
Chapter 3

Cartesian Tensors

3.1 Suffix Notation and the Summation Convention

We will consider vectors in 3D, though the notation we shall introduce applies (mostly)

just as well to n dimensions. For a general vector

x = (x1, x2, x3)

we shall refer to xi, the ith component of x. The index i may take any of the values

1, 2 or 3, and we refer to “the vector xi” to mean “the vector whose components are

(x1, x2, x3)”. However, we cannot write x = xi, since the LHS is a vector and the RHS a

scalar. Instead, we can write [x]i = xi, and similarly [x + y]i = xi + yi.

Note that the expression yi = xi implies that y = x; the statement in suffix notation

is implicitly true for all three possible values of i (one at a time!).

Einstein introduced a convention whereby if a particular suffix (e.g., i) appears twice

in a single term of an expression then it is implicitly summed. For example, in traditional

notation

x . y = x1y1 + x2y2 + x3y3 =
3∑

i=1

xiyi;

using summation convention we simply write

x . y = xiyi.

All we are doing is not bothering to write down the
∑

!

The Rules of Summation Convention

Summation convention does not allow any one suffix to appear more than twice within

a single term; so xiyizi is meaningless. We have to take care to avoid this: for example,
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consider the vector relation

y = (a . b)x.

We have a . b = aibi, but we cannot write yi = aibixi as this would be ambiguous. How

can we correct this? Note that

a . b = aibi = ajbj

– the suffix we use for the summation is immaterial. (Compare with the use of dummy

variables in integrations:
∫∞

0
e−x dx =

∫∞
0

e−y dy.) So we can write

yi = ajbjxi.

In any given term, then, there are two possible types of suffix: one that appears

precisely once, e.g., i in ajbjxi, which is known as a free suffix ; and one that appears

precisely twice, e.g., j in ajbjxi, which is known as a dummy suffix. It is an important

precept of summation convention that the free suffixes must match precisely in every

term (though dummy suffixes can be anything you like so long as they do not clash with

the free suffixes). So in the equation

ajbjzk = xk + aiaiykbjbj

every term has a free suffix k, and all other suffixes are dummy ones. In vector notation,

this equation reads

(a . b)z = x + |a|2|b|2y.

(Note that the order of variables in the final term of this equation in suffix notation is

unimportant: we could equally well have written bjykaibjai.)

There need not be any free suffixes at all, as in the equation aizi = (xi + yi)ai (which

reads a . z = (x + y) . a in vector notation).

Suffix notation can also be used with matrices. For a matrix A, we write aij to denote

the entry in the ith row and jth column of A (for each i = 1, 2, 3 and j = 1, 2, 3). We

write either A = (aij) or [A]ij = aij – these equations are equivalent – to indicate this.

(Sometimes the upper-case letter is used instead, in which case the matrix A would have

entries Aij.)

Examples of Summation Convention

(i) 2x + y = z ⇔ 2xi + yi = zi. Note that the RHS of this suffix notation equation

does not mean z1 + z2 + z3 – no repeated suffix, no sum!

(ii) (a . b)(x . y) = 0 ⇔ aibixjyj = 0.
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(iii) In summation convention, y = Ax is written

yi = [Ax]i = aijxj

(check that this is correct by writing it out long-hand for each possible value of the

free suffix i).

(iv) The matrix multiplication C = AB (where A and B are 3× 3 matrices) is written

cij = [AB]ij = aikbkj.

(v) The trace of a matrix C may be written as Tr C = cii, i.e., c11 + c22 + c33. Hence

Tr(AB) = aikbki.

Replacing two free suffixes (e.g. i, j in cij) by a single dummy suffix (cii) is known

as contraction.

Not all expressions written in suffix notation can be recast in vector or matrix notation.

For example, aijk = xiyjzk is a valid equation in suffix notation (each term has three free

suffixes, i, j and k), but there is no vector equivalent.

3.2 The Kronecker Delta and the Alternating Tensor

The Kronecker delta is defined by

δij =

1 i = j

0 i 6= j

and the alternating tensor is defined by

εijk =


1 if (i, j, k) is a cyclic permutation of (1, 2, 3)

−1 if (i, j, k) is an anti-cyclic permutation of (1, 2, 3)

0 if any of i, j, k are equal

(i.e., ε123 = ε231 = ε312 = 1; ε213 = ε132 = ε321 = −1; all others are zero). Note that

δij = δji and that εijk = εjki = εkij = −εjik etc.

If I is the identity matrix
(

1 0 0
0 1 0
0 0 1

)
then [I]ij = δij. We see that

xi = δijxj
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because (i) this is equivalent to x = Ix; or (ii) we can check for each value of i (e.g.,

when i = 1, RHS = δ1jxj = δ11x1 + δ12x2 + δ13x3 = x1 = LHS). The Kronecker delta just

“selects” entries: e.g., δikajk is equal to aji.

What is δii? It is not 1.

The alternating tensor can be used to write down the vector equation z = x × y in

suffix notation:

zi = [x× y]i = εijkxjyk.

(Check this: e.g., z1 = ε123x2y3 + ε132x3y2 = x2y3 − x3y2, as required.) There is one very

important property of εijk:

εijkεklm = δilδjm − δimδjl.

This makes many vector identities easy to prove.

(The property may be proved by first proving the generalisation

εijkεlmn = det

δil δim δin

δjl δjm δjn

δkl δkm δkn

 .

Both sides clearly vanish if any of i, j, k are equal; or if any of l, m, n are. Now take

i = l = 1, j = m = 2, k = n = 3: both sides are clearly 1. Finally consider the effect

of swapping say i and j. Once we have proved this generalisation, contract k and n and

simplify, noting that for example δjkδkm = δjm.)

Example: prove that a× (b× c) = (a . c)b− (a . b)c.

[a× (b× c)]i = εijkaj[b× c]k

= εijkajεklmblcm

= (δilδjm − δimδjl)ajblcm

= ajbicj − ajbjci

= (a . c)bi − (a . b)ci

= [(a . c)b− (a . b)c]i ,

as required.

εijk can also be used to calculate determinants. The determinant of a 3 × 3 matrix

A = (aij) is given by εijka1ia2ja3k (check this by just expanding the product and sum in
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full). This can be written in several other ways; for example,

det A = εijka1ia2ja3k = εjika1ja2ia3k

[swapping i and j]

= −εijka2ia1ja3k.

This proves that swapping two rows of a matrix changes the sign of the determinant.

3.3 What is a Vector?

A vector is more than just 3 real numbers. It is also a physical entity: if we know its

3 components with respect to one set of Cartesian axes then we know its components

with respect to any other set of Cartesian axes. (The vector stays the same even if its

components do not.)

For example, suppose that {e1, e2, e3} is a right-handed

orthogonal set of unit vectors, and that a vector v has com-

ponents vi relative to axes along those vectors. That is to

say,

v = v1e1 + v2e2 + v3e3 = vjej.

What are the components of v with respect to axes which

have been rotated to align with a different set of unit vectors

{e′1, e′2, e′3}? Let

v = v′1e
′
1 + v′2e

′
2 + v′3e

′
3 = v′je

′
j.

Now e′i . e
′
j = δij, so

v . e′i = v′je
′
j . e′i = v′jδij = v′i

but also

v . e′i = vjej . e′i = vjlij

where we define the matrix L = (lij) by

lij = e′i . ej.

Then

v′i = lijvj

(or, in matrix notation, v′ = Lv where v′ is the column vector with components v′i). L

is called the rotation matrix.

This looks like, but is not quite the same as, rotating the vector v round to a different vector v′ using a
transformation matrix L. In the present case, v and v′ are the same vector, just measured with respect
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to different axes. The transformation matrix corresponding to the rotation {e1, e2, e3} 7→ {e′1, e′2, e′3} is
not L (in fact it is L−1).

Now consider the reverse of this argument. Exactly the same discussion would lead

to

vi = l̂ijv
′
j

where

l̂ij = ei . e
′
j

(we swap primed and unprimed quantities throughout the argument). We note that

l̂ij = lji from their definitions; hence

L̂ = LT

and so

v = L̂v′ = LTv′.

We can deduce that

v = LT Lv,

and furthermore, this is true for all vectors v. We conclude that

LT L = I,

i.e.,

LT = L−1.

(Hence LLT = I also.) L is therefore an orthogonal matrix. In suffix notation, the

equation LT L = I reads

lkilkj = δij,

and LLT = I reads

likljk = δij;

both of these identities will be useful.

Another way of seeing that LLT = I (or, equivalently, LT L = I) is to consider the

components of L. Since e′i . ej is just the jth component of e′i measured with respect to

the first frame, we see that the ith row of L just consists of the components of e′i measured

with respect to the first frame:

L =

e′1 . e1 e′1 . e2 e′1 . e3

e′2 . e1 e′2 . e2 e′2 . e3

e′3 . e1 e′3 . e2 e′3 . e3



=

 e′1
T

e′2
T

e′3
T

 [measured with respect to frame 1].
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Alternatively, the ith column consists of the components of ei with respect to the second

frame.

To calculate the top left component of LLT , we find the dot product of the first row

of L with the first column of LT . Both are simply e′1 measured with respect to the first

frame, so we obtain e′1 . e′1, which is 1. Similarly, the top right component of LLT is

e′1 . e′3, which is zero. So, considering all possible combinations of rows and columns, we

see that LLT = I as required.

3.4 Tensors

Tensors are a generalisation of vectors. We think informally of a tensor as something

which, like a vector, can be measured component-wise in any Cartesian frame; and which

also has a physical significance independent of the frame, like a vector.

Physical Motivation

Recall the conductivity law, J = σE, where E is the applied electric field and J is

the resulting electric current. This is suitable for simple isotropic media, where the

conductivity is the same in all directions. But a matrix formulation may be more suitable

in anisotropic media; for example,

J =

5 0 0

0 4 0

0 0 0

E

might represent a medium in which the conductivity is high in the x-direction but in

which no current at all can flow in the z-direction. (For instance, a crystalline lattice

structure where vertical layers are electrically insulated.)

More generally, in suffix notation we have

Ji = σijEj

where σ is the conductivity tensor.

What happens if we measure J and E with respect to a different set of axes? We

would expect the matrix σ to change too: let its new components be σ′ij. Then

J ′i = σ′ijE
′
j.

But J and E are vectors, so

J ′i = lijJj
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and

Ei = ljiE
′
j

from the results regarding the transformation of vectors in §3.3. Hence

σ′ijE
′
j = J ′i

= lipJp

= lipσpqEq

= lipσpqljqE
′
j

=⇒ (σ′ij − lipljqσpq)E
′
j = 0.

This is true for all vectors E′, and hence the bracket must be identically zero; hence

σ′ij = lipljqσpq. This tells us how σ transforms.

Compare this argument with the corresponding argument for the case Ax = 0 where A is a matrix; if it
is true for all x then A must be zero, though this is not the case if it is only true for some x’s.

σ is a second rank tensor, because it has two suffixes (σij).

Definition: In general, a tensor of rank n is a mathematical object with n suffixes,

Tijk..., which obeys the transformation law

T ′
ijk... = lipljqlkr . . . Tpqr...

where L is the rotation matrix between frames.

Note: for second rank tensors such as σ, the transformation law

T ′
ij = lipljqTpq

can be rewritten in matrix notation as T ′ = LTLT – check this yourself!

Examples of Tensors

(i) Any vector v (e.g., velocity) is a tensor of rank 1, because v′i = lipvp.

(ii) Temperature T is a tensor of rank 0 – known as a scalar – because it is the same

in all frames (T ′ = T ).

(iii) The inertia tensor. Consider a mass m which is part of a rigid body, at a location

x within the body. If the body is rotating with angular velocity ! then the mass’s

velocity is v = !× x, and its angular momentum is therefore

mx× v = mx× (!× x) = m
(
|x|2!− (! . x)x

)
.
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Changing from a single mass m to a continuous mass distribution with density

ρ(x), so that an infinitesimal mass element is ρ(x) dV , we see that the total angular

momentum of a rigid body V is given by

h =

∫∫∫
V

ρ(x)
(
|x|2!− (! . x)x

)
dV,

or, in suffix notation,

hi =

∫∫∫
V

ρ(x)(xkxkωi − ωjxjxi) dV

=

∫∫∫
V

ρ(x)(xkxkδij − xjxi)ωj dV

= Iijωj

where

Iij =

∫∫∫
V

ρ(x)(xkxkδij − xixj) dV

is the inertia tensor of the rigid body. Note that the tensor I does not depend on

!, only on properties of the body itself; so it may be calculated once and for all

for any given body. To see that it is indeed a tensor, note that both h and ! are

vectors, and apply arguments previously used for the conductivity tensor.

(iv) Susceptibility χ. If M is the magnetization (magnetic moment per unit volume)

and B is the applied magnetic field, then for a simple medium we have M =

χ(m)B where χ(m) is the magnetic susceptibility. This generalises to Mi = χ
(m)
ij Bj

where χ
(m)
ij is the magnetic susceptibility tensor. Similarly for polarization density

P in a dielectric: Pi = χ
(e)
ij Ej where E is the electric field and χ

(e)
ij is the electric

susceptibility tensor.

(v) The Kronecker delta itself. We have defined δij without reference to frame; i.e., its

components are by definition the same in all frames (δ′ij ≡ δij). Surprisingly, then,

we can show that it is a tensor:

lipljqδpq = lipljp = δij = δ′ij

(from §3.3), which is exactly the right transformation law. We can also show that

εijk is a tensor of rank 3.

Both δij and εijk are isotropic tensors : that is, their components are the same in

all frames.
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(vi) Stress and strain tensors. In an elastic body, stresses (forces) produce displacements

of small volume elements within the body. Let this displacement at a location x be

u; then the strain tensor is defined to be

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
.

The stress tensor pij is defined as the jth component of the forces within the body

acting on an imaginary plane perpendicular to the ith axis. Hooke’s law for simple

media says that stress∝ strain. We can now generalise this to the tensor formulation

pij = kijklekl

where kijkl is a fourth rank tensor, which expresses the linear (but possibly aniso-

tropic) relationship between p and e.

3.5 Properties of Tensors

Linear Combination of Tensors

If Aij and Bij are second rank tensors, and α, β are scalars, then Tij = αAij + βBij is a

tensor.

Proof:

T ′
ij = α′A′

ij + β′B′
ij

= αlipljqApq + βlipljqBpq

= lipljq(αApq + βBpq)

= lipljqTpq

as required.

This result clearly extends to tensors of rank n.

Contraction (also known as the Inner Product)

If Tij is a tensor then Tii is a scalar. Proof:

T ′
ii = lipliqTpq = δpqTpq = Tpp = Tii,

so Tii has the same value in all frames as required.
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We can extend this result: if Tijk...lmn... is a tensor of rank n then Sjk...mn... = Tijk...imn...

is a tensor of rank n− 2. Proof:

S ′
jk...mn... = T ′

ijk...imn...

= lipljqlkr . . . liαlmβlnγ . . . Tpqr...αβγ...

= (lipliα)ljqlkr . . . lmβlnγ . . . Tpqr...αβγ...

= δpαljqlkr . . . lmβlnγ . . . Tpqr...αβγ...

= ljqlkr . . . lmβlnγ . . . Sqr...βγ....

Outer Product

If a and b are vectors then the outer product Tij defined by Tij = aibj is a tensor of rank

two. Proof:

T ′
ij = a′ib

′
j = lipapljqbq = lipljqapbq = lipljqTpq

as required.

Similarly (left as an exercise for the reader) we can show that if Aijk... is a tensor of

rank m and Blmn... is a tensor of rank n, then Tijk...lmn... = Aijk...Blmn... is a tensor of rank

m + n.

Example: if a and b are vectors then a . b is a scalar. Proof: Tij = aibj, being an

outer product of two vectors, is a tensor of rank two. Then Tii = aibi, being a contraction

of a tensor, is a scalar, as required. Note that |a|2 = a . a and |b|2 are also scalars; hence

a.b/|a| |b| = cos θ is a scalar, so that the angle between vectors is unaffected by a change

of frame.

3.6 Symmetric and Anti-Symmetric Tensors

A tensor Tijk... is said to be symmetric in a pair of indices (say i, j) if

Tijk... = Tjik...

or anti-symmetric in i, j if

Tijk... = −Tjik....

For a second rank tensor we need not specify the indices as there are only two to

choose from! For example, δij is symmetric; εijk is anti-symmetric in any pair of indices.
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Note: if Aij is a symmetric second rank tensor then the matrix corresponding to A is

symmetric, i.e. A = AT . Similarly for an anti-symmetric tensor.

Suppose that Sij is a symmetric tensor and Aij an anti-symmetric tensor. Then

SijAij = 0. Proof:

SijAij = −SijAji = −SjiAji

= −SijAij (swapping dummy i and j)

=⇒ 2SijAij = 0,

as required. Try to work out also how to see this “by inspection”, by considering appro-

priate pairs of components.

Example: for any vector a, a× a = 0 because

[a× a]i = εijkajak

and εijk is anti-symmetric in j, k whilst ajak is symmetric.

The properties of symmetry and anti-symmetry are invariant under a change of frame:

that is, they are truly tensor properties. For example, suppose that Tij is symmetric.

Then

T ′
ij = lipljqTpq

= lipljqTqp

= ljqlipTqp = T ′
ji,

so that T ′
ij is also symmetric.

(Alternative, and simpler, proof for second rank tensors:

T ′ = LTLT =⇒ T ′T = (LTLT )T = LT T LT = LTLT = T ′

using T T = T .)

Symmetry and anti-symmetry occur frequently in practical applications. For example,

the strain tensor eij = 1
2
(∂ui/∂xj + ∂uj/∂xi) is clearly symmetric. In most situations the

stress tensor is also symmetric; but in some circumstances (for instance in crystallography

or geodynamics) it is forced to be anti-symmetric while the strain remains symmetric.

Inertia tensors are always symmetric; conductivity and susceptibility tensors usually are.
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Decomposition into Symmetric and Anti-Symmetric Parts

Any second rank tensor Tij can be uniquely expressed as the sum of a symmetric and an

anti-symmetric tensor; for

Tij = Sij + Aij

where

Sij = 1
2
(Tij + Tji), Aij = 1

2
(Tij − Tji)

are symmetric and anti-symmetric respectively. Exercise: prove that S and A are tensors.

Furthermore, any anti-symmetric tensor Aij can be expressed in terms of a vector !

(sometimes known as the dual vector) such that

Aij = εijkωk.

Proof: define ! by

ωk = 1
2
εklmAlm.

Then

εijkωk = 1
2
εijkεklmAlm

= 1
2
(δilδjm − δimδjl)Alm

= 1
2
(Aij − Aji) = Aij

as required. ! is a vector as it is a contraction of two tensors.

This definition of ! actually corresponds to setting

A =

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

 .

Example: suppose that two symmetric second rank tensors Rij and Sij are linearly

related. Then there must be a relationship between them of the form Rij = cijklSkl. It

is clear that cijkl must be symmetric in i, j (for otherwise, Rij would not be). It is not

necessarily the case that it must also be symmetric in k, l, but without loss of generality

we may assume that it is, by the following argument. Decompose cijkl into a part c
(s)
ijkl

which is symmetric in k, l and a part c
(a)
ijkl which is anti-symmetric. Then

Rij = c
(s)
ijklSkl + c

(a)
ijklSkl = c

(s)
ijklSkl

because the second term is the contraction of an anti-symmetric tensor with a symmetric

one, which we showed was zero above. Hence we can ignore any anti-symmetric part of

cijkl.
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3.7 Diagonalization of Symmetric Second Rank

Tensors

Suppose Tij is a symmetric second rank tensor. We shall show that there exists a frame

such that, if we transform T to that frame, it has components given by

T ′ =

λ1 0 0

0 λ2 0

0 0 λ3

 .

This process is known as diagonalization. The values λ1, λ2 and λ3 are known as the

principal values of T , and the Cartesian coordinate axes of the corresponding frame are

known as the principal axes. We will see that in fact the principal values are just the

eigenvalues of the matrix corresponding to T , and the principal axes are the eigenvectors.

Because T is symmetric, we know that there are 3 real eigenvalues and that we can

find 3 corresponding eigenvectors which are orthogonal and of unit length. Let λ1, λ2,

λ3 be the eigenvalues and e′1, e′2, e′3 be the eigenvectors (arranged as a right-handed set

of orthonormal vectors). Change frame to one in which the coordinate axes are aligned

with {e′1, e′2, e′3}. What is T ′?

Recall that LT =
(

e′1
∣∣ e′2

∣∣ e′3
)
; i.e., the three columns of LT are the vectors e′1, e′2

and e′3 (measured relative to the first frame). Hence in matrix notation,

TLT = T
(
e′1

∣∣ e′2
∣∣ e′3

)
=

(
λ1e

′
1

∣∣ λ2e
′
2

∣∣ λ3e
′
3

)
.

So

T ′ = LTLT =

 e′1
T

e′2
T

e′3
T


λ1e

′
1 λ2e

′
2 λ3e

′
3



=

λ1 0 0

0 λ2 0

0 0 λ3


because, for example, the top LHS entry is given by e′1 . λ1e

′
1, and the top RHS entry is

e′1 . λ3e
′
3.

There is another way of seeing that T ′ =

λ1 0 0
0 λ2 0
0 0 λ3

. The equation Te′1 = λ1e′1 is true in any frame

(because T is a tensor, e′1 a vector and λ1 a scalar). In particular it is true in the frame with {e′1, e′2, e′3}
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as coordinate axes. But, measured in this frame, e′1 is just (1, 0, 0)T , and T has components T ′; so

T ′

1
0
0

 =

λ1

0
0


which shows that the first column of T ′ is (λ1, 0, 0)T . Similarly for the other columns.

Note: the three principal values are invariants of T . That is, whatever frame we start

from, when we diagonalize T we will obtain the same values of λ. The eigenvalues are

properties of the tensor, not of the coordinate system.

3.8 Isotropic Tensors

An isotropic tensor is one whose components are the same in all frames, i.e.,

T ′
ijk... = Tijk....

We can classify isotropic tensors up to rank four as follows:

Rank 0: All scalars are isotropic, since the tensor transformation law states that T ′ = T

for tensors of rank zero.

Rank 1: There are no non-zero isotropic vectors.

Rank 2: The most general isotropic second rank tensor is λδij where λ is any scalar,

as proved below.

Rank 3: The most general isotropic third rank tensor is λεijk.

Rank 4: The most general isotropic fourth rank tensor is

λδijδkl + µδikδjl + νδilδjk

where λ, µ, ν are scalars.

What is the physical significance of an isotropic tensor? Consider the conductivity

tensor σij in an isotropic medium. As the medium is the same in all directions, we expect

that σij will be isotropic too. Hence σij = λδij and

Ji = σijEj = λδijEj = λEi,

i.e., J = λE. So we recover the “simple version” of the conductivity law, as we might

expect.
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Isotropic Second Rank Tensors

Consider a general tensor T of rank two, with components Tij

with respect to some set of axes {e1, e2, e3}. Suppose that T is

isotropic. Its components should then be unaltered by a rota-

tion of 90◦ about the 3-axis, i.e., with respect to new axes

e′1 = e2, e′2 = −e1, e′3 = e3.

The matrix of this rotation is

L =

 0 1 0

−1 0 0

0 0 1

 .

Using the matrix formulation of the transformation law for tensors, we see thatT ′
11 T ′

12 T ′
13

T ′
21 T ′

22 T ′
23

T ′
31 T ′

32 T ′
33

 =

 0 1 0

−1 0 0

0 0 1


T11 T12 T13

T21 T22 T23

T31 T32 T33


0 −1 0

1 0 0

0 0 1



=

 T22 −T21 T23

−T12 T11 −T13

T32 −T31 T33

 .

But, because T is isotropic, T ′
ij = Tij. Hence, comparing matrix entries, we have:

T11 = T22;

T13 = T23 = −T13 so that T13 = T23 = 0;

T31 = T32 = −T31 so that T31 = T32 = 0.

Similarly, considering a rotation of 90◦ about the 2-axis, we find that T11 = T33 and that

T12 = T32 = 0, T21 = T23 = 0. Therefore all off-diagonal elements of T are zero, and all

diagonal elements are equal, say λ. Thus

T =

λ 0 0

0 λ 0

0 0 λ

 ,

or in suffix notation, Tij = λδij.

In summary, we have shown that any isotropic second rank tensor must be equal to

λδij for some scalar λ.
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3.9 Tensor Differential Operators

A tensor field is a tensor which depends on the location x. For example:

(i) Temperature is a scalar field (a tensor field of rank zero), because T = T (x).

(ii) Any vector field F(x), such as a gravitational force field, is a tensor field of rank one.

In particular, x is itself a vector field, because it is a vector function of position!

(iii) In a conducting material where the conductivity varies with location, we have σij =

σij(x), a tensor field of rank two.

We are interested here in calculating the derivatives of tensor fields; we start with

scalars and vectors.

We can rewrite the definitions of grad, div, and curl using suffix notation.

Grad: [∇Φ]i =
∂Φ

∂xi

Div: ∇ . F =
∂F1

∂x1

+
∂F2

∂x2

+
∂F3

∂x3

=
∂Fi

∂xi

Curl: [∇× F]i = εijk
∂Fk

∂xj

There is another notation worth knowing: if u, v are vectors then we define the vector

(u .∇)v =

(
u1

∂

∂x1

+ u2
∂

∂x2

+ u3
∂

∂x3

)
v.

In suffix notation,

[(u .∇)v]i = uj
∂vi

∂xj

.

Laplace’s equation ∇2Φ = 0 becomes

∂2Φ

∂xi∂xi

= 0

in suffix notation. Similarly,

[∇2F]i =
∂2Fi

∂xj∂xj

(note that we only use Cartesian coordinates here).

We sometimes find it useful to use the differential operator ∂i defined by

∂i =
∂

∂xi

.
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Then

[∇Φ]i = ∂iΦ; ∇ . F = ∂iFi; [∇× F]i = εijk∂jFk.

It turns out that ∂i is in fact a tensor of rank one. We know that xj = lijx
′
i (from

x = LTx′) so that
∂xj

∂x′i
=

∂

∂x′i
(lkjx

′
k) = lkj

∂x′k
∂x′i

= lkjδik = lij.

(This looks obvious but has to be proved very carefully!) Now let T be some quantity

(perhaps a scalar or a tensor of some rank). Then

∂′iT =
∂T

∂x′i
=

∂T

∂x1

∂x1

∂x′i
+

∂T

∂x2

∂x2

∂x′i
+

∂T

∂x3

∂x3

∂x′i

=
∂T

∂xj

∂xj

∂x′i

= lij
∂T

∂xj

= lij∂jT.

This is true for any quantity T , so

∂′i = lij∂j,

i.e., ∂i transforms like a vector, and is hence a tensor of rank one.

This result allows us to prove that ∇Φ, ∇ . F and ∇ × F are scalars or vectors (as

appropriate). For example, to show that if F is a vector field then ∇×F is a vector field:

[∇× F]′i = ε′ijk∂
′
jF

′
k

= lipljqlkrεpqrljs∂slktFt

[ε, ∂ and F are tensors]

= lip(ljqljs)(lkrlkt)εpqr∂sFt

= lipδqsδrtεpqr∂sFt

= lipεpqr∂qFr

= lip[∇× F]p,

as required.

Alternatively, we can just state that ∇×F is a contraction of the tensor outer product Tijklm = εijk∂lFm

(because [∇× F]i = Tijkjk).

As an example of a tensor field of rank three, consider the derivative of the conductivity

tensor, ∂iσjk. This cannot be written using ∇.
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