Chapter 3

Cartesian Tensors

3.1 Suffix Notation and the Summation Convention

We will consider vectors in 3D, though the notation we shall introduce applies (mostly)

just as well to n dimensions. For a general vector
X = (.ﬁUl, T2, x3)

we shall refer to z;, the i*® component of x. The index i may take any of the values
1, 2 or 3, and we refer to “the vector x;” to mean “the vector whose components are
(21,22, x3)”. However, we cannot write x = z;, since the LHS is a vector and the RHS a

scalar. Instead, we can write [x]; = x;, and similarly [x + y]; = z; + v;.

Note that the expression y; = z; implies that y = x; the statement in suffix notation

is implicitly true for all three possible values of i (one at a time!).

Einstein introduced a convention whereby if a particular suffix (e.g., ¢) appears twice
in a single term of an expression then it is implicitly summed. For example, in traditional

notation \
X.y =21Y1 + ToYs + T3Y3 = Z TilYis
i=1

using summation convention we simply write

All we are doing is not bothering to write down the !

The Rules of Summation Convention

Summation convention does not allow any one suffix to appear more than twice within

a single term; so x;y;2; is meaningless. We have to take care to avoid this: for example,
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consider the vector relation

y = (a.b)x.

We have a. b = a;b;, but we cannot write y; = a;b;x; as this would be ambiguous. How

can we correct this? Note that
a.b= CLibi = Cijj

— the suffix we use for the summation is immaterial. (Compare with the use of dummy

variables in integrations: fooo e ¥dx = fooo e Ydy.) So we can write

Y, = CijjZL‘Z‘.

In any given term, then, there are two possible types of suffix: one that appears
precisely once, e.g., ¢ in ajbjx;, which is known as a free suffiz; and one that appears
precisely twice, e.g., j in a;b;x;, which is known as a dummy suffiz. It is an important
precept of summation convention that the free suffixes must match precisely in every
term (though dummy suffixes can be anything you like so long as they do not clash with

the free suffixes). So in the equation
ajbjzk =x + aiaiykbjbj

every term has a free suffix £k, and all other suffixes are dummy ones. In vector notation,
this equation reads
(a.b)z = x + |a|?|b|?y.

(Note that the order of variables in the final term of this equation in suffix notation is

unimportant: we could equally well have written b;ya;b;a;.)

There need not be any free suffixes at all, as in the equation a;z; = (x; + y;)a; (which

reads a.z = (x +y) . a in vector notation).

Suffix notation can also be used with matrices. For a matrix A, we write a,; to denote
the entry in the i*" row and ;'™ column of A (for each i = 1,2,3 and j = 1,2,3). We
write either A = (a;;) or [A];; = a;; — these equations are equivalent — to indicate this.
(Sometimes the upper-case letter is used instead, in which case the matrix A would have

entries A;;.)

Examples of Summation Convention

(i) 2x+y =z < 22; + y; = 2;. Note that the RHS of this suffix notation equation

does mot mean z; + z3 + 23 — no repeated suffix, no sum!

(i) (a.b)(x.y) =0« a;bizjy; = 0.
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(iii) In summation convention, y = Ax is written

yi = [AX]; = ayz;

(check that this is correct by writing it out long-hand for each possible value of the

free suffix 7).

(iv) The matrix multiplication C' = AB (where A and B are 3 x 3 matrices) is written

Cij = [AB]U = aikbkj.

(v) The trace of a matrix C' may be written as TrC' = ¢y, i.e., ¢11 + o2 + ¢33. Hence
TI”(AB) = alkb;ﬂ

Replacing two free suffixes (e.g. 4, j in ¢;;) by a single dummy suffix (¢;;) is known

as contraction.

Not all expressions written in suffix notation can be recast in vector or matrix notation.
For example, a;; = x;y;2 is a valid equation in suffix notation (each term has three free

suffixes, i, j and k), but there is no vector equivalent.

3.2 The Kronecker Delta and the Alternating Tensor

The Kronecker delta is defined by

and the alternating tensor is defined by

1 if (4,4, k) is a cyclic permutation of (1,2, 3)
€5k = § —1 if (4,4, k) is an anti-cyclic permutation of (1,2, 3)

0  if any of 4, j, k are equal

(i.e., €193 = €931 = €310 = 1; €013 = €139 = €391 = —1; all others are zero). Note that

5ij = 6]'1' and that €ijk = €jki = €kij — —€jik etc.

If I is the identity matrix (é

oo
OO

) then [I];; = d;;. We see that
€T; = 5ij$j
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because (i) this is equivalent to x = Ix; or (ii) we can check for each value of i (e.g.,
when ¢ = 1, RHS = §y;2; = 01121 + 91222 + d1323 = 21 = LHS). The Kronecker delta just

“selects” entries: e.g., d;xa;i is equal to aj;.
What is 6;;7 It is not 1.

The alternating tensor can be used to write down the vector equation z = x X y in
suffix notation:

Zi = [X X Y]z = €jkT;Yk-

(Check this: e.g., 21 = €123%2Y3 + €132T3Y2 = Toy3 — T3Ya, as required.) There is one very
important property of €

€ijk€klm = 5z‘l5jm - 5¢m5jl-

This makes many vector identities easy to prove.

(The property may be proved by first proving the generalisation

0t Oim  Oin
Gijkqmn = det (Sj (Sj 5jn
5kl 5km (5kn

Both sides clearly vanish if any of i, j, k are equal; or if any of [, m, n are. Now take
1=1=1,7=m =2, k =n = 3: both sides are clearly 1. Finally consider the effect
of swapping say ¢ and j. Once we have proved this generalisation, contract k and n and

simplify, noting that for example 0,50k, = 0jm.)
Example: prove that a x (b x c) = (a.c)b — (a.b)c.
[a x (b x c)|; = €;raj[b X ¢l

= Eijkajekzmbzcm
= (0i0jm — Gimdji)a;bicm
= ajbic; — ajbjc
=(a.c)b; — (a.b)g
=[(a.c)b—(a.b)c;,

as required.

€k can also be used to calculate determinants. The determinant of a 3 x 3 matrix

A = (a;j) is given by €;;xa1;a2;a3;, (check this by just expanding the product and sum in
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full). This can be written in several other ways; for example,
det A = €ijkA1;A2jA3k = €5ikQ1;A2;A3k
[swapping i and j]
= —€jkA2;A1;A3k-

This proves that swapping two rows of a matrix changes the sign of the determinant.

3.3 What is a Vector?

A vector is more than just 3 real numbers. It is also a physical entity: if we know its
3 components with respect to one set of Cartesian axes then we know its components
with respect to any other set of Cartesian axes. (The vector stays the same even if its

components do not.)

For example, suppose that {e;, es, es} is a right-handed
orthogonal set of unit vectors, and that a vector v has com-
ponents v; relative to axes along those vectors. That is to
say,

V = v1€1 + Us€9 + VUgey = v;e;.

What are the components of v with respect to axes which
have been rotated to align with a different set of unit vectors
{e},€},e5}7 Let

Y/ /N N Y
V = V1€ + V5@ + Use3 = V€.

/ /o
Now e; . €, = 0, so

but also

'~ v . e = vl
v.e; =vje;.e; = vl

where we define the matrix L = (I;;) by

_
lij =€, .6€;.

Then

/ JR—
Ui = ll-jvj

(or, in matrix notation, v/ = Lv where v’ is the column vector with components v}). L

is called the rotation matriz.

This looks like, but is not quite the same as, rotating the vector v round to a different vector v/ using a
transformation matrix L. In the present case, v and v’ are the same vector, just measured with respect
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to different axes. The transformation matrix corresponding to the rotation {e;,es,e3} — {e}, e}, e} is
not L (in fact it is L=1).

Now consider the reverse of this argument. Exactly the same discussion would lead

to

where

(we swap primed and unprimed quantities throughout the argument). We note that

~

l;j = l;; from their definitions; hence
L=1L"
and so
v=1ILv =L"V.
We can deduce that
v =LTLv,
and furthermore, this is true for all vectors v. We conclude that

LTL =1,

ie.,

L"=r""

(Hence LLT = I also.) L is therefore an orthogonal matrix. In suffix notation, the

equation LTL = I reads

lkilk; = i,
and LLT = I reads

Ll = dij;

both of these identities will be useful.

Another way of seeing that LLT = I (or, equivalently, LTL = I) is to consider the
components of L. Since €/ . e; is just the j* component of e, measured with respect to
the first frame, we see that the i*" row of L just consists of the components of €] measured

with respect to the first frame:

el.e; € .e €] .e3
L=1e,.e; €,.e; €,.e3

e;.e; €;.e; €eh.e3

= €, [measured with respect to frame 1].
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Alternatively, the ™" column consists of the components of e; with respect to the second

frame.

To calculate the top left component of LL”, we find the dot product of the first row
of L with the first column of LT. Both are simply e} measured with respect to the first
frame, so we obtain €] . €}, which is 1. Similarly, the top right component of LL is
e/ . €}, which is zero. So, considering all possible combinations of rows and columns, we
see that LLT = I as required.

3.4 Tensors

Tensors are a generalisation of vectors. We think informally of a tensor as something
which, like a vector, can be measured component-wise in any Cartesian frame; and which

also has a physical significance independent of the frame, like a vector.

Physical Motivation

Recall the conductivity law, J = oE, where E is the applied electric field and J is
the resulting electric current. This is suitable for simple isotropic media, where the
conductivity is the same in all directions. But a matrix formulation may be more suitable

in anisotropic media; for example,

o~
Il
o o o
o B O
o o o
&=

might represent a medium in which the conductivity is high in the x-direction but in
which no current at all can flow in the z-direction. (For instance, a crystalline lattice

structure where vertical layers are electrically insulated.)

More generally, in suffix notation we have
where o is the conductivity tensor.

What happens if we measure J and E with respect to a different set of axes? We

would expect the matrix o to change too: let its new components be agj. Then

J = angj".
But J and E are vectors, so
Ji = lijJ;
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and

from the results regarding the transformation of vectors in §3.3. Hence

az{jEJ’- =J
= lipJp
= lipope By
= lipapquqE;'

= (J;j - lipquapq)E} =0.

This is true for all vectors E’, and hence the bracket must be identically zero; hence

0i; = lipljq0pq- This tells us how o transforms.

Compare this argument with the corresponding argument for the case Ax = 0 where A is a matrix; if it
is true for all x then A must be zero, though this is not the case if it is only true for some x’s.

o is a second rank tensor, because it has two suffixes (o;;).

Definition: In general, a tensor of rank n is a mathematical object with n suffixes,

Tijk..., which obeys the transformation law

/ JR—
ijk... — lipqulkr - -qurm

where L is the rotation matrix between frames.

Note: for second rank tensors such as o, the transformation law
Tz,; = lipljqTpq

can be rewritten in matrix notation as 7" = LTLT - check this yourself!

Examples of Tensors

(i) Any vector v (e.g., velocity) is a tensor of rank 1, because v} = l;,v,.

(ii) Temperature 7" is a tensor of rank 0 — known as a scalar — because it is the same
in all frames (77 =1T).

(iii) The inertia tensor. Consider a mass m which is part of a rigid body, at a location
x within the body. If the body is rotating with angular velocity w then the mass’s

velocity is v = w x x, and its angular momentum is therefore
mx x v=mx X (w x x) = m(|]x[’w — (w.x)x).
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Changing from a single mass m to a continuous mass distribution with density
p(x), so that an infinitesimal mass element is p(x) dV', we see that the total angular

momentum of a rigid body V' is given by

/ [ [ (o = (0. 1) av,

h; = /// p(x)(rpxpw; — wjz;x;) dV
v
/// X)(TrpxR0i; — T2 )w; dV

= [jw;

ey /// X)(zprdiy — xixy) dV

is the inertia tensor of the rigid body. Note that the tensor I does not depend on

or, in suffix notation,

where

w, only on properties of the body itself; so it may be calculated once and for all
for any given body. To see that it is indeed a tensor, note that both h and w are

vectors, and apply arguments previously used for the conductivity tensor.

Susceptibility x. If M is the magnetization (magnetic moment per unit volume)
and B is the applied magnetic field, then for a simple medium we have M

x"™B where x(™ is the magnetic susceptibility. This generalises to M; = Xw )B

where Xg;n)

P in a dielectric: P; = XZ(-;)E]‘ where E is the electric field and XE;) is the electric

is the magnetic susceptibility tensor. Similarly for polarization density

susceptibility tensor.

The Kronecker delta itself. We have defined ¢;; without reference to frame; i.e., its
components are by definition the same in all frames (d;; = ds;). Surprisingly, then,

we can show that it is a tensor:
lipqu(qu = lipljp = 5ij = 5zl'j

(from §3.3), which is exactly the right transformation law. We can also show that

€k 1s a tensor of rank 3.

Both ¢;; and €5 are isotropic tensors: that is, their components are the same in

all frames.
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(vi) Stress and strain tensors. In an elastic body, stresses (forces) produce displacements
of small volume elements within the body. Let this displacement at a location x be

u; then the strain tensor is defined to be

i = 2 8£Cj &r;l .

The stress tensor p;; is defined as the j™ component of the forces within the body

acting on an imaginary plane perpendicular to the i*" axis. Hooke’s law for simple

media says that stress oc strain. We can now generalise this to the tensor formulation
Dij = Kijrien

where k;jj; is a fourth rank tensor, which expresses the linear (but possibly aniso-

tropic) relationship between p and e.

3.5 Properties of Tensors

Linear Combination of Tensors

If A;; and B;; are second rank tensors, and «, 3 are scalars, then T;; = aA;; + 3B;; is a

tensor.

Proof:
T = oA+ 9B
= alipljgApg + BlipliqBpg
= lipqu(O‘qu + ﬁqu)

=l

ip qupq

as required.

This result clearly extends to tensors of rank n.

Contraction (also known as the Inner Product)
If T;; is a tensor then Tj; is a scalar. Proof:

Tz‘li = lipligTpg = 5qupq = Tpp = Ti,
so T;; has the same value in all frames as required.
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We can extend this result: if T}k imn... is a tensor of rank n then Sji_mn.. = Tijk..imn...

is a tensor of rank n — 2. Proof:

/ _ 7

= lipqulkr . lialmﬁln'y cee qur...aﬁ'y‘..
= (liplia)qulkr cee lm[)’ln'y cee qur...aﬂ'y...
== 6paqulkr e lmﬁln'y ce qur...aﬂ'y“.

= qulk'r [N lmﬂlnf), e Sqrmﬁfym.

Outer Product

If a and b are vectors then the outer product T;; defined by T;; = a;b; is a tensor of rank
two. Proof:

Tz,g = a;b;‘ = lipapljgby = lipljqapby = lipljqTpq
as required.

Similarly (left as an exercise for the reader) we can show that if A;;, . is a tensor of
rank m and By, is a tensor of rank n, then Tk imn... = Aiji... Bimn... is a tensor of rank

m -+ n.

Example: if a and b are vectors then a. b is a scalar. Proof: T}; = a;b;, being an
outer product of two vectors, is a tensor of rank two. Then T;; = a;b;, being a contraction
of a tensor, is a scalar, as required. Note that |a|> = a.a and |b|* are also scalars; hence
a.b/|a| |b| = cos @ is a scalar, so that the angle between vectors is unaffected by a change

of frame.

3.6 Symmetric and Anti-Symmetric Tensors

A tensor T} is said to be symmetric in a pair of indices (say ¢, j) if
Tijk... = Tii...

or anti-symmetric in i, j if
Tijk... = —Tjir....

For a second rank tensor we need not specify the indices as there are only two to

choose from! For example, J;; is symmetric; €, is anti-symmetric in any pair of indices.
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Note: if A;; is a symmetric second rank tensor then the matrix corresponding to A is

symmetric, i.e. A = A”. Similarly for an anti-symmetric tensor.

Suppose that S;; is a symmetric tensor and A;; an anti-symmetric tensor. Then
Siinj = (. Proof:

SijAiy = —SijAji = —SjiAji
= =S5 Aij (swapping dummy ¢ and 7)
> QSWAZ] = O,

as required. Try to work out also how to see this “by inspection”, by considering appro-

priate pairs of components.

Example: for any vector a, a x a = 0 because
[a X a]z- = €3jkA;Q

and €5, is anti-symmetric in j, k whilst a;ja; is symmetric.

The properties of symmetry and anti-symmetry are invariant under a change of frame:
that is, they are truly tensor properties. For example, suppose that Tj; is symmetric.
Then

Tz/; = lipljqTpq

= lipljqTyp

= quliqup = T]{z‘a
so that T}, is also symmetric.

(Alternative, and simpler, proof for second rank tensors:
T =LTL" — T = (LTI = LT LY = LT =T
using TT =T.)

Symmetry and anti-symmetry occur frequently in practical applications. For example,
the strain tensor e;; = $(du;/dx; + du;/x;) is clearly symmetric. In most situations the
stress tensor is also symmetric; but in some circumstances (for instance in crystallography
or geodynamics) it is forced to be anti-symmetric while the strain remains symmetric.

Inertia tensors are always symmetric; conductivity and susceptibility tensors usually are.
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Decomposition into Symmetric and Anti-Symmetric Parts

Any second rank tensor 7;; can be uniquely expressed as the sum of a symmetric and an

anti-symmetric tensor; for

Ty = Sij + Ay

where

Sy =35T + Ty), Ay =35(T; — Tpp)

are symmetric and anti-symmetric respectively. Exercise: prove that S and A are tensors.

Furthermore, any anti-symmetric tensor A;; can be expressed in terms of a vector w

(sometimes known as the dual vector) such that

Aij = €ijrwr.

Proof: define w by

1
Wk = 5€kimAim-
Then
1 A
€ijkWk = 5€ijk€kimAIm
_ 1
- 5(6zl5jm - 5im5jl>Alm
= 5(Ay — Aji) = Ay
as required. w is a vector as it is a contraction of two tensors.

This definition of w actually corresponds to setting

0 W3 —W2
A= —Wws3 0 w1
w2 —Ww1 0

Example: suppose that two symmetric second rank tensors R;; and S;; are linearly
related. Then there must be a relationship between them of the form R;; = ¢;juSk. It
is clear that c;ji; must be symmetric in ¢, j (for otherwise, R;; would not be). It is not
necessarily the case that it must also be symmetric in k, [, but without loss of generality
we may assume that it is, by the following argument. Decompose c;;; into a part cl(.;?d

Ejl)gz which is anti-symmetric. Then

which is symmetric in k, [ and a part ¢
Ri; = CSLszl + cgj?,llsk, = CSLsz

because the second term is the contraction of an anti-symmetric tensor with a symmetric

one, which we showed was zero above. Hence we can ignore any anti-symmetric part of

Cijkl-
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3.7 Diagonalization of Symmetric Second Rank

Tensors

Suppose T;; is a symmetric second rank tensor. We shall show that there exists a frame

such that, if we transform 7' to that frame, it has components given by

A 000
T/ - 0 )\2 0
0 0 A

This process is known as diagonalization. The values A\;, Ay and A3 are known as the
principal values of T, and the Cartesian coordinate axes of the corresponding frame are
known as the principal ares. We will see that in fact the principal values are just the

eigenvalues of the matrix corresponding to 7', and the principal axes are the eigenvectors.

Because T' is symmetric, we know that there are 3 real eigenvalues and that we can
find 3 corresponding eigenvectors which are orthogonal and of unit length. Let Ay, Ao,
A3 be the eigenvalues and €/, €}, €} be the eigenvectors (arranged as a right-handed set
of orthonormal vectors). Change frame to one in which the coordinate axes are aligned
with {e}, e}, e5}. What is T'7

Recall that LT = ( €} | €, } e} ); i.e., the three columns of LT are the vectors €}, €/,

and e} (measured relative to the first frame). Hence in matrix notation,
TL"=T(€)|¢€)|e})

= (/\lell } )\26/2 ‘ )\36/3 )

So
T
e
T =LTL" = e’ el | el | A€l
e’
3
A 000
— O )\2 0
0 0 s
because, for example, the top LHS entry is given by €] . A\1e], and the top RHS entry is
e . \ses.
A 0 0
There is another way of seeing that 7= [ 0 A2 0 |. The equation T'€] = A€} is true in any frame
0 0 A3

(because T is a tensor, €] a vector and Ay a scalar). In particular it is true in the frame with {e], e}, e5}
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as coordinate axes. But, measured in this frame, €/ is just (1,0,0)7, and T has components 7"; so

0

which shows that the first column of T” is (A1,0,0)”. Similarly for the other columns.

Note: the three principal values are invariants of 1. That is, whatever frame we start
from, when we diagonalize T" we will obtain the same values of A\. The eigenvalues are

properties of the tensor, not of the coordinate system.

3.8 Isotropic Tensors

An isotropic tensor is one whose components are the same in all frames, i.e.,

, P ..
Tiji... = Tijp...

We can classify isotropic tensors up to rank four as follows:

Rank 0: All scalars are isotropic, since the tensor transformation law states that 77 =T

for tensors of rank zero.

Rank 1: There are no non-zero isotropic vectors.

Rank 2: The most general isotropic second rank tensor is | Ad;; | where A is any scalar,

as proved below.

Rank 3: The most general isotropic third rank tensor is | Ae;jj.

Rank 4: The most general isotropic fourth rank tensor is
A0ijOrt + p10ik 051 + V005

where A, u, v are scalars.

What is the physical significance of an isotropic tensor? Consider the conductivity
tensor o;; in an isotropic medium. As the medium is the same in all directions, we expect

that o;; will be isotropic too. Hence o;; = Ad;; and
Ji = OijEj = )\(SUEJ = )\Ez

ie., J = AE. So we recover the “simple version” of the conductivity law, as we might

expect.
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Isotropic Second Rank Tensors

Consider a general tensor 7" of rank two, with components 7;;
with respect to some set of axes {ej, ey, e3}. Suppose that T is
isotropic. Its components should then be unaltered by a rota-

tion of 90° about the 3-axis, i.e., with respect to new axes

/ / /

The matrix of this rotation is

0 10
L=1-100
0 01

Using the matrix formulation of the transformation law for tensors, we see that

T, Ti, Tl 0 1 0\ [Tn T T\ [0 -1 0
T2,1 T2/2 T2,3 - -1 0 0 T21 TQQ T23 1 0 0
Ty, Tiy T 0 0 1) \Ty Ty T3/ \O 0 1

T22 _TQI T23
= _T12 Tl 1 - T13
T32 _T31 T33

But, because T is isotropic, T}; = T;;. Hence, comparing matrix entries, we have:
Ty = Th;
T3 =153 =—-T3 so that T3 =15 = 0;
T3 =139 = —T3 so that T3 =13, = 0.

Similarly, considering a rotation of 90° about the 2-axis, we find that 77; = 733 and that
Tio = T35 =0, Tyy = To3 = 0. Therefore all off-diagonal elements of T" are zero, and all

diagonal elements are equal, say A. Thus

~

I
o O >
o > o
> O O

or in suffix notation, T;; = AJ;;.

In summary, we have shown that any isotropic second rank tensor must be equal to

Ao;; for some scalar A.
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3.9 Tensor Differential Operators

A tensor field is a tensor which depends on the location x. For example:

(i) Temperature is a scalar field (a tensor field of rank zero), because T' = T'(x).

(ii) Any vector field F(x), such as a gravitational force field, is a tensor field of rank one.

In particular, x is itself a vector field, because it is a vector function of position!

(iii) In a conducting material where the conductivity varies with location, we have o;; =
0,j(x), a tensor field of rank two.

We are interested here in calculating the derivatives of tensor fields; we start with
scalars and vectors.

We can rewrite the definitions of grad, div, and curl using suffix notation.

0P
d: d|; =
Gra Vo; .
. oFy, O0F, 0F; OF;
Div: F = =
v v 8951 * 81‘2 + 81'3 al‘,
OFy
Curl: [V X F]z = €jjk
J &ch

There is another notation worth knowing: if u, v are vectors then we define the vector

0 0 0
(u . V)V = <UI8_$1 + U28_SL‘2 + u38_x3) V.

In suffix notation,

3vi
[(u . V)V]Z = Uja—x]
Laplace’s equation V2® = 0 becomes
0*d
=0
in suffix notation. Similarly,
0?F;
V2F i — -
[ ] afL’jaZEj

(note that we only use Cartesian coordinates here).

We sometimes find it useful to use the differential operator 0; defined by

0

0;
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Then

[VCI)]Z = aiq); V.F = azFu [V X F]z = Eijkaij.

It turns out that 0; is in fact a tensor of rank one. We know that x; = [;;2} (from
x = LTx') so that
Ox; 0 ox),
5, ~ g 1) = i

(This looks obvious but has to be proved very carefully!) Now let T" be some quantity

= lkj0ir = lij.

(perhaps a scalar or a tensor of some rank). Then

e R TN I T R O

(2

"~ Ox; Ox)

orT

ji—
jail')j

- l = lwajT

This is true for any quantity 7, so
0; = 1;;0;,

i.e., 0; transforms like a vector, and is hence a tensor of rank one.

This result allows us to prove that V@, V. F and V x F are scalars or vectors (as

appropriate). For example, to show that if F is a vector field then V x F is a vector field:
[V Bl = ¢, 0F
= Lipliqlir€pgrljsOslin Fy
e, 0 and F are tensors]
= lip(Ligljs) (Trlie) €pgrOs F
= lip5qs5rt€pqraspt
= lLip€pgrOg I
= 1;,|V x F],,

as required.

Alternatively, we can just state that V x F is a contraction of the tensor outer product T;xim = €101 Fm
(because [V x F|; = Tjjkjk)-

As an example of a tensor field of rank three, consider the derivative of the conductivity

tensor, 0;0;. This cannot be written using V.
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