = ~k. The uncertainty in the momentum of the

particle, ∆p, therefore vanishes. This is related to the Heisenberg uncertainty principle

which we will discuss in Section 3.
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The beam interpretation

Interpret free particle wave function,

ψk(x, t) = A exp(ik · x) × exp

(

−i
~|k|2t
2m

)

as describing a beam of particles of momentum p = ~k and energy,

E = ~ω =
~2|k|2
2m

=
|p|2
2m

• Here ρ(x, t) = |ψk(x, t)|2 = |A|2 is now interpreted as the constant average density

of particles.

• The probability current,

j(x, t) = − i~

2m
(ψ∗

k∇ψk − ψk∇ψ∗
k)

= − i~

2m
× |A|2 × 2ik

= |A|2 × ~k

m
= |A|2 × p

m

= average density × velocity

= average flux of particles

Particle in an infinite potential well

Potential,

U(x) = 0 0 < x < a

= ∞ otherwise (25)

as shown in Figure (15). Stationary states,

− ~2

2m

d2χ

dx2
+ U(x)χ = Eχ (26)

• Outside well

U(x) = ∞ ⇒ χ(x) ≡ 0

otherwise E = ∞ from (26). Thus, as in classical physics, there is zero probability of

finding the particle outside the well.
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U

x0 a

Figure 15: The infinite square well.

• Inside well

U(x) = 0 ⇒ − ~2

2m

d2χ

dx2
= Eχ (27)

Define k =
√

2mE/~2 > 0. Equation (27) becomes,

d2χ

dx2
= −k2χ

General solution,

χ(x) = A sin(kx) + B cos(kx)

Boundary conditions from continuity of χ at x = 0 and x = a,

χ(0) = χ(a) = 0

– i) χ(0) = 0 ⇒ B=0

– ii) χ(a) = 0 ⇒ A sin(ka) = 0 ⇒ ka = nπ where n = 1, 2, . . .

Thus solutions are,

χn(x) = An sin
(nπx

a

)

0 < x < a

= 0 otherwise

• Normalization condition,
∫ +∞

−∞

|χn|2 dx = |An|2
∫ a

0

sin2
(nπx

a

)

dx =
|An|2a

2
= 1

Thus we find,

An =

√

2

a

for all n.
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U

x0

n = 1
n = 2
n = 3

a

Figure 16: Lowest energy wavefunctions of the infinite square well.

U

x0 a

Figure 17: Wavefunction at large n.

• The corresponding energy levels are,

E = En =
~2k2

2m
=

~2π2n2

2ma2

for n = 1, 2, . . .

– Like Bohr atom, energy levels are quantized

– Lowest energy level or groundstate,

E1 =
~2π2

2ma2
> 0

• The resulting wavefunctions are illustrated in Figure 16

– Wave functions alternate between even and odd under reflection,

x → a

2
− x

– Wavefunction χn(x) has n + 1 zeros or nodes where ρn(x) = |χn|2 vanishes.

– n → ∞ limit. Correspondence principle: probability density approaches a con-

stant ≡ classical result (see Figure 17).
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Figure 18: A generic boundstate problem.

General remarks on one-dimensional bound state problems

Consider a particle moving in one spatial dimension in the generic potential U(x) plotted

in Figure 18 with asymptotic values U(x) → U∞ as x → ±∞. Bound states correspond to

a particle trapped in the well with 0 < E < U∞

• Classical mechanics The particle follows a periodic trajectory x(t) with turning

points x = x± such that U(x±) = E. Thus the classical particle is always found in the

interval [x−, x+].

• Quantum mechanics Stationary states obey,

− ~2

2m

d2χ

dx2
+ U(x)χ = Eχ (28)

– 2nd order linear ODE ⇒ two linearly independent solutions; χ1(x) and χ2(x)

– For a bound state the particle must be localised near the well. Thus we demand

a normalizable wavefunction,

∫ +∞

−∞

|χ|2 dx < ∞

⇒ χ must vanish sufficiently fast as x → ±∞.

∗ How fast?

∫

dx

xδ
∼ 1

xδ−1

thus |χ(x)|2 must vanish faster than 1/x as x → ±∞
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Actual asymptotic behaviour of χ(x) as x → ∞ determined by asymptotic form of

Schrödinger equation (28)

− ~2

2m

d2χ

dx2
+ U∞χ ≃ Eχ (29)

Define,

κ =

√

2m(U∞ − E)

~2
> 0

Note that κ is real by virtue of the bound state condition E < U∞. Eqn (29) can then be

written as,

d2χ

dx2
= +κ2χ

with general solution,

χ(x) = A exp(+κx) + B exp(−κx).

Thus the general form of the asymptotic wavefunction is

χ(x) → A± exp(+κx) + B± exp(−κx)

as x → ±∞. For a normalizable wavefunction, we must choose a solution which decays

(rather than grows) as x → ±∞. Thus we must set A+ = B− = 0.

• Its not hard to see why these conditions lead to a discrete spectrum of boundstates.

For each value of the energy E , we have two linearly independent solutions, χ1(x;E)

and χ2(x;E). General solution,

χ(x) = A [χ1(x;E) + αχ2(x;E)]

for complex constants A and α.

Normalizability ⇒ Two independent conditions (A+ = B− = 0) for two unknowns:

α and E ⇒ isolated solutions ⇒ Discrete spectrum.
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Figure 19: A discontinuous potential.

Further properties

Time-independent Schrödinger equation in one dimension,

− ~2

2m

d2χ

dx2
+ U(x)χ = Eχ (30)

• Continuity

– If U(x) is smooth then so is χ(x).

– If U(x) has a finite discontinuity the χ(x) and dχ/dx remain continuous, but (30)

⇒ d2χ/dx2 is discontinuous.

– If U(x) has an infinite discontinuity then χ(x) remains continuous but dχ/dx is

discontinuous. Also note that U(x) ≡ ∞ ⇒ χ(x) ≡ 0 ( cf infinite square-well)

To understand the second case, consider the discontinuous potential shown in Figure

19, Integrating (30) over the interval [x0 − ǫ, x0 + ǫ],
∫ x0+ǫ

x0−ǫ

[

− ~2

2m

d2χ

dx2

]

dx =

∫ x0+ǫ

x0−ǫ

(E − U(x))χ(x) dx

⇒ dχ

dx

∣

∣

∣

∣

x0+ǫ

− dχ

dx

∣

∣

∣

∣

x0−ǫ

= I(ǫ)

where

I(ǫ) =
2m

~2

∫ x0+ǫ

x0−ǫ

(E − U(x))χ(x) dx

Easy to see that I(ǫ) → 0 as ǫ → 0 (because integrand is bounded), ⇒ dχ(x)/dx, and

therefore χ(x) is continuous at x = x0. Discontinuity of d2χ/dx2 follows directly from

Schrödinger equation (30)
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• Parity Suppose spectrum of boundstates is non-degenerate

E1 < E2 < E3 < . . .

If U(−x) = U(x) we say that U is reflection invariant. In this case all stationary

state wavefunctions must be either even or odd. In other words we must have χ(−x) =

±χ(x)

Proof

– Easy to see that time-independent Schrödinger equation (30) is reflection invari-

ant. Thus if χ(x) is a solution of (30) with eigenvalue E then so is χ(−x).

– Non-degeneracy of the spectrum then implies that χ(−x) = αχ(x) for some non-

zero complex constant α.

– For consistency,

χ(x) = χ(−(−x)) = αχ(−x) = α2χ(x).

Thus α2 = 1 ⇒ α = ±1 as required ¤.
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U0

x = −a xx = a

Figure 20: The finite square well.

The finite potential well

Potential,

Region I : U(x) = 0 − a < x < a

Region II : = U0 otherwise (31)

as shown in Figure 20.

Stationary states obey,

− ~2

2m

d2χ

dx2
+ U(x)χ = Eχ (32)

consider even parity boundstates

χ(−x) = χ(x)

obeying 0 ≤ E ≤ U0 Define real constants

k =

√

2mE

~2
≥ 0 κ =

√

2m(U0 − E)

~2
≥ 0 (33)

• Region I The Schrödinger equation becomes,

d2χ

dx2
= −k2χ

The general solution takes the form,

χ(x) = A cos(kx) + B sin(kx)

even parity condition,

χ(−x) = χ(x) ⇒ B = 0 ⇒ χ(x) = A cos(kx)
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• Region II

d2χ

dx2
= κ2χ

The general solution for x > +a,

χ(x) = C exp(+κx) + D exp(−κx) (34)

Normalizability ⇒ C = 0 thus,

χ(x) = D exp(−κx)

for x > +a.

Similarly for x < −a (by even parity) we have,

χ(x) = D exp(+κx)

Imposing continuity of χ(x) at x = +a gives,

A cos(ka) = D exp(−κa) (35)

and continuity of χ′(x) at x = +a gives,

−kA sin(ka) = −κD exp(−κa) (36)

Dividing Eqn (36) by (35) yields,

k tan(ka) = κ (37)

From the definitions in Eqn (33) we find a second equation relating k and κ,

k2 + κ2 =
2mU0

~2
(38)

Now define rescaled variables ξ = ka and η = κa and the constant r0 =
√

(2mU0)/~2 ·
a. Equations (37) and (38) become,

ξ tan ξ = η (39)

ξ2 + η2 = r2
0 (40)

It is not possible to solve these transcendental equations in closed form. Instead one

may easily establish some qualitative features of the solutions via a graphical solution

as shown in Figure 21. Here the two equations are plotted in the (ξ, η)-plane.
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Figure 21: Graphical Solution.

U = U0

x−a a

Figure 22: Groundstate probability density for the finite square well.
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The solutions correspond to the intersection points {ξ1, ξ2, . . . , ξK}.

• Number of solutions increases with the depth of the well as r0 =
√

(2mU0)/~2 · a

grows.

• Each solution determines an energy level via,

En =
~2ξ2

n

2ma2

• Always have at least one solution for U0 > 0. In fact it can be proved that attractive

potentials in one dimension always have at least one bound state.

• From the graph we see that,

(n − 1)π ≤ ξn ≤
(

n − 1

2

)

π

• Limit of infinite square well U0 → ∞ ⇒ r0 → ∞ ⇒ ξn → (n − 1/2)π. Resulting

energy levels,

En =
~2ξ2

n

2ma2
=

~2(2n − 1)2π2

8ma2

Agrees with earlier result for even levels of infinite well, width 2a.

• Still to do

– Use boundary conditions (35) and (36) to eliminate constant D in terms of A.

– Find A by imposing the normalization condition,

∫ +∞

−∞

dx |χ(x)|2 = 1

Resulting groundstate probability distribution |χ1(x)|2 is plotted in Figure 22

Note that there is a non-zero probability of finding particle in the classically forbidden

region |x| > a.

Exercise Check that wavefunction goes over to our previous results in the limit of

infinite well U0 → ∞.
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x
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Figure 23: The potential barrier.

Scattering and Tunneling

• Consider particle scattering on the potential barrier shown in Figure 23,

– Maximum barrier height U = Umax.

– Barrier localised near x = 0. U(x) → 0 rapidly as x → ±∞.

Particle of mass m and total energy E incident on the barrier from left. What happens?

Classical mechanics Two cases,

• E > Umax ⇒ particle gets over barrier and proceeds to x = +∞.

• E < Umax ⇒ particle reflected back towards x = −∞.

Quantum mechanics Ideally consider localised Gaussian wavepacket with normalised

wavefunction, ψ(x, t),
∫ +∞

−∞

|ψ(x, t)|2 dx = 1

• Wavepacket centered at x = x0(t) << 0 at initial time t << 0 with average momentum

〈p〉 > 0 as shown in Figure 24.

• Evolve with Schrödinger equation, to get final state wave function for t >> 0. Resulting

probability distribution shown in Figure 25,

Define reflection and transmission coefficients,

R = lim
t→∞

∫ 0

−∞

|ψ(x, t)|2 dx

T = lim
t→∞

∫ +∞

0

|ψ(x, t)|2 dx
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x

|ψ|2
U

0x0(t)

Figure 24: Initial state of wavepacket.

x

|ψ|2
U

0

Figure 25: Final state of wavepacket.

which measure the probabilities of the particle being reflected or transmitted respectively.

As total probability is conserved we have,

R + T =

∫ +∞

−∞

|ψ(x, t)|2 dx = 1

In practice this is too complicated so will work with non-normalizable stationary states

instead using the ”beam interpretation” (see discussion on p24). Both approaches yield the

same answers.

Beam interpretation in one dimension

Plane-wave solution,

ψk(x, t) = χ(x) exp

(

−i
~k2t

2m

)

where,

χ(x) = A exp(ikx)

interpreted as a beam of particles with momentum p = ~k. Avererage density of particles is

|A|2. Particle flux/probability current,

j = − i~

2m

[

χ∗dχ

dx
− χ

dχ∗

dx

]

= |A|2 × ~k

m
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U = U0

x0

Figure 26: A potential step.

A potential step

Consider a beam of particles of mass m scattering on the potential step shown in Figure

26,

Region I : U(x) = 0 x < 0

Region II : = U0 x > 0

Stationary states have form,

ψ(x, t) = χ(x) exp

(

−i
E

~
t

)

where χ(x) obeys,

− ~2

2m

d2χ

dx2
+ U(x)χ = Eχ (41)

We will start by considering the case where E > U0 and comment on the other case at the

end.

Region I The Schrödinger equation becomes,

d2χ

dx2
= −k2χ

where,

k =

√

2mE

~2
≥ 0

For E > 0, the general solution takes the form,

χ(x) = A exp(ikx) + B exp(−ikx) (42)

Particular solutions,
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• χ+(x) = A exp(ikx) corresponds to a beam of particles incident on the step from

x = −∞ with momentum p = ~k. The corresponding particle flux is given by the

probability current,

j+ = |A|2 × ~k

m

• χ−(x) = B exp(−ikx) corresponds to a beam of reflected particles moving to the left

(ie towards from x = −∞) with momentum p = −~k. The corresponding particle flux

is,

j− = −|B|2 × ~k

m

In our scattering problem we have incident particles from the left and also expect some

particles to be reflected off the barrier. Thus we retain the general solution,

χ(x) = A exp(ikx) + B exp(−ikx) for x < 0 (43)

as our wavefunction for x < 0.

The resulting expression corresponds to a superposition of the two beams χ+ and χ−.

Total flux,

j = − i~

2m

[

χ∗dχ

dx
− χ

dχ∗

dx

]

=
~k

m

(

|A|2 − |B|2
)

= j+ + j−

Cross-terms vanish.

Region II Here we are considering the case E > U0. The Schrödinger equation becomes,

d2χ

dx2
= −k′2χ

where,

k′ =

√

2m(E − U0)

~2
≥ 0

The general solution is

χ(x) = C exp(ik′x) + D exp(−ik′x) (44)

Particular solutions,
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• χ̃+(x) = C exp(ik′x) corresponds to a beam of particles in region x > 0 moving towards

x = +∞. This corresponds to a transmitted wave in the scattering problem.

• χ̃−(x) = D exp(−ik′x) corresponds to a beam of particles incident on the barrier from

the right (ie from x = +∞). This solution is not relevant for our scattering problem

and thus we set D = 0 and choose the solution,

χ(x) = C exp(ik′x) for x > 0 (45)

.

It remains to enforce the continuity of the stationary-state wavefunction and its derivative

at x = 0. Comparing the solutions (43) and (45) we find,

• Continuity of χ(x) at x = 0 ⇒

A + B = C (46)

• Continuity of χ′(x) at x = 0 ⇒

ikA − ikB = ik′C (47)

Solving (46) and (47) we get,

B =
k − k′

k + k′
A C =

2k

k + k′
A

Interpretation Identify the particle flux corresponding to each component of the wave

function,

• Incoming flux

jinc = j+ =
~k

m
|A|2

• Reflected flux

jref = −j− = +
~k

m
|B|2 =

~k

m

(

k − k′

k + k′

)2

|A|2

• Transmitted flux

jtr =
~k′

m
|C|2 =

~k′

m

4k2

(k + k′)2
|A|2
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Determine the portion of the incident beam which is reflected/transmitted. Corresponding

probabilities,

R =
jref

jinc

=

(

k − k′

k + k′

)2

T =
jtr

jinc

=
4kk′

(k + k′)2
.

Note that the undetermined constant A cancels out. Can check that,

R + T =
(k − k′)2 + 4kk′

(k + k′)2
= 1

Unlike the classical case, there is still a finite probability of reflection for E > U0. However

as E → ∞ we have k − k′ → 0 which imples R → 0, T → 1.

Finally we consider the case E < U0 where the classical particle is always reflected. In

this case the Region I solution (43) remains unchanged. In Region II the time-independent

Schrödinger equation becomes,

d2χ

dx2
= κ2χ

where

κ =

√

2m(U0 − E)

~2
> 0

The general solution of this equation is then written

χ(x) = E exp(+κx) + F exp(−κx) (48)

. The growing exponential is unphysical (non-normalizable), hence we must set E = 0. The

Region II solution is therefore

χ(x) = F exp(−κx) for x > 0 (49)

. Particle flux,

jtr = − i~

2m

[

χ∗dχ

dx
− χ

dχ∗

dx

]

= 0

Now impose boundary conditions on the solutions (43) and (49) at x = 0,
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• Continuity of χ(x) at x = 0 ⇒

A + B = F (50)

• Continuity of χ′(x) at x = 0 ⇒

ikA − ikB = −κF (51)

Solving (50) and (51) we get,

B =

(

ik + κ

ik − κ

)

A F =
2ik

ik − κ
A

Particle flux,

jtr = − i~

2m

[

χ∗dχ

dx
− χ

dχ∗

dx

]

= 0

Interpretation Identify the particle flux corresponding to each component of the wave

function,

• Incoming flux

jinc = j+ =
~k

m
|A|2

• Reflected flux

jref = −j− = +
~k

m
|B|2 =

~k

m
|A|2 = jinc

• Transmitted flux

jtr = 0

Thus the whole beam is reflected,

R =
jref

jinc

= 1

T =
jtr

jinc

= 0

As in the classical case, the particle is certain to be reflected. Wave function decays in the

classically forbidden region as shown in Figure 27.
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U = U0

x0

Figure 27: Wavefunction for potential step.
U = U0

x0 a

Figure 28: A square barrier.

Tunneling

Particle scattering on a square barrier

Consider incident particle with energy E < U0. Look for stationary state wave function

obeying,

− ~2

2m

d2χ

dx2
+ U(x)χ = Eχ

Define real constants

k =

√

2mE

~2
≥ 0 κ =

√

2m(U0 − E)

~2
≥ 0

Solution,

χ(x) = exp(ikx) + A exp(−ikx) x < 0

= B exp(−κx) + C exp(+κx) 0 < x < a

= D exp(+ikx) x > a

• A and D are coefficients of reflected and transmitted waves respectively.

• Coefficient of incident wave exp(+ikx) normalised to unity.

Boundary conditions

• Continuity of χ(x) at x = 0

1 + A = B + C
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• Continuity of χ′(x) at x = 0

ik − ikA = −κB + κC

• Continuity of χ(x) at x = a

B exp(−κa) + C exp(+κa) = D exp(ika)

• Continuity of χ′(x) at x = a

−κB exp(−κa) + κC exp(+κa) = ikD exp(ika)

Thus we have four equations for the four unknown constants A, B, C and D. Solution,

D =
−4iκk

(κ − ik)2 exp[(κ + ik)a] − (κ + ik)2 exp[−(κ − ik)a]

Transmitted flux,

jtr =
~k

m
|D|2

Incident flux,

jtr =
~k

m

Thus the transmission probability is given as,

T =
jtr

jinc

= |D|2

=
4k2κ2

(k2 + κ2)2 sinh2(κa) + 4k2κ2
(52)

Hints for getting (52)

D =
−4iκk

exp(ika)L

where

L = (κ − ik)2e+κa − (κ + ik)2e−κa

= G + iH
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Figure 29: A generic barrier.

with

G = 2(κ2 − k2) sinh(κa) H = −4κk cosh(κa)

and,

sinh(κa) =
1

2

(

e+κa − e−κa
)

, cosh(κa) =
1

2

(

e+κa + e−κa
)

Thus

|D|2 =
16k2κ2

G2 + H2
=

4k2κ2

(k2 + κ2)2 sinh2(κa) + 4k2κ2

as claimed.

Low energy particle scattering on very tall barrier U0 −E >> ~2/2ma2. These conditions

imply κa >> 1. In this case (52) simplifies to give,

T ≃ f

(

k2

κ2

)

exp(−2κa) = f

(

E

U0 − E

)

exp

[

−2a

~

√

2m(U0 − E)

]

(53)

Eqn (53) is a particular case of of a general approximate formula for a barrier of maximum

height U0 >> E and width L,

T ≃ exp

[

−2L

~

√
2m∆U

]

where ∆U = U0 − E. See Figure 29.

Application: Radioactive decay

Consider radioactive decay of an isotope NA
Z . Here A and Z are the atomic weight and

atomic number respectively (see Appendix). The decay proceeds through emission of an

α-particle (ie a Helium nucleus),

NA
Z → NA−4

Z−2 + He4
2
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NA

Z NA−4

Z−2

He4
2

Figure 30: Radioactive decay.

Figure 31: The nuclear potential.

In a simple model of this process due to Gammow the α-particle feels a potential due to the

other particles in the nucleus which has the form shown in Figure (31). Potential has a short-

range attractive component due to the strong nuclear force and a long-range component due

to the electrostatic repulsion between the protons in the α-particle and those in the nucleus.

• Decay occurs when α-particle ”tunnels” through potential barrier.

Half − life ∼ 1

T

• Half-life therefore exponentially dependent on the height and width of the barrier.

• This model accounts for the huge range of half-lives of radioactive isotopes found in

nature (and created in the lab). These range from 3 × 10−7 s to 2 × 1017 years!
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U

x

Figure 32: Harmonic oscillator potential.

The Harmonic Oscillator

The Harmonic oscillator potential (see Figure 32),

U(x) =
1

2
mω2x2

Classical mechanics Newton’s second law implies ẍ = −ω2x. The general solution,

x(t) = A sin(ωt + δ)

Particle oscillates around minimum at x = 0, with period T = 2π/ω.

Quantum mechanics Stationary states described by time-independent Schrödinger equa-

tion,

− ~2

2m

d2χ

dx2
+

1

2
mω2x2 χ = Eχ (54)

subject to the normalizability condition,
∫ +∞

−∞

dx |χ(x)|2 < ∞

Define rescaled variables

ξ2 =
mω

~
x2 ǫ =

2E

~ω

In terms of these variables Eqn (54) becomes,

−d2χ

dξ2
+ ξ2χ = ǫχ (55)

For the special case ǫ = 1 find normalizable solution by inspection,

χ(x) = exp

(

−1

2
ξ2

)
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Check

dχ

dξ
= −ξ exp

(

−1

2
ξ2

)

d2χ

dξ2
= (ξ2 − 1) exp

(

−1

2
ξ2

)

⇒ − d2χ

dξ2
+ ξ2χ = χ ¤

Corresponding wavefunction is,

χ0(x) = A exp
(

− mω

2~
x2

)

with energy E = ~ω/2.

Now look for general solution of the form,

χ(x) = f(ξ) exp

(

−1

2
ξ2

)

⇒ dχ

dξ
=

(

df

dξ
− ξ f

)

exp

(

−1

2
ξ2

)

⇒ d2χ

dξ2
=

(

d2f

dξ2
− 2ξ

df

dξ
+ (ξ2 − 1) f

)

exp

(

−1

2
ξ2

)

Then (55) becomes,

d2f

dξ2
− 2ξ

df

dξ
+ (ǫ − 1)f = 0 (56)

Can check that f = 1 is a solution when ǫ = 1.

Apply standard power series method (ξ = 0 is a regular point). Set,

f(ξ) =
∞

∑

n=0

an ξn (57)

Plugging the series (57) into (56) gives the recurrence relation,

(n + 1)(n + 2) an+2 − 2n an + (ǫ − 1)an = 0

⇒ an+2 =
(2n − ǫ + 1)

(n + 1)(n + 2)
an (58)
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NB Potential is reflection invariant ⇒ χ(−x) = ±χ(x) ⇒ f(−ξ) = ±f(ξ). Hence, with

m = 1, 2, 3 . . ., can set,

• either an = 0 for n = 2m − 1 ⇔ f(−ξ) = f(ξ).

• or an = 0 for n = 2m ⇔ f(−ξ) = −f(ξ).

Derivation of (58)

f(ξ) =
∞

∑

n=0

an ξn (57)

df

dξ
=

∞
∑

n=0

n an ξn−1

ξ
df

dξ
=

∞
∑

n=0

n an ξn

Then

d2f

dξ2
=

∞
∑

n=0

n (n − 1) an ξn−2 =
∞

∑

n=0

(n + 1) (n + 2) an+2 ξn

Finally,

d2f

dξ2
− 2ξ

df

dξ
+ (ǫ − 1)f =

∞
∑

n=0

[(n + 1)(n + 2) an+2

−2n an + (ǫ − 1)an] ξn

Thus

d2f

dξ2
− 2ξ

df

dξ
+ (ǫ − 1)f = 0 (56)

implies,

(n + 1)(n + 2) an+2 − 2n an + (ǫ − 1)an = 0

There are two possibilities

• The series (57) terminates. In other words ∃ N > 0 such that an = 0 ∀ n > N .

• The series (57) does not terminate. In other words ∄ N > 0 such that an = 0 ∀ n > N .

In fact the second possibility does not yield normalizable wave functions.
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Why? Suppose series (57) does not terminate. The consider the large-ξ behaviour of the

function,

f(ξ) =
∞

∑

n=0

an ξn.

This is determined by the asymptotic behaviour of the coefficients an as n → ∞. If the

series does not terminate then (58) determines the asymptotic behaviour of the coefficients

as,

an+2

an

→ 2

n

This is identical to the asymptotic behaviour of the coefficients of the Taylor series for the

function,

exp(+ξ2) =

∞
∑

m=0

ξ2m

m!
(59)

Indeed if we write the series as,

exp(+ξ2) =
∞

∑

n=0

bn ξn

with coefficients,

bn =
1

m!
for n = 2m

= 0 for n = 2m + 1

we immediately find (for n = 2m)

bn+2

bn

=
(n/2)!

(n/2 + 1)!
=

2

n + 2
→ 2

n

as n → ∞. The fact that the coefficients of the two series (57) and (59) have the same

behaviour as n → ∞ means that the respective sums have the same asymptotics as ξ → ∞.

Thus, if the series does not terminate, we must have,

f(ξ) ∼ exp(+ξ2)

or equivalently,

χ(x) = f(ξ) exp

(

− ξ2

2

)

∼ exp

(

+
ξ2

2

)

as ξ → ∞, which corresponds to a non-normalizable wavefunction. ¤.
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χ

U

N = 0

N = 1

N = 2

x

Figure 33: Harmonic oscillator wavefunctions.

Therefore the series must terminate and ∃ an integer N ≥ 0 such that aN+2 = 0 with

aN 6= 0. Thus, from (58) we find,

(2N − ǫ + 1) = 0

Recalling that ǫ = 2E/~ω we immediately obtain the energy spectrum of the quantum

harmonic oscillator,

E = EN =

(

N +
1

2

)

~ω

• Zero-point energy E = ~ω/2.

• Energy levels are equally spaced with EN+1 − EN = ~ω. System can absorb or emit

photons whose angular frequency is an integer multiple of ω ⇒ equally-spaced spectral

lines

The corresponding wave-function is,

χN(x) = fN(ξ) exp

(

−ξ2

2

)

• fN(ξ) is an even/odd function of ξ =
√

mωx2/~ for N even/odd,

χN(−x) = (−1)N χN(x)
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• fN(ξ) is an N ’th order polynomial (known as the N ’th Hermite polynomial) in ξ and

therefore the wavefunction has N nodes or zeros.

• First few levels (see Figure 33),

N EN χN(x)

0 1
2
~ω exp

(

− ξ2

2

)

1 3
2
~ω ξ exp

(

− ξ2

2

)

2 5
2
~ω (1 − 2ξ2) exp

(

− ξ2

2

)

3 7
2
~ω

(

ξ − 2
3
ξ3

)

exp
(

− ξ2

2

)
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3 Operators and Observables

Some features of Classical mechanics:

• The trajectory of a particle is described by measurable quantities or observables.

Examples,

– Position: x = (x1, x2, x3).

– Momentum: p = (p1, p2, p3).

– Energy:

E =
|p|2
2m

+ U(x)

– Angular momentum: L = x × p

All observables take definite real values at each moment of time which can, in principle,

be measured with arbitary accuracy.

• The state of the system is specified by giving x and p at initial time t = t0.

• Subsequent time evolution is deterministic (uniquely determined by equations of mo-

tion).

Quantum mechanics Contrasting features,

• State of the system at any given time is described by a complex wavefunction ψ(x, t).

• Time evolution of the wave function is determined by the time-dependent Schrödinger

equation.

• Observables correspond to operators. An operator Ô, acts on a complex valued

function f : R3 → C and produces a new such function, g = Ôf : R3 → C. It is

therefore a map from the space of such functions to itself. In Quantum Mechanics we

will only be interested in linear operators3 such that the corresponding map is linear,

Ô [α1f1 + α2f2] = α1Ôf1 + α2Ôf2

for any complex-valued functions f1 and f2 and complex numbers α1 and α2.

3From now we will use the term operator to mean linear operator.
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In general, the two functions f(x) and g(x) = Ôf(x) are linearly independent. However

an important special case occurs when g(x) = Ôf(x) = λf(x) for some complex number λ

(∀ x ∈ R3). In this case we say that the function f(x) is an eigenfunction of the operator

Ô with eigenvalue λ.

Example: Energy

• Not all states have definite energy.

• States which do are called stationary states. Wavefunction,

ψ(x, t) = χ(x) exp

(

−i
Et

~

)

where χ obeys,

− ~2

2m
∇2χ + U(x)χ = Eχ

It is instructive to rewrite this time-independent Schrödinger equation as,

Ĥχ(x) = Eχ(x) (60)

where we define the Hamiltonian operator,

Ĥ = − ~2

2m
∇2 + U(x).

Explicitly, the function g = Ĥf is

g(x) = − ~2

2m
∇2f(x) + U(x)f(x)

The time-independent Schrödinger equation then states that,

• The stationary-state wave-function χ(x) is an eigenfunction of the Hamiltonian oper-

ator Ĥ with eigenvalue E.

General feature of QM

Each observable O corresponds to an operator Ô. States where the observable takes a defi-

nite value λ (at some fixed time) correspond to wavefunctions ψλ(x) which are eigenfunctions

of Ô with eigenvalue λ,

Ôψλ(x) = λψλ(x) ∀ x ∈ R3.
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Examples

• Momentum in three dimensions is represented by the vector of operators p̂ = (p̂1, p̂2, p̂3)

where

p̂1 = −i~
∂

∂x1

p̂2 = −i~
∂

∂x2

p̂3 = −i~
∂

∂x3

or more concisely p̂ = −i~∇.

Check In classical mechanics the energy and momentum of a free particle of mass

m are related as,

E =
|p|2
2m

In QM the corresponding operators obey the same relation,

1

2m
p̂ · p̂ =

(−i~)2

2m
∇ · ∇ = − ~2

2m
∇2 = Ĥfree

where Ĥfree denotes the Hamiltonian for the case of a free particle (ie U(x) = 0).

Eigenfunctions States ψp(x) of definite momentum p are eigenfunctions of the

operator p̂,

⇒ − i~∇ψp(x) = pψp(x)

Integrating this relation we obtain,

ψp(x) = A exp
(

i
p · x

~

)

where A is an undetermined complex constant. Using the de Broglie relation p = ~k

we obtain

ψp(x) = A exp (ik · x)

which is just the plane-wave solution of the time-independent Schrödinger equation for

a feee particle discussed earlier.
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– Plane wave solution of wave vector k corresponds to a state of definite momentum

p = ~k.

– Momentum eigenstates are therefore non-normalisable.

– Notice that eigenvalue p of p̂ is a continuous variable. We say that p̂ has a con-

tinuous spectrum. In contrast, the Hamiltonian operator relevant for boundstate

problems always has a discrete spectrum. We verified this directly by solving the

time-independent Schrödinger equation in the previous Section.

• Position in three dimensions, x = (x1, x2, x3), corresponds to the operator x̂ =

(x̂1, x̂2, x̂3). The action of the operator x̂1 is simply multiplication by the number

x1,

x̂1 f(x) = x1 f(x)

for all x ∈ R3 and for any function f(x) and similarly for the other components x̂2 and

x̂3. Functions of the operator x̂ behave in the same way. In particular,

U(x̂) f(x) = U(x) f(x)

Eigenfunctions In one dimension, we have a single position operator x̂ such that

x̂f(x) = xf(x) for all x and for any function f . To construct a state where the

particle has definite position x = x0 we must solve the eigenvalue problem and find a

wavefunction ψx0
(x) obeying,

x̂ψx0
(x) = xψx0

(x) = x0ψx0
(x) (61)

for all x ∈ R.

Equation (61) cannot be satisfied for any ordinary function of x (except ψx0
(x) ≡ 0

which is unphysical). However, it can be satisfied by the Dirac δ-function (see IB

Methods) which formally obeys the equation,

xδ(x − x0) = x0δ(x − x0)

55



C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Aside: We can verify this relation by multiplying both sides by an arbitrary function

f(x) and integrating over x,

∫ +∞

−∞

dx xδ(x − x0) f(x) =

∫ +∞

−∞

dx x0δ(x − x0) f(x)

Now evaluate the integrals on both sides to find that both sides are equal to x0f(x0)

Thus the wavefunction ψx0
(x) = δ(x − x0) represents a state of definite position

x = x0. The norm of this state,

|ψx0
(x)|2 ∼ δ2(x − x0) (62)

has an infinite spike at x = x0 in accord with this interpretation but the integral of δ2

does not exist, so the wavefunction is non-normalizable.

State of definite position x = X = (X1, X2, X3) in three dimensions corresponds to

the wavefunction,

ΨX(x) = δ(3)(x − X) = δ(x1 − X1)δ(x2 − X2)δ(x3 − X3)

As before this is non-normalizable.

• Angular momentum is represented by the operator,

L̂ = x̂ × p̂ = −i~x × ∇

In components we have,

L̂ = −i~

(

x2
∂

∂x3

− x3
∂

∂x2

, x3
∂

∂x1

− x1
∂

∂x3

, x1
∂

∂x2

− x2
∂

∂x1

)

We will discuss the eigenvalues and eigenfunctions of L̂ in Section 4.
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Hermitian operators

This Section has strong overlaps with the discussion of “Sturm-Liouville Theory” in IB

Methods (see Chapter 5 of Methods Notes)

Given an observable O, the eigenvalues λ of the corresponding operator Ô determine the

possible values the observable can take. An obvious requirement is that these should be real

numbers. A sufficient condition for this is that Ô should be a self-adjoint or Hermitian

operator4

Definition A linear operator is said to be Hermitian if, for any pair of normalizable

functions f , g : R3 → C we have,

∫

R3

f ∗(x) Ôg(x) dV =

∫

R3

(

Ôf(x)
)∗

g(x) dV (63)

Recall that, for f and g to be normalizable, we require the existence of the integrals,

∫

R3

|f(x)|2 dV < ∞,

∫

R3

|g(x)|2 dV < ∞

This in turn requires that f , g → 0 as |x| → ∞ which will be important in the following.

• If Ô = h(x)Î where Î is the unit operator (ie Îψ(x) = ψ(x) for all functions ψ(x)) then,

Ô Hermitian ⇔ h(x) real

• Ô1, Ô2 Hermitian ⇒ Ô1+Ô2 and eg Ô2
1 Hermitian but Ô1Ô2 not necessarily Hermitian.

Matrix analogy Consider N component complex vectors v ∈ CN

• linear map µ : CN → CN

µ(α1v1 + α2v2) = α1µ(v1) + α2µ(v2)

4The term “self-adjoint” is favored by mathematicians who sometimes mean something slightly different

when they talk about an Hermitian operator. However, the term ”Hermitian” is universally used by physicists

as synonym for ”self-adjoint” and we will adopt this convention here.
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corresponds to an N × N matrix M :

If v′ = µ(v) then, in components,

v′
i = Mijvj

• *Roughly operators are the generalisation of matrices relevant for the (usually) infinite-

dimensional vector spaces of (wave)functions which appear in quantum mechanics.*

In general the eigenvalues of an N × N complex matrix, M are complex numbers. To

obtain real eigenvalues we need to restrict to Hermitian Matrices see IA Algebra and

Geometry.

• For any complex matrix define Hermitian conjugate M † = (MT )∗. In components,

(

M †
)

ij
= M∗

ji

• Definition A matrix is Hermitian if M † = M . In components,

M∗
ji = Mij

• If M is Hermitian, then, for any two complex vectors v and w,

M∗
jiv

∗
i wj = Mijv

∗
i wj

or,

v∗
i Mijwj = M∗

jiv
∗
i wj

• Thus for a Hermitian matrix we have, Equivalently

v† · Mw = (Mv)† · w

for any two complex vectors v and w (where v† = (vT )∗). Compare with (63).
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Examples of Hermitian operators:

• The momentum operator, p̂ = −i~∇. Verify Eqn (63) for Ô = p̂1 = −i~∂/∂x1

LHS of (63) =

∫

R3

f ∗(x) p̂1g(x) dV

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

[

−i~ f ∗(x)
∂g

∂x1

]

dx1 dx2 dx3

Integrating by parts we get,

LHS of (63) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

[(

−i~
∂f

∂x1

)∗

g(x)

]

dx1 dx2 dx3

=

∫

R3

(p̂1f(x))∗ g(x) dV = RHS of (63) ¤.

Here we used the fact that f and g both vanish as |x| → ∞ to drop the surface term

arising after integration by parts. The other components of p̂ are Hermitian by an

identical argument.

• The position operator x̂ = (x̂1, x̂2, x̂3) is obviously Hermitian, as is any real function

U(x̂)

• The Hamiltonian,

Ĥ = − ~2

2m
∇2 + U(x̂) =

|p̂|2
2m

+ U(x̂)

is also manifestly Hermitian when written in terms of the Hermitian operators p̂ and

x̂. Alternatively we can check the Hermitian property for the kinetic piece of the

Hamiltonian, Ĥkin = −(~2/2m)∇2 as follows,

∫

R3

f ∗(x) Ĥking(x) dV = − ~2

2m

∫

R3

f ∗(x) ∇2g(x) dV

= − ~2

2m

∫

R3

(

∇2f(x)
)∗

g(x) dV By Green′s identity

=

∫

R3

(

Ĥkinf(x)
)∗

g(x) dV ¤

Again the vanishing of f and g as |x| → ∞ was essential for neglecting surface terms.
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Properties of Hermitian matrices

See Part IA Algebra and Geometry

• The eigenvalues of a Hermitian matrix are real

• Eigenvectors un of a Hermitian matrix corresponding to distinct eigenvalues are or-

thogonal with respect to the usual scalar product,

u†
n · um = 0 for n 6= m

Consequence The eigenvectors un, n = 1, 2, . . . , N , of an N × N Hermitian matrix span

CN . This is equivalent to completeness:

• Any vector v can be expanded as,

v =
N

∑

i=1

an un

for some chice of complex coefficients {an}.

Properties of Hermitian operators

Suppose Ô is an Hermitian operator with a discrete spectrum. It has eigenvalues {λn}
and corresponding normalized eigenfunctions {un(x)} for n = 1, 2, 3, . . .. Thus,

Ôun(x) = λnun(x)

∫

R3

|un(x)|2 dV = 1

For convenience we will assume that the spectrum of Ô is non-degenerate. In other words

we assume that,

λn 6= λm ∀ n 6= m

Now consider two eigenfunctions um and un and define,

Imn =

∫

R3

u∗
m(x) Ôun(x) dV

= λn

∫

R3

u∗
m(x) un(x) dV (64)
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on the other hand, as Ô is Hermitian we also have,

Imn =

∫

R3

u∗
m(x) Ôun(x) dV

=

∫

R3

(

Ôum(x)
)∗

un(x) dV

= λ∗
m

∫

R3

u∗
m(x) un(x) dV (65)

Now subtracting Equation (65) from Equation (64) we obtain,

(λn − λ∗
m)

∫

R3

u∗
m(x) un(x) dV = 0 (66)

There are two cases

I: m = n Then (66) reads,

(λm − λ∗
m)

∫

R3

u∗
m(x) um(x) dV = (λm − λ∗

m) = 0

and hence λm = λ∗
m for all m. Thus we have established that,

• The eigenvalues of an Hermitian operator are real

The proof of this statement can be extended to include the case where the spectrum of the

operator is degenerate and even the case of operators with continuous spectra but this is

beyond the scope of the course.

II: m 6= n Then (66) reads,

(λn − λ∗
m)

∫

R3

u∗
m(x) un(x) dV = 0

Now as the spectrum is non-degenerate we know that λm 6= λn and, as λn is real this imples

that λ∗
m 6= λn. Therefore we must have,

∫

R3

u∗
m(x) un(x) dV = 0

for m 6= n and we have established that,

• The eigenfunctions belonging to distinct eigenvalues of an Hermitian operator are or-

thogonal with respect to the scalar product,

(f(x), g(x)) =

∫

R3

f ∗(x) g(x) dV
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As the eigenfunctions are normalised and orthogonal we have,

∫

R3

u∗
m(x) un(x) dV = δmn (67)

where δmn is the Kronecker delta.

Another important property of Hermitian operators analogous to the completeness prop-

erty for Hermitian matrices described above is,

• Completeness Any normalizable wavefunction ψ(x) can be expanded as,

ψ(x) =
∞

∑

n=1

anun(x)

for some choice of complex constants {an}.

This is hard to prove in general. A one-dimensional example where we can make contact

with results from the Methods course is,

Infinite square well Normalised stationary wavefunctions (see p25),

χn =

√

2

a
sin

(nπx

a

)

for 0 < x < a

= 0 otherwise

Completeness for the eigenfunctions of the Hamiltonian operator is the statement that any

wave function χ(x) can be expanded (for 0 < x < a) as,

χ(x) =
∞

∑

n=1

an χn(x)

=

√

2

a

∞
∑

n=1

an sin
(nπx

a

)

Completeness is therefore equivalent to the existence of a (sine) Fourier series 5 for χ(x).

5More precisely χ(x) as defined on the interval 0 < x < a can be extended to an odd function on

−a < x < a and then to a periodic function on the line which has a Fourier sine series. See IB Methods

notes 1.5.1.
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Momentum eigenstates in one-dimension In one dimension the momentum operator

p̂ = −i~d/dx has eigenstates (with a convenient choice of overall constant),

ψp(x) =
1

2π
exp(ikx)

with continuous eigenvalue p = ~k. The analog of completeness is,

ψ(x) =
1

2π

∫ ∞

−∞

f(k) exp(ikx) dk (68)

which is equivalent to the existence of the Fourier transform f(k) of ψ(x). The analog of

the orthogonality relation is,

∫ ∞

−∞

ψ∗
p′(x) ψp(x) dx =

1

4π2

∫ +∞

−∞

exp (i(k − k′)x) dx

=
1

2π
δ(k − k′) (69)

The last equality is the integral representation of the Dirac δ-function discussed in IB Meth-

ods.

Some consequences of completeness and orthogonality.

• Given a wavefunction ψ(x) expanded in terms of the normalised eigenfunctions of the

operator Ô as,

ψ(x) =

∞
∑

n=1

anun(x)

The coefficient an is given by the formula,

an =

∫

R3

u∗
n ψ(x) dV

Proof

RHS =

∫

R3

u∗
n

∞
∑

m=1

amum(x) dV

=
∞

∑

m=1

am

∫

R3

u∗
n(x) um(x) dV

=
∞

∑

m=1

am δmn = an ¤
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• We can calculate the normalization integral of the wavefunction ψ(x) as,

∫

R3

ψ∗(x) ψ(x) dV =

∫

R3

(

∞
∑

n=1

an un(x)

)∗ (

∞
∑

m=1

am um(x)

)

dV

=
∞

∑

n=1

∞
∑

m=1

a∗
n am

∫

R3

u∗
n(x) um(x) dV

=
∞

∑

n=1

∞
∑

m=1

a∗
n am δmn

=
∞

∑

n=1

|an|2

Thus for a normalised wavefunction ψ(x) we have,

∞
∑

n=1

|an|2 = 1 (70)

The Postulates of Quantum Mechanics

I Every state of the system at a given time is described by a (normalizable) wavefunction

ψ(x).

• ψ contains all physical information about the system.

• Any (normalizable) wavefunction corresponds to a possible state of the system.

II Each observable quantity O corresponds to an Hermitian operator Ô. The outcome of

a measurement of O is always one of the eigenvalues of Ô.

Suppose Ô has a (discrete) spectrum of eigenvalues {λn} and corresponding normalized

eigenfunctions {un(x)}. Using completeness, we can expand the normalized wave-function

of any state as,

ψ(x) =

∞
∑

n=1

an un(x) (71)

If a measurement of O is carried out in this state of the system, the outcome is λn with

probability |an|2.
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III Immediately after such a measurement, the system is in the state with normalised

wavefunction un(x).

IV Subsequent time evolution of the wave function is governed by the time-dependent

Schrödinger equation.

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + U(x)ψ

Remarks

• Postulate II states that the squared coefficients, |an|2, in the expansion of the nor-

malised wavefunction are interpreted as probabilities. The sum over all outcomes of

these probabilities is equal to one by virtue of Eqn (70).

• If the wavefunction of the system is proportional to an eigenfunction of the operator

Ô,

ψ(x) = anun(x)

If ψ(x) is normalized then |an|2 = 1. The outcome of a measurment of the correspond-

ing observable O will yield the value λn with probability one.

• Postulate III states that measurement of O has an instantaneous effect on the wave-

function ψ(x) replacing it by one of the eigenfunctions of Ô. This instantaneous change

is known as “collapse of the wave-function” and leads to the several apparant paradoxes

such as that of Schrödinger ’s cat, and also the measurement problem.

The measurement problem In the absence of measurement time evolution governed by

time-dependent Schrödinger equation (Postulate IV). When a measurement takes place we

have “collapse of the wavefunction” where the wavefunction changes in a different way not

governed by the Schrödinger equation (Postulate V). Measurement is, roughly speaking, an

interaction between the experimental equipment and the particle or system being measured.

• When does “collapse occur” and what causes it? The experimental equipment is also

made of atoms which should obey the rules of quantum mechanics so how can we

consistently define what constitutes “a measurement”.
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Expectation values

From Postulate III, the measurement of an observable O in some state ψ yields the value

λn with probability |an|2. The expectation value of O in this state is the average value,

〈O〉ψ =
∞

∑

n=1

λn |An|2.

We can also express this in terms of the wavefunction as,

〈O〉ψ =

∫

R3

ψ∗(x) Ôψ(x) dV (72)

Proof Using the series (71) for ψ, the RHS of Eqn (72) becomes,

∫

R3

ψ∗(x) Ôψ(x) dV =

∞
∑

n=1

∞
∑

n′=1

∫

R3

a∗
n′an u∗

n′(x) Ôun(x) dV

=

∞
∑

n=1

∞
∑

n′=1

λn a∗
n′an

∫

R3

u∗
n′(x) un(x) dV

=

∞
∑

n=1

∞
∑

n′=1

λn a∗
n′an δnn′

=

∞
∑

n=1

λn |an|2 = 〈O〉ψ ¤

Note that the expectation value of an observable takes definite value and therefore taking

a further expectation value has no effect,

〈〈O〉ψ〉ψ = 〈O〉ψ

Examples

• Expectation value of position,

〈x〉ψ =

∫

R3

ψ∗(x) x̂ψ(x) dV

=

∫

R3

x |ψ(x)|2 dV

Agrees with interpretation of |ψ(x)|2 as probability distribution.

• Expectation value of momentum,

〈p〉ψ = −i~

∫

R3

ψ∗(x) ∇ψ(x) dV
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in one-dimension this becomes,

〈p〉ψ = −i~

∫

R3

ψ∗(x)
d

dx
ψ(x) dV

Exercise Show using (68) and (69) that,

〈p〉ψ =
1

2π

∫ +∞

−∞

dk ~k |f(k)|2

where f(k) is the Fourier transform of the wavefunction ψ(x). Thus |f(k)|2 can be interpreted

as the probability distribution for the momentum p = ~k.

3.1 Commutation relations

Observables O1 and O2 only have definite values in a state if the wavefunction ψ(x) of the

state is an eigenfunction of both Ô1 and Ô2. This means that,

Ô1ψ = λψ

Ô2ψ = µψ

For some real constants λ and µ. Thus we have,

Ô1Ô2ψ = Ô2Ô1ψ = µλψ (73)

Define the commutator of operators Ô1 and Ô2 as,

[Ô1, Ô2] = Ô1Ô2 − Ô2Ô1

. Note that, from this definition,

[Ô2, Ô1] = −[Ô1, Ô2]

Equation (73) is the statement,

[Ô1, Ô2]ψ = 0 (74)

If all eigenfunctions of Ô1 are also eigenfunctions of Ô2 then Eqn (74) holds for all wave-

functions ψ. More simply,

[Ô1, Ô2] = 0

In words, “the operators Ô1 and Ô2 commute”.
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Exercise If [Ô1, Ô2] = 0, prove that any eigenfunction of Ô1 is also an eigenfunction of

Ô2 assuming the spectra of these operators are non-degenerate (ie all eigenvalues distinct).

Proof Let ψ be and eigenfunction of Ô1 with eigenvalue λ,

Ô1ψ = λψ

Acting with Ô2,

Ô2Ô1ψ = λÔ2ψ

Then, as Ô1 and Ô2 commute we have,

Ô1Ô2ψ = λÔ2ψ

Thus Ô2ψ is an eigenfunction of Ô1 with eigenvalue λ. Non-degeneracy then implies,

Ô2ψ = µψ

for some constant µ. Thus ψ is an eigenfunction of Ô2 ¤.

An important example of non-commuting observables are the position and momentum

operators,

x̂ = (x̂1, x̂2, x̂3)

p̂ = (p̂1, p̂2, p̂3)

These obey the canonical commutation relations,

[x̂i, x̂j ] = 0 (75)

[p̂i, p̂j ] = 0 (76)

[x̂i, p̂j ] = +i~δij Î

where Î is the unit operator.
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Proof Prove these relations by acting on a general function f(x),

[x̂i, x̂j] f(x) = (xixj − xjxi) f(x) = 0

while

[p̂i, p̂j ] f(x) = (−i~)2

[

∂

∂xi

∂

∂xj

− ∂

∂xj

∂

∂xi

]

f(x) = 0

using the symmetry of mixed partial derivatives. Finally,

[x̂i, p̂j ] f(x) =

[

xi

(

−i~
∂

∂xj

)

−
(

−i~
∂

∂xj

)

xi

]

f(x)

= −i~

[

xi

∂f

∂xj

− ∂

∂xj

(xi f)

]

= −i~

[

xi

∂f

∂xj

− f
∂xi

∂xj

− xi

∂f

∂xj

]

= +i~ δij Î f ¤ (77)

The Heisenberg uncertainty principle

The uncertainty, ∆ψO, in the measurement of an observable O in state ψ is the standard

deviation of the corresponding probability distribution,

(∆ψO)2 =
〈

(O − 〈O〉ψ)2〉

ψ

=
〈

O2 − 2O〈O〉ψ + 〈O〉2ψ
〉

ψ

= 〈O2〉ψ − 〈O〉2ψ

Using (72), we can also express the uncertainty in a given state in terms of the wavefunction

as,

(∆ψO)2 =

∫

R3

ψ∗(x) Ô2ψ(x) dV −
[
∫

R3

ψ∗(x) Ôψ(x) dV

]2

Examples

• If ψ(x) is a normalized eigenfunction of Ô with eigenvalue λ ∈ R,

Ôψ = λψ
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easy to check that,

(∆ψO)2 =

∫

R3

ψ∗(x) Ô2ψ(x) dV −
[
∫

R3

ψ∗(x) Ôψ(x) dV

]2

= λ2

∫

R3

ψ∗(x) ψ(x) dV −
[

λ

∫

R3

ψ∗(x) ψ(x) dV

]2

= λ2 − λ2 = 0

In this case the uncertainty vanishes and O takes the value λ with probability one.

• Particle in ground-state of the one-dimensional infinite square well,

ψ(x) =

√

2

a
sin

(πx

a

)

0 < x < a

= 0 otherwise

Uncertainty in postion,

(∆ψx)2 =
2

a

∫ a

0

dx x2 sin2
(πx

a

)

−
[

2

a

∫ a

0

dx x sin2
(πx

a

)

]2

=
2

a
×

(

a3

6

)

− 4

a2
×

(

a2

4

)2

=
a2

12

Suppose we measure two observables O1 and O2,

• If Ô1 and Ô2 commute then we can find (see exercise) simultaneous eigenfunction ψ,

Ô1ψ = λψ Ô2ψ = µψ

⇒ ∆ψO1 = ∆ψO2 = 0

Thus O1 and O2 can be measured simultaneously to arbitrary accuracy.

• If Ô1 and Ô2 do not commute, then ∆O1 and ∆O2 cannot both be arbitarily small.

Important case Position and momentum operators in one dimension,

x̂ = x Î p̂ = −i~
d

dx

As we saw above, these do not commute,

[x̂, p̂] = i~Î
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This implies the Heisenberg uncertainty relation, which asserts that, in any state Ψ of

the system,

∆Ψx · ∆Ψp ≥ ~

2
(78)

Proof Consider the system in a state with wavefunction Ψ(x). For simplicity we will

focus on states where 〈x〉Ψ = 〈p〉Ψ = 0. The extension of the proof to the general case is

given in the Appendix.

Consider one-parameter family of states with wave-functions,

Ψs(x) = (p̂ − isx̂) Ψ(x)

with s ∈ R. The identity,
∫ +∞

−∞

|Ψs(x)|2 dx ≥ 0

implies,

0 ≤
∫ +∞

−∞

[(p̂ − isx̂) Ψ(x)]∗ (p̂ − isx̂) Ψ(x) dx

=

∫ +∞

−∞

Ψ∗(x) (p̂ + isx̂) (p̂ − isx̂) Ψ(x) dx

using the fact that x̂ and p̂ are Hermitian. Thus,

0 ≤
∫ +∞

−∞

Ψ∗(x)
(

p̂2 + is[x̂, p̂] + s2x̂2
)

Ψ(x) dx

=

∫ +∞

−∞

Ψ∗(x)
(

p̂2 − ~s + s2x̂2
)

Ψ(x) dx

using the commutation relation [x̂, p̂] = i~Î. Which gives,

0 ≤ 〈p̂2〉Ψ − ~s + s2〈x̂2〉Ψ ∀ s ∈ R (79)

As, by assumption 〈p̂〉Ψ = 〈x̂〉Ψ = 0 we have,

(∆Ψx)2 = 〈x̂2〉Ψ
(∆Ψp)2 = 〈p̂2〉Ψ

and Eqn (79) can be rewritten as,

(∆Ψp)2 − ~s + s2 (∆Ψx)2 ≥ 0 ∀ s ∈ R (80)
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y

s

Figure 34: The quadratic equation (81) has no real roots.

y

s

Figure 35: The quadratic equation (81) has one real root.

Lemma Let A, B and C be real numbers. If we have,

As2 + Bs + C ≥ 0 ∀ s ∈ R

then,

B2 ≤ 4AC

Proof The fact that

As2 + Bs + C ≥ 0

∀ s ∈ R is equivalent to the statement that the quadratic equation,

y = As2 + Bs + C = 0 (81)

either has no real roots if the strict inequality y > 0 for all s (see Figure 34) or has exactiy

one real root if y = 0 for some value of s (see Figure 35). This immediately implies that,

B2 ≤ 4AC ¤
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Now apply Lemma with A = (∆Ψx)2, B = −~ and C = (∆Ψp)2 to deduce,

~2 ≤ 4(∆Ψx)2(∆Ψp)2

as ∆x and ∆p are positive we may take the square root of the above inequality to get,

∆Ψx · ∆Ψp ≥ ~

2

as required ¤.

Example Consider a state with a normalized Gaussian wavefunction,

ψ(x) =
(a

π

)
1

4

exp
(

−a

2
x2

)

Work out expectation values,

〈x〉ψ =

√

a

π

∫ +∞

−∞

dx x exp(−ax2) = 0

by symmetry.

〈p〉ψ =

√

a

π

∫ +∞

−∞

dx − i~ exp
(

−a

2
x2

) d

dx
exp

(

−a

2
x2

)

=

√

a

π
i~a

∫ +∞

−∞

dx x exp(−ax2) = 0

also by symmetry.

〈x2〉ψ =

√

a

π

∫ +∞

−∞

dx x2 exp(−ax2)

=

√

a

π
× 1

2

√

π

a3
=

1

2a

using Eqn (120) from the appendix.

〈p2〉ψ =

√

a

π

∫ +∞

−∞

dx − ~2 exp
(

−a

2
x2

) d2

dx2
exp

(

−a

2
x2

)

=

√

a

π
~2a

∫ +∞

−∞

dx
(

1 − ax2
)

exp(−ax2)

= ~2a

√

a

π

[
√

π

a
− a

2

√

π

a3

]

=
1

2
~2a
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Finally have,

∆ψx =
√

〈x2〉ψ − 〈x〉2ψ =
1√
2a

∆ψp =
√

〈p2〉ψ − 〈p〉2ψ = ~

√

a

2

Thus we have,

∆ψx · ∆ψp =
~

2

The Gaussian wavefunction saturates the inequality (78) and therefore represents the state

of minimum uncertainty.

Physical explanation of uncertainty

• To resolve particle position to accuracy ∆x, need to use light of wavelength λ ∼ ∆x.

• De Broglie relation ⇒ corresponding photons have momentum of magnitude p = h/λ ∼
h/∆x.

• Recoil of measured particle introduces uncertainty in its momentum of order ∆p ∼
p ∼ h/∆x.

• Thus the estimated uncertainties obey,

∆x · ∆p ∼ h.

4 Wave Mechanics II

Time-independent Schrödinger equation in three spatial dimensions,

− ~2

2m
∇2χ + U(x)χ = Eχ

In Cartesian coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
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x

y

z

r

φ

θ

Figure 36: Spherical polars.

Spherical polars See Fig (36),

x = r cos(φ) sin(θ)

y = r sin(φ) sin(θ)

z = r cos(θ)

where,

0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.

In spherical polars (see IA Vector Calculus),

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin2(θ)

[

sin(θ)
∂

∂θ
sin(θ)

∂

∂θ
− ∂2

∂φ2

]

Special case: Spherically symmetric potential,

U(r, θ, φ) ≡ U(r)
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Now look for spherically symmetric stationary state

χ(r, θ, φ) ≡ χ(r)

for which,

∇2χ =
1

r

∂2

∂r2
(rχ) =

1

r

d2

dr2
(rχ)

and thus time-independent Schrödinger equation becomes,

− ~2

2mr

d2

dr2
(rχ) + U(r) χ = Eχ

or,

− ~2

2m

(

d2χ

dr2
+

2

r

dχ

dr

)

+ U(r) χ = Eχ (82)

Boundary conditions

• Wavefunction χ(r) must be finite at r = 0

• Recall that,

∫

R3

dV =

∫ 2π

0

dφ

∫ +1

−1

d (cos(θ))

∫ ∞

0

r2 dr

Therefore normalizability of the wavefunction requires,
∫

R3

|ψ|2 dV < ∞ ⇒
∫ ∞

0

|χ(r)|2 r2 dr < ∞

which requires that χ(r) → 0 sufficiently fast as r → ∞.

Useful Trick Let σ(r) = rχ(r). Eqn (82) becomes,

− ~2

2m

d2σ

dr2
+ U(r)σ(r) = Eσ(r) (83)

This is one-dimensional Schrödinger equation on the half-line r ≥ 0.

Now solve Schrödinger equation on whole line −∞ < r < +∞ with symmetric potential

U(−r) = U(r). See Fig (37) Boundstate wavefunctions of odd parity σ(−r) = −σ(r) solve

(83) with boundary conditions,

σ(0) = 0 and

∫ ∞

0

|σ(r)|2 dr < ∞

which yields a solution to the original problem because,
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U(r)σ(r)

r

Figure 37: One-dimensional problem.

• Wavefunction χ(r) = σ(r)/r finite at r = 0 This follows from σ(0) = 0 provided σ′(0)

is finite (use L’ Hôpital’s rule)

• Normalizability condition,

∫ ∞

0

|χ(r)|2 r2 dr < ∞

follows for χ(r) = σ(r)/r.

Examples

• Spherically-symmetric harmonic oscillator,

U(r) =
1

2
mω2r2

Energy levels,

E =
3

2
~ω,

7

2
~ω,

11

2
~ω, . . .

Odd parity boundstates of one-dimensional harmonic oscillator.

• Spherically-symmetric square well,

U(r) = 0 for r < a

= U0 for r > a

Find odd-parity boundstates states of one-dimensional square well (see p31)

Define constants,

k =

√

2mE

~2
≥ 0, κ =

√

2m(U0 − E)

~2
≥ 0
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x

U0

r = −a r = a

Figure 38: The finite square well.

ξ

η

π/2 π 3π/2 2π
r0

r0

Figure 39: Graphical Solution: odd-parity levels
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and select solutions of time-independent Schrödinger equation of form,

σ(r) = A sin(kr) |r| < a

= B exp(−κr) r > a

= −B exp(+κr) r < −a

Boundary conditions

• Continuity of σ and σ′ at r = a,

A sin(ka) = B exp(−κa)

and kA cos(ka) = −κB exp(−κa)

⇒ − k cot(ka) = κ

• Rescaled variables,

ξ = ka, η = κa, r0 =

√

2mU0

~2
a

• Two equations relating unknowns ξ and η.

ξ2 + η2 = r2
0

−ξ cot(ξ) = η

• Graphical solution shown in Figure (39)

• Finite number of boundstates determined by number of intersections.

• No boundstate if r0 < π/2 or equivalently,

U0 ≤ π2~2

8ma2

unlike one-dimensional case where we always find at least one boundstate.
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U r

Figure 40: The Coulomb potential

The Hydrogen Atom: Part I

H-atom consists of a single proton p+ and an electron e−. As before treat the proton as

stationary at the origin of spherical polar coordinates. Coulomb attraction,

F = −∂U

∂r
= − e2

4πε0r2

Corresponds to potential (see Figure 40),

U(r) = − e2

4πε0r
(84)

• The potential is infinitely deep.

• Energy defined so that particle at rest at r = ∞ has E = 0.

Look for stationary states of electron with (stationary-state) wave function χ(r, θ, φ). Focus

on wavefunctions with spherical symmetry,

χ(r, θ, φ) = χ(r)

These obey the Schrödinger equation (82) with the Coulomb potential (84)

− ~2

2m

(

d2χ

dr2
+

2

r

dχ

dr

)

− e2

4πε0r
χ = Eχ
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To simplify this equation defined rescaled variables,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

in terms of which Schrödinger equation becomes,

d2χ

dr2
+

2

r

dχ

dr
+

β

r
χ − ν2χ = 0 (85)

• Large-r asymptotics of the wavefunction determined by first and last terms in (85). In

the limit r → ∞ we have,

d2χ

dr2
− ν2χ ≃ 0

which implies that the solutions of (85) have behaviour,

χ(r) ∼ exp(±νr) as r → ∞ (86)

We must choose an exponentially decaying solution for a normalizable wavefunction.

• Wavefunction should be finite at r = 0.

• As in analysis of harmonic oscillator, it is convenient to seperate out the exponential

dependence of the wave-function and look for a solution of the form,

χ(r) = f(r) exp(−νr)

The Schrödinger equation (85) now becomes,

d2f

dr2
+

2

r
(1 − νr)

df

dr
+

1

r
(β − 2ν)f = 0 (87)

Equation (87) is a homogeneous, linear ODE with a regular singular point at r = 0. Apply

standard method and look for a solution in the form of a power series around r = 0,

f(r) = rc

∞
∑

n=0

anrn (88)

Substitute series (88) for f(r) in (87).

• The lowest power of r which occurs on the LHS is a0r
c−2 with coefficient c(c−1)+2c =

c(c + 1). Equating this to zero yields the indicial equation,

c(c + 1) = 0

with roots c = 0 and c = −1.
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• Root c=-1 ⇒ χ(r) ∼ 1/r near r = 0. This yields a singular wavefunction which

violates the boundary condition at the origin. Thus we choose root c = 0 and our

series solution simplifies to,

f(r) =
∞

∑

n=0

anr
n (89)

• Now collect all terms of order rn−2 on the LHS of (87) and equate them to zero to get,

n(n − 1)an + 2nan − 2ν(n − 1)an−1 + (β − 2ν)an−1 = 0

or more simply,

an =
(2νn − β)

n(n + 1)
an−1 (90)

This recurrence relation determines all the coefficents an in the series (89) in terms of the

first coefficent a0. As in our analysis of the harmonic oscillator, there are two possibilities,

• The series (57) terminates. In other words ∃ N > 0 such that an = 0 ∀ n ≥ N .

• The series (57) does not terminate. In other words ∄ N > 0 such that an = 0 ∀ n ≥ N .

As before, the second possibility does not yield normalizable wave functions. To see this

note that Eqn (90) determines the large-n behaviour of the coefficients an as,

an

an−1

→ 2ν

n
as n → ∞ (91)

We can now compare this with the power series for the function,

g(r) = exp(+2νr) =
∞

∑

n=0

bnrn with bn =
(2ν)n

n!

whose coefficients obey,

bn

bn−1

=
(2ν)n

(2ν)n−1

(n − 1)!

n!
=

2ν

n

We deduce that (91) is consistent with the asymptotics,

f(r) ∼ g(r) = exp(+2νr) ⇒ χ(r) = f(r) exp(−νr) ∼ exp(+νr)

as r → ∞ which is consistent with the expected exponential growth (86) of generic solutions

of (85). This corresponds to a non-normalizable wavefunction which we reject.
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E r

Figure 41: The energy levels of the Hydrogen atom

To give a normalisable wave-function therefore, the series (89) must therefore terminate.

There must be an integer N > 0 such that aN = 0 with aN−1 6= 0. From the recurrence

relation (90) we can see that this happens if and only if,

2νN − β = 0 ⇒ ν =
β

2N

Recalling the definitions,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

This yields the spectrum of energy levels,

E = EN = − e4me

32π2ǫ2
0~

2

1

N2
(92)

for N = 1, 2, . . ..

• The resulting spectrum is identical to that of the Bohr atom. Thus the Schrödinger

equation predicts the same set of spectral lines for Hydrogen which are in good agree-

ment with experiment, although the degeneracies (ie number of states with the same

energy) are still wrong. An important difference is that Bohr’s spectrum was based

on quantization of angular momentum correponding to J = N~. In contrast the

wave functions we have constructed are spherically symmetric and therefore have zero

angular momentum.
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χ

r

N = 1

N = 2

N = 3

Figure 42: Spherically symmetric wavefunctions for the Hydrogen atom

Wavefunctions On setting ν = β/2N , the recurrence relation (90) becomes,

an

an−1

=
2νn − β

n(n + 1)

= −2ν

(

N − n

n(n + 1)

)

This formula can be used to give explict results for the first few levels (see Figure 42),

χ1(r) = exp(−νr)

χ2(r) = (1 − νr)exp(−νr)

χ3(r) =

(

1 − 2νr +
2

3
(νr)2

)

exp(−νr)

The wavefunction for the N ’th level can be written as,

χN(r) = LN (νr) exp(−νr)

where LN is a polynomial of order N − 1 known as the N ’th Laguerre polynomial. The

wavefunction χN(r) thus has N − 1 nodes or zeros.

Normalized groundstate wavefunction χ̃1(r) = A1χ1(r) = A1 exp(−νr). Constant

A1 fixed by normalisation condition,
∫

R3

|χ̃1(r)|2 dV = 1
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Evaluating the integral we find,

|A1|2
∫ 2π

0

dφ

∫ +1

−1

d(cos θ)

∫ ∞

0

dr r2 exp(−2νr) = 1

Thus |A1|2 = 1/I2 where,

I2 = 4π

∫ ∞

0

r2 exp(−2νr) =
π

ν3

Finally we can choose,

A1 =
1√
π

(

e2me

4πε0~2N

)
3

2

(93)

Exercise Prove that in the spherically-symmetric groundstate,

〈r〉 =
3

2
r1

where r1 = 2/β = 4πε0~2/mee
2 is the Bohr radius as defined in Section 1 (see p7)

Angular momentum

Classical angular momentum,

L = x × p

The vector L is a conserved quantity for systems with spherical symmetry (eg for a spherically

symmetric potential U(r, θ, φ) ≡ U(r)
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In Quantum Mechanics, orbital angular momentum is an observable which corresponds to

the operator,

L̂ = x̂ × p̂

= −i~x ×∇

In index notation for Cartesian coordinates x = (x1, x2, x3)

L̂i = −i~ εijkxj

∂

∂xk

where εijk is the Levi-Civita alternating tensor (see Appendix). Explicitly,

L̂ = −i~

(

x2
∂

∂x3

− x3
∂

∂x2

, x3
∂

∂x1

− x1
∂

∂x3

, x1
∂

∂x2

− x2
∂

∂x1

)

• Operators L̂i are Hermitian.

• Different components of the angular momentum operator do not commute with each

other: [L̂i, L̂j ] 6= 0 for i 6= j. Thus different components of angular momentum cannot

be measured simultaneously.

Check commutator,

[L̂1, L̂2] f(x1, x2, x3) =

−~2

[(

x2
∂

∂x3

− x3
∂

∂x2

) (

x3
∂

∂x1

− x1
∂

∂x3

)

−
(

x3
∂

∂x1

− x1
∂

∂x3

) (

x2
∂

∂x3

− x3
∂

∂x2

)]

f(x1, x2, x3)

Check that many term cancels leaving,

[L̂1, L̂2] f = −~2

(

x2
∂

∂x1

− x1
∂

∂x2

)

f

= +i~ L̂3f (94)

A similar calculation for the other components confirms the commutation relations,

[L̂2, L̂3] = i~L̂1 and [L̂1, L̂3] = −i~L̂2 (95)

The three independent commutation relations can be combined using index notation as,

[L̂i, L̂j ] = i~εijkL̂k
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In classical physics, magnitude of the angular momentum is L = |L|. Thus,

L2 = L2
1 + L2

2 + L2
3

In quantum mechanics we define the total angular momentum operator,

L̂2 = L̂2
1 + L̂2

2 + L̂2
3

Important result Total angular momentum L̂2 commutes with each of the components

of angular momentum L̂i, i = 1, 2, 3.

Proof For any operators Â and B̂,

[Â, B̂]B̂ + B̂[Â, B̂] =
(

ÂB̂ − B̂Â
)

B̂ + B̂
(

ÂB̂ − B̂Â
)

= ÂB̂2 − B̂ÂB̂ + B̂ÂB̂ − B̂2Â

= ÂB̂2 − B̂2Â

Thus we have the identity,

[Â, B̂2] = [Â, B̂]B̂ + B̂[Â, B̂] (96)

Now evaluate the commutators,

[L̂1, L̂
2
1] = 0 (97)

and,

[L̂1, L̂
2
2] = [L̂1, L̂2]L̂2 + L̂2[L̂1, L̂2]

using the identity (96). Then using (94) we obtain,

[L̂1, L̂
2
2] = i~

[

L̂3L̂2 + L̂2L̂3

]

(98)

and,

[L̂1, L̂
2
3] = [L̂1, L̂3]L̂3 + L̂3[L̂1, L̂3]

using the identity (96). Then using (95) we obtain,

[L̂1, L̂
2
3] = −i~

[

L̂3L̂2 + L̂2L̂3

]

(99)
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Finally adding equations (97), (98) and (99) we obtain,

[L̂1, L̂
2] = [L̂1, L̂

2
1] + [L̂1, L̂

2
2] + [L̂1, L̂

2
3] = 0

An identical calculation of [L̂2, L̂
2] and [L̂3, L̂

2] confirms that,

[L̂i, L̂
2] = 0 (100)

for i = 1, 2, 3 ¤.

Exercise Verify the following commutation relations,

[L̂i, x̂j] = i~ εijkx̂k

[L̂i, p̂j ] = i~ εijkp̂k

From these obtain,

[L̂i, x̂
2
1 + x̂2

2 + x̂2
3] = 0

[L̂i, p̂
2
1 + p̂2

2 + p̂2
3] = 0

The Hamiltonian for a particle on mass m moving in a spherically symmetric potential has

the form,

Ĥ = − ~2

2m
∇2 + U(r)

=
|p̂|2
2m

+ U(r̂)

Here r̂ is the operator which acts on functions f(x) as rÎ where r is the radial coordinate

and Î is the unit operator. Using the above commutation relations show that Ĥ commutes

with L̂i for i = 1, 2, 3 and therefore also with L̂2:

[Ĥ, L̂i] = [Ĥ, L̂2] = 0 (101)
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The commutation relations (100) and (101) imply that Ĥ, L̂2 and any one of the three

operators L̂i, i = 1, 2, 3 form a set of three mutually commuting operators. We must choose

only one of the L̂i because they do not commute with each other (95,95). By convention we

choose L̂3. Labelling the Cartesian coordinates in the usual way as x1 = x ,x2 = y, x3 = z,

we also denote this operator as L̂z or the “z-component of angular momentum”. Thus we

choose a set of mutually commuting operators,

{

Ĥ , L̂2, L̂3

}

(102)

• As the operators commute we can find simultaneous eigenstates of all three (See Ex-

ercise in Chapter 3).

• The corresponding eigenvalues are the observables energy, total angular momentum

and the z-component of angular momentum.

• The set (102) is maximal. In other words, we cannot construct another independent

operator (other than the unit operator) which commutes with each of Ĥ, L̂2 and L̂3.

Eigenfunctions of angular momentum

In spherical polar coordinates we have (see Appendix),

L̂2 = − ~2

sin2(θ)

[

sin(θ)
∂

∂θ

(

sin(θ)
∂

∂θ

)

+
∂2

∂φ2

]

(103)

L̂3 = −i~
∂

∂φ
(104)

Look for simultaneous eigenfunctions of L̂2 and L̂3 of the form Y (θ) exp(imφ),

L̂3 exp(imφ) = ~m exp(imφ)

Wavefunctions must be single-valued functions on R3 and should therefore be invariant under

φ → φ + 2π. The function exp(imφ) is invariant provided,

exp(2πim) = 1 ⇒ m ∈ Z

Thus the eigenvalues of L̂3 have the form ~m for integer m. Equivalently, the z-component

of angular momentum is quantized in integer multiples of ~. This agrees with Bohr’s quan-

tization condition.
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Similarly we must have,

L̂2 Y (θ) exp(imφ) = λ Y (θ) exp(imφ)

for some eigenvalue λ. Using the explicit form (103) for L̂2 we find that Y (θ) must obey the

equation,

1

sin(θ)

∂

∂θ

(

sin(θ)
∂Y

∂θ

)

− m2

sin2(θ)
Y (θ) = − λ

~2
Y (θ) (105)

This is the associated Legendre equation. The non-singular solutions are known as associated

Legendre functions,

Y (θ) = Pl,m (cos(θ))

= (sin(θ))|m| d|m|

d (cos(θ))|m|
Pl (cos(θ)) (106)

where Pl(cos(θ)) are (ordinary) Legendre polynomials (see IB Methods). The expression

(106) solves equation (105) with eigenvalue,

λ = l(l + 1) ~2 with l = 0, 1, 2 . . .

There is also a further constraint on the integers l and m which reads,

−m ≤ l ≤ +m

The simultaneous eigenfunctions of L̂2 and L̂3 are therefore labelled by two integers l > 0

with −m ≤ l ≤ +m and take the form,

Yl,m(θ, φ) = Pl,m (cos(θ)) exp(imφ)

They obey,

L̂2Yl,m(θ, φ) = l(l + 1)~2Yl,m(θ, φ)

L̂3Yl,m(θ, φ) = m~Yl,m(θ, φ)

• The functions Yl,m are known as Spherical Harmonics

• The integer l is called the total angular momentum quantum number while the integer

m is called the azimuthal quantum number.

• The constraint −l ≤ m ≤ +l is the quantum version of the classical inequality,

−L ≤ L3 ≤ +L

which follows because L3 = L cos(θ).
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Some Spherical Harmonics:

Y0,0 = 1

Y1,−1 = sin(θ) exp(−iφ) Y1,0 = cos(θ) Y1,−1 = sin(θ) exp(+iφ)

Y2,∓2 = sin2(θ) exp(∓2iφ) Y2,∓1 = sin(θ) cos(θ) exp(∓iφ) Y2,0 =
(

3 cos2(θ) − 1
)

The Hydrogen Atom: Part II

Time-independent Schrödinger equation in three spatial dimensions,

H̄ = − ~2

2m
∇2χ + U(x)χ = Eχ

In Cartesian coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

In spherical polars,

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin2(θ)

[

sin(θ)
∂

∂θ

(

sin(θ)
∂

∂θ

)

+
∂2

∂φ2

]

Thus using (103) we can write,

−~2∇2 = −~2

r

∂2

∂r2
r +

L̂2

r2

which gives,

Ĥ = − ~2

2mr

∂2

∂r2
r +

L̂2

2mr2
+ U(x)

For the Hydrogen atom,

U(r, θ, φ) ≡ U(r) = − e2

4πε0r

and the time-independent Schrödinger equation becomes,

Ĥχ = − ~2

2m

(

d2χ

dr2
+

2

r

dχ

dr

)

+
L̂2

2mr2
χ − e2

4πε0r
χ = Eχ (107)

Look for a simultaneous eigenstate of,

{

Ĥ , L̂2, L̂3

}
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by setting,

χ(r, θ, φ) = g(r) Yl,m(θ, φ) (108)

where Yl,m is a spherical harmonic. In particular, as above, we have,

L̂2Yl,m(θ, φ) = l(l + 1)~2Yl,m(θ, φ).

Substituting (108) into (107) we obtain a second order linear homogeneous ODE for g(r),

− ~2

2m

(

d2g

dr2
+

2

r

dg

dr

)

+
~2l(l + 1)

2mr2
g − e2

4πε0r
g = Eg (109)

As before define rescaled constants,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

in terms of which Schrödinger equation becomes,

d2g

dr2
+

2

r

dg

dr
− l(l + 1)

r2
g +

β

r
g − ν2g = 0 (110)

Analysis proceeds exactly as for the spherically symmetric case,

• Large-r asymptotics of the wavefunction determined by first and last terms in (110).

In the limit r → ∞ we have,

d2χ

dr2
− ν2χ ≃ 0

which implies that the solutions of (85) have behaviour,

χ(r) ∼ exp(±νr) as r → ∞ (111)

We must choose an exponentially decaying solution for a normalizable wavefunction.

• Wavefunction should be finite at r = 0.

• As before, it is convenient to seperate out the exponential dependence of the wave-

function and look for a solution of the form,

g(r) = f(r) exp(−νr)

The Schrödinger equation (110) now becomes,

d2f

dr2
+

2

r
(1 − νr)

df

dr
− l(l + 1)

r2
f +

1

r
(β − 2ν)f = 0 (112)
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Equation (112) is a homogeneous, linear ODE with a regular singular point at r = 0. Apply

standard method and look for a solution in the form of a power series around r = 0,

f(r) = rσ

∞
∑

n=0

anr
n (113)

Substitute series (113) for f(r) in (112).

• The lowest power of r which occurs on the LHS is a0r
σ−2 with coefficient σ(σ − 1) +

2σ − l(l + 1) = σ(σ + 1))− l(l + 1). Equating this to zero yields the indicial equation,

σ(σ + 1) = l(l + 1)

with roots σ = l and σ = −l − 1.

• Root σ = −l − 1 ⇒ g(r) ∼ 1/rl+1 near r = 0. This yields a singular wavefunction

which violates the boundary condition at the origin. Thus we choose root σ = l and

our series solution simplifies to,

f(r) = rl

∞
∑

n=0

anr
n (114)

• Now collect all terms of order rl+n−2 on the LHS of (112) and equate them to zero to

get,

(n + l)(n + l − 1)an + 2(n + l)an − l(l + 1)an −

2ν(n + l − 1)an−1 + (β − 2ν)an−1 = 0

or more simply,

an =
(2ν(n + l) − β)

n(n + 2l + 1)
an−1 (115)

This recurrence relation determines all the coefficents an in the series (114) in terms of

the first coefficent a0. As above, there are two possibilities,

• The series (114) terminates. In other words ∃ nmax > 0 such that an = 0 ∀ n ≥ nmax.

• The series (114) does not terminate. In other words ∄ nmax > 0 such that an = 0 ∀
n ≥ nmax.
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As before, the second possibility does not yield normalizable wave functions. To see this

note that Eqn (115) determines the large-n behaviour of the coefficients an as,

an

an−1

→ 2ν

n
as n → ∞ (116)

We can now compare this with the power series for the function,

h(r) = exp(+2νr) =
∞

∑

n=0

bnr
n with bn =

(2ν)n

n!

whose coefficients obey,

bn

bn−1

=
(2ν)n

(2ν)n−1

(n − 1)!

n!
=

2ν

n

We deduce that (116) is consistent with the asymptotics,

f(r) ∼ h(r) = exp(+2νr) ⇒ g(r) = f(r) exp(−νr) ∼ exp(+νr)

as r → ∞ which is consistent with the expected exponential growth (111) of generic solutions

of (110). This corresponds to a non-normalizable wavefunction which we reject.

To give a normalisable wave-function therefore, the series (114) must therefore terminate.

There must be an integer nmax > 0 such that anmax
= 0 with anmax−1 6= 0. From the

recurrence relation (115) we can see that this happens if and only if,

2νN − β = 0 ⇒ ν =
β

2N

for an integer N = nmax + l > l. Recalling the definitions,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

This yields the spectrum of energy levels,

E = EN = − e4me

32π2ε2
0~

2

1

N2
(117)

for N = 1, 2, . . ..

• The resulting spectrum of energy eigenvalues is identical to that of the Bohr atom and

to our analysis of the spherically symmetric wavefunctions.
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• The new feature is that there is a large degeneracy at each level. To see this note that

the energy EN given in (117) only depends on N and not on the angular momentum

quantum numbers,

0 ≤ l ≤ N − 1 −l ≤ m ≤ +l

Thus the total degeneracy at each level is,

D(N) =
N−1
∑

l=0

+l
∑

−l

1

=
N−1
∑

l=0

(2l + 1)

= 2

(

1

2
N(N − 1)

)

+ N = N2

The full spectrum

χN,l,m(r, θ, φ) = ξl LN,l(ξ) exp(−ξ) Yl,m(θ, φ)

where,

ξ =
βr

2N
=

e2mr

4Nπε0~2

LN,l(ξ) is a Generalised Laguerre polynomial and Yl,m(θ, φ) is a spherical harmonic. The

quantum numbers are,

• N = 1, 2, 3, . . . is the principal quantum number.

• l = 0, 1, . . . , N − 1 is the total angular momentum quantum number.

• The integer m with −l ≤ m ≤ +l is the quantum number for the z-component of

angular momentum.

Bohr model of atom emerges for states with m = l ≃ N >> 1. In this case the

z-component of angular momentum Lz = m~ ≃ N~ and the total angular momentum

L =
√

l(l + 1)~2 ≃ N~.
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The radal probability distribution,

r2g(r)2 ∼ r2(l+1) exp

(

− βr

2(l + 1)

)

∼ r2N exp

(

−βr

N

)

Attains a maximum where,

2N

r
− β

N
= 0 (118)

Thus the peak value is at,

rpeak ≃ 2N2

β
= N2r1

where r1 = 2/β is the Bohr radius. Thus the radial probability distribution is therefore

peaked around the radius of the N ’th Bohr orbit.

Appendix

Fundamental constants

• Planck’s constant, ~ = 1.05 × 10−34 J s

• Speed of light, c = 3 × 108 ms−1

• Charge of the electron, e = 1.60 × 10−19 C

• Mass of the electron, me = 9.11 × 10−31 kg

• Mass of proton, mp = 1.67 × 10−27 kg

• The vacuum permittivity constant, ε0 = 8.854 × 10−12 F m−1.

Basic facts about atoms

An atom has a positively charged nucleus surrounded by negatively charged electrons.

Nucleus: Z protons, each of positive charge +e. Z is known as the atomic number. Also

has A − Z neutrons, each of mass mn ≃ mp, which carry no electric charge. Total mass of

the nucleus,

M = Zmp + (A − Z)mn ≃ Amn
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x

Screen

Coherent

Beam d

D

∆l

Figure 43: Double slit diffraction .

A is known as the atomic weight.

A neutral atom has Z electrons each of negative charge −e. If some are removed the atom

becomes a positive ion.

The electrons are much lighter than the protons and neutrons of the nucleus: me/mp ≃
1/1837. Nearly all the mass of the atom resides in the nucleus.

Electrons are held in the atom by the electrostatic attraction between each electron and the

nucleus.

Protons and neutrons are bound in the nucleus by the strong nuclear force. Though short-

ranged, this is much stronger than the electrostatic repulsion between protons. The electrons

do not feel the strong force.

Diameter of nucleus ∼ 10−15 m. Diameter of whole atom ∼ 10−10 m. Because the size of the

nucleus is so much smaller than that of the whole atom, for the purpose of understanding

atomic structure the nucleus can be treated as a point charge.

Chemical properties of atoms are determined only by the number of electrons Z.

Isotopes are atoms with the same value of Z but different A. They have the same chemistry

but different radioactive properties.
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Figure 44: Double-slit diffraction pattern: plot of I against x

Diffraction

The experimental set-up for double slit diffraction is shown in Figure 43.

Coherent means that waves arrive at each slit in phase.

As shown in Figure 43 the path difference between rays from the two slits is ∆l.

When D >> d the path difference is approximately equal to ≃ (d/D)x.

Light and dark regions on the screen occur when waves from the two slits interfere construc-

tively and destructively respectively.

In particular, dark regions occur where the paths differ by half a wavelength,

∆l ≃
(

d

D

)

x =

(

n +
1

2

)

λ

where n is an integer.

The resulting pattern of light and dark bands can be illustrated by plotting the intensity, I,

of the light hitting the screen as a function of x as in Figure 44
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Useful formulae

• Non-relativistic mechanics Free particle of mass m, moving at velocity v. Speed

v = |v| << c. Momentum and energy of the particle are given as,

p = mv E =
1

2
mv2

Thus we have

E =
|p|2
2m

.

• Relativistic mechanics Free particle of mass m, moving at velocity v. Speed v = |v|.
Momentum and energy of the particle are given as,

p =
mv

√

1 − v2/c2
E =

mc2

√

1 − v2/c2

Thus we have,

E =
√

m2c4 + |p|2c2.

For the special case of a massless particle this reduces to E = c|p|.

• Wave motion Complex wave-form,

A exp (ik · x − iωt)

Define the following quantities,

– Wave-vector k.

– Wavelength λ is given as λ = 2π/|k|.

– Angular frequency ω.

– Frequency ν = ω/2π.

Velocity of wave vwave is given as,

vwave =
ω

|k| = νλ.

For electromagnetic waves this is equal to c.

99



C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

Useful Integrals

I(a) =

∫ +∞

−∞

dx exp(−a x2) =

√

π

a
(119)

The integral exists for complex a provided ℜ[a] > 0. The integral,

I2(a) =

∫ +∞

−∞

dx x2 exp(−a x2) =
1

2

√

π

a3
(120)

is obtained by differentiating (119) with respect to the parameter a.

Another useful integral is,

J (a, b) =

∫ +∞

−∞

dx cos(bx) exp(−a x2) =

√

π

a
exp

(

− b2

4a

)

(121)

Again the integral exists for complex a and b provided ℜ[a] > 0.

To prove (121), first note that

J (a, 0) = I(a) =

√

π

a

Differentiating J (a, b) wrt to b yields,

∂J
∂b

= −
∫ +∞

∞

dx x sin(bx) exp(−a x2)

Integrating by parts on the RHS then gives

∂J
∂b

=

[

sin(bx)

2a
exp(−ax2)

]+∞

−∞

−
∫ +∞

∞

dx
b

2a
cos(bx) exp(−a x2)

= − b

2a
J

Integrating this relation we obtain,

J (a, b) = J (a, 0) exp

(

− b2

4a

)

=

√

π

a
exp

(

− b2

4a

)

We can now use (119) and (121) to do the Gaussian integral discussed below equation

(24) in the text,

ψ(x, t) =

∫ +∞

−∞

dk exp (F (k))
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with,

F (k) = −1

2
αk2 + βk + δ

where the complex constants α, β and γ are defined in the text. Noting that exp(−iz) =

cos(z) − i sin(z) for any complex number z we find,

ψ(x, t) = eδ

∫ +∞

−∞

dk (cos(iβk) − i sin(iβk)) exp

(

−1

2
αk2

)

The second term in brackets vanishes as the integrand is an odd function of k. The remaining

integral can be evaluated using (121) with b = iβ and a = α/2, to get,

ψ(x, t) =

√

2π

α
exp

(

β2

2α
+ δ

)

as claimed in the text.

Miscellaneous

General case of uncertainty principle Extend proof given in the text to cases where

〈x〉, 〈p〉 6= 0. drop subscript 〈〉Ψ for brevity.

Define,

Â = p̂ − 〈p〉

B̂ = x̂ − 〈x〉

Note that,

〈A2〉 =
〈

(p − 〈p〉)2〉

=
〈

p2 − 2p〈p〉 + 〈p〉2
〉

= 〈p2〉 − 2〈p〉2 + 〈p〉2

= 〈p2〉 − 〈p〉2 = (∆p)2

Similarly 〈B2〉 = (∆x)2.

Can also check that,

[Â, B̂] = [p̂, x̂] − [〈p〉, x̂] − [p̂, 〈x〉] + [〈p〉, 〈x〉]

= [p̂, x̂] = −i~Î
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Now define,

Ψs(x) =
(

Â − isB̂
)

Ψ(x)

Use identical argument to that given in the text to show that,
∫ +∞

−∞

|Ψs(x)|2 dx ≥ 0 ⇒ 4〈A2〉〈B2〉 ≥ ~

Heisenberg uncertainty principle then follows from the relations 〈A2〉 = (∆p)2 and 〈B2〉 =

(∆x)2 obtained above ¤.

Angular momentum operators in spherical polar coordinates

Relation between cartesian and spherical polar coordinates,

x1 = r sin(θ) cos(φ) x2 = r sin(θ) sin(φ) x3 = r cos(θ)

Using the chain rule,

∂

∂x1

=

(

∂r

∂x1

)

∂

∂r
+

(

∂θ

∂x1

)

∂

∂θ
+

(

∂φ

∂x1

)

∂

∂φ

= sin(θ) cos(φ)
∂

∂r
+ cos(θ) cos(φ)

1

r

∂

∂θ
− sin(φ)

r sin(θ)

∂

∂φ

and similarly for ∂/∂x2 and ∂/∂x3.

Proceeding in this way, we obtain

L̂1 = −i~

(

x2
∂

∂x3

− x3
∂

∂x2

)

= i~

(

cos(φ) cot(θ)
∂

∂φ
+ sin(φ)

∂

∂θ

)

Similarly we find

L̂2 = i~

(

sin(φ) cot(θ)
∂

∂φ
− cos(φ)

∂

∂θ

)

and,

L̂3 = −i~
∂

∂φ

Finally can check that,

L̂2 = L̂2
1 + L̂2

2 + L̂2
3 = − ~2

sin2(θ)

[

sin(θ)
∂

∂θ

(

sin(θ)
∂

∂θ

)

+
∂2

∂φ2

]

102



C
op

yr
ig

ht
 ©

 2
00

8 
U

ni
ve

rs
ity

 o
f C

am
br

id
ge

. N
ot

 to
 b

e 
qu

ot
ed

 o
r 

re
pr

od
uc

ed
 w

ith
ou

t p
er

m
is

si
on

.

The alternating tensor Indices i, j, k = 1, 2, 3. εijk = 0 unless all indices are different,

i 6= j 6= k 6= i. If all indices are different, then εijk = +1 if (ijk) is a cyclic permutation of

(123) and −1 otherwise.
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