
Chapter 1

Variational Methods

1.1 Stationary Values of Functions

Recall Taylor’s Theorem for a function f(x) in three dimensions with a displacement

δx = (δx, δy, δz):

f(x + δx) = f(x) +
∂f

∂x
δx +

∂f

∂y
δy +

∂f

∂z
δz + higher order terms

so that

δf = f(x + δx)− f(x) =
∂f

∂x
δx +

∂f

∂y
δy +

∂f

∂z
δz + · · ·

= ∇f . δx + · · · .

In the limit |δx| → 0 we write

df = ∇f . dx.

This result is true in any number n of dimensions.

At an extremum (a maximum or minimum) f must be stationary, i.e. the first variation

df must vanish for all possible directions of dx. This can only happen if ∇f = 0 there.

Note that if we try to find the extrema of f by solving ∇f = 0, we may also find other

stationary points of f which are neither maxima nor minima, for instance saddle points.

(This is the same difficulty as in one dimension, where a stationary point may be a point

of inflection rather than a maximum or minimum.)

If we need to find the extrema of f in a bounded region – for instance,
within a two-dimensional unit square – then not only must we solve
∇f = 0 but we must also compare the resulting values of f with those
on the boundary of the square. It is quite possible for the maximum
value to occur on the boundary without that point being a stationary
one.
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Constrained stationary values

Suppose that we wish to find the extrema of f(x) subject to a

constraint of the form g(x) = c, where c is some constant. In

this case, the first variation df must still vanish, but now not

all possible directions for dx are allowed: only those which lie

in the surface defined by g(x) = c. Hence, since df = ∇f .dx,

the vector ∇f must lie perpendicular to the surface.

But recall that the normal to a surface of the form g(x) = c is in the direction ∇g.

Hence ∇f must be parallel to ∇g, i.e., ∇f = λ∇g for some scalar λ.

This gives us the method of Lagrange’s undetermined multiplier : solve the n equations

∇(f − λg) = 0

for x together with the single constraint equation

g(x) = c.

The resulting values of x give the stationary points of f subject to the constraint. Note

that while solving the total of n+1 equations it is usually possible to eliminate λ without

ever finding its value; hence the moniker “undetermined”.

If there are two constraints g(x) = c and h(x) = k, then we need a multiplier for each

constraint, and we solve

∇(f − λg − µh) = 0

together with the two constraints. The extension to higher numbers of constraints is

straightforward.

1.2 Functionals

Let y(x) be a function of x in some interval a < x < b, and consider the definite integral

F =

∫ b

a

(
{y(x)}2 + y′(x)y′′(x)

)
dx.

F is clearly independent of x; instead it depends only on the function y(x). F is a simple

example of a functional, and to show the dependence on y we normally denote it F [y].

We can think of functionals as an extension of the concept of a function of many

variables – e.g. g(x1, x2, . . . , xn), a function of n variables – to a function of an infinite

number of variables, because F depends on every single value that y takes in the range

a < x < b.
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We shall be concerned in this chapter with functionals of the form

F [y] =

∫ b

a

f(x, y, y′) dx

where f depends only on x and the value of y and its first derivative at x. However,

the theory can be extended to more general functionals (for example, with functions

f(x, y, y′, y′′, y′′′, . . . ) which depend on higher derivatives, or double integrals with two

independent variables x1 and x2 instead of just x).

1.3 Variational Principles

Functionals are useful because many laws of physics and of physical chemistry can be

recast as statements that some functional F [y] is minimised.

For example, a heavy chain suspended between two fixed points hangs in equilibrium

in such a way that its total gravitational potential energy (which can be expressed as a

functional) is minimised. A mechanical system of heavy elastic strings minimises the total

potential energy, both elastic and gravitational. Similar principles apply when electric

fields and charged particles are present (we include the electrostatic potential energy)

and when chemical reactions take place (we include the chemical potential energy).

Two fundamental examples of such variational principles are due to Fermat and

Hamilton.

Fermat’s Principle

Consider a light ray passing through a medium of variable refractive index µ(r). The

path it takes between two fixed points A and B is such as to minimise the optical path

length ∫ B

A

µ(r) dl,

where dl is the length of a path element.

Strictly speaking, Fermat’s principle only applies in the geometrical optics approximation; i.e., when the
wavelength of the light is small compared with the physical dimensions of the optical system, so that light
may be regarded as rays. This is true for a telescope, but not for Young’s slits: when the geometrical
optics approximation fails to hold, diffraction occurs.

For example, consider air above a hot surface, say a tarmac road on a hot day. The air

is hotter near the road and cooler above, so that µ is smaller closer to the road surface. A

light ray travelling from a car to an observer minimises the optical path length by staying
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close to the road, and so bends appropriately. The light seems to the observer to come

from a low angle, leading to a virtual image (and hence to the “mirage” effect).

Hamilton’s Principle of Least Action

Consider a mechanical system with kinetic energy T and potential energy V which is in

some given configuration at time t1 and some other configuration at time t2. Define the

Lagrangian of the system by

L = T − V,

and define the action to be

S =

∫ t2

t1

L dt

(a functional which depends on the way the system moves). Hamilton’s principle states

that the actual motion of the system is such as to minimise the action.

1.4 The Calculus of Variations

How do we find the function y(x) which minimises, or more generally makes stationary,

our archetypal functional

F [y] =

∫ b

a

f(x, y, y′) dx,

with fixed values of y at the end-points (viz. fixed y(a) and y(b))?

We consider changing y to some “nearby” function y(x) + δy(x), and calculate the

corresponding change δF in F (to first order in δy). Then F is stationary when δF = 0

for all possible small variations δy.

Note that a more “natural” notation would be to write dF rather than δF , since we will consider only the
first-order change and ignore terms which are second order in δy. However, the notation δ is traditional
in this context.
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Now

δF = F [y + δy]− F [y]

=

∫ b

a

f(x, y + δy, y′ + (δy)′) dx−
∫ b

a

f(x, y, y′) dx

=

∫ b

a

{
f(x, y, y′) +

∂f

∂y
δy +

∂f

∂y′
(δy)′

}
dx−

∫ b

a

f(x, y, y′) dx

[using a Taylor expansion to first order]

=

∫ b

a

{
∂f

∂y
δy +

∂f

∂y′
(δy)′

}
dx

=

[
∂f

∂y′
δy

]b

a

+

∫ b

a

{
∂f

∂y
δy − d

dx

(
∂f

∂y′

)
δy

}
dx

[integrating by parts]

=

∫ b

a

{
∂f

∂y
− d

dx

(
∂f

∂y′

)}
δy dx

since δy = 0 at x = a, b (because y(x) is fixed there). It is clear that δF = 0 for all

possible small variations δy(x) if and only if

d

dx

(
∂f

∂y′

)
=

∂f

∂y
.

This is Euler’s equation.

Notation

∂f/∂y′ looks strange because it means “differentiate with respect to y′, keeping x and y

constant”, and it seems impossible for y′ to change if y does not. But ∂/∂y and ∂/∂y′ in

Euler’s equation are just formal derivatives (as though y and y′ were unconnected) and

in practice it is easy to do straightforward “ordinary” partial differentiation.

Example: if f(x, y, y′) = x(y′2 − y2) then

∂f

∂y
= −2xy,

∂f

∂y′
= 2xy′.

Note however that d/dx and ∂/∂x mean very different things: ∂/∂x means “keep

y and y′ constant” whereas d/dx is a so-called “full derivative”, so that y and y′ are

differentiated with respect to x as well.
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Continuing with the above example,

∂

∂x

(
∂f

∂y′

)
= 2y′,

but
d

dx

(
∂f

∂y′

)
=

d

dx
(2xy′) = 2y′ + 2xy′′.

Hence Euler’s equation for this example is

2y′ + 2xy′′ = −2xy

or

y′′ +
1

x
y′ + y = 0

(Bessel’s equation of order 0, incidentally).

Several Dependent Variables

What if, instead of just one dependent variable y(x), we have n dependent variables y1(x),

y2(x), . . . , yn(x), so that our functional is

F [y1, . . . , yn] =

∫ b

a

f(x, y1, . . . , yn, y
′
1, . . . , y

′
n) dx ?

In this case, Euler’s equation applies to each yi(x) independently, so that

d

dx

(
∂f

∂y′i

)
=

∂f

∂yi

for i = 1, . . . , n.

The proof is very similar to before:

δF =
∫ b

a

{
∂f

∂y1
δy1 + · · ·+ ∂f

∂yn
δyn +

∂f

∂y′
1

(δy1)′ + · · ·+ ∂f

∂y′
n

(δyn)′
}

dx

=
∫ b

a

n∑
i=1

{
∂f

∂yi
δyi +

∂f

∂y′
i

(δyi)′
}

dx

=
n∑

i=1

∫ b

a

{
∂f

∂yi
− d

dx

(
∂f

∂y′
i

)}
δyi dx

using the same manipulations (Taylor expansion and integration by parts). It is now clear that we can
only have δF = 0 for all possible variations of all the yi(x) if Euler’s equation applies to each and every
one of the yi at the same time.
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1.5 A First Integral

In some cases, it is possible to find a first integral (i.e., a constant of the motion) of

Euler’s equation. Consider
df

dx
=

∂f

∂x
+ y′

∂f

∂y
+ y′′

∂f

∂y′

(calculating d
dx

f
(
x, y(x), y′(x)

)
using the chain rule). Using Euler’s equation,

df

dx
=

∂f

∂x
+ y′

d

dx

(
∂f

∂y′

)
+ y′′

∂f

∂y′

=
∂f

∂x
+

d

dx

(
y′

∂f

∂y′

)
[product rule]

so that
d

dx

(
f − y′

∂f

∂y′

)
=

∂f

∂x
.

Hence, if f has no explicit x -dependence, so that ∂f/∂x = 0, we immediately

deduce that

f − y′
∂f

∂y′
= constant.

(Note that “f has no explicit x-dependence” means that x does not itself appear in

the expression for f , even though y and y′ implicitly depend on x; so f = y′2− y2 has no

explicit x-dependence while f = x(y′2 − y2) does.)

If there are n dependent variables y1(x), . . . , yn(x), then the first integral above is

easily generalised to

f −
n∑

i=1

y′i
∂f

∂y′i
= constant

if f has no explicit x-dependence.

1.6 Applications of Euler’s Equation

Geodesics

A geodesic is the shortest path on a given surface between two specified points A and

B. We will illustrate the use of Euler’s equation with a trivial example: geodesics on the

Euclidean plane.
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The total length of a path from (x1, y1) to (x2, y2) along the path y(x) is given by

L =

∫ B

A

dl =

∫ B

A

√
dx2 + dy2

=

∫ B

A

√
1 +

(
dy

dx

)2

dx =

∫ x2

x1

√
1 + y′2 dx.

Note that we assume that y(x) is single-valued, i.e., the path does not curve back on

itself.

We wish to minimise L over all possible paths y(x) with the end-points held fixed, so

that y(x1) = y1 and y(x2) = y2 for all paths. This is precisely our archetypal variational

problem with

f(x, y, y′) =
√

1 + y′2,

and hence
∂f

∂y
= 0,

∂f

∂y′
=

y′√
1 + y′2

.

The Euler equation is therefore

d

dx

(
y′√

1 + y′2

)
= 0 =⇒ y′√

1 + y′2
= k, a constant.

So y′2 = k2/(1 − k2). It is clear that k 6= ±1, so y′ is a constant, m say. Hence the

solutions of Euler’s equation are the functions

y = mx + c

(where m and c are constants) – i.e., straight lines! To find the particular values of m

and c required in this case we now substitute in the boundary conditions y(x1) = y1,

y(x2) = y2.

It is important to note two similarities with the technique of minimising a function f(x) by solving
∇f = 0.

Firstly, we have not shown that this straight line does indeed produce a minimum of L: we have shown
only that L is stationary for this choice, so it might be a maximum or even some kind of “point of
inflection”. It is usually easy to confirm that we have the correct solution by inspection – in this case it
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is obviously a minimum. (There is no equivalent of the one-dimensional test f ′′(x) > 0 for functionals,
or at least not one which is simple enough to be of any use.)

Secondly, assuming that we have indeed found a minimum, we have shown only that it is a local minimum,
not a global one. That is, we have shown only that “nearby” paths have greater length. Once again,
however, we usually confirm that we have the correct solution by inspection. Compare this difficulty
with the equivalent problem for functions, illustrated by the graph below.

An alternative method of solution for this simple geodesic problem is to note that

f(x, y, y′) =
√

1 + y′2 has no explicit x-dependence, so we can use the first integral:

const. = f − y′
∂f

∂y′
=
√

1 + y′2 − y′
y′√

1 + y′2

=
1√

1 + y′2
,

i.e., y′ is constant (as before).

The Brachistochrone

A bead slides down a frictionless wire, starting from rest at a point A. What shape must

the wire have for the bead to reach some lower point B in the shortest time? (A similar

device was used in some early clock mechanisms.)

Using conservation of energy, 1
2
mv2 = mgy, i.e., v =

√
2gy. Also dl = v dt, so

dt =

√
dx2 + dy2

√
2gy

=
1√
2g

√
1 + y′2
√

y
dx.
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The time taken to reach B is therefore

T [y] =
1√
2g

∫ xB

0

√
1 + y′2

y
dx

and we wish to minimise this, subject to y(0) = 0, y(xB) = yB. We note that the

integrand has no explicit x-dependence, so we use the first integral

const. =

√
1 + y′2

y
− y′

∂

∂y′

√
1 + y′2

y

=

√
1 + y′2

y
− y′2√

y
√

1 + y′2

=
1√

y
√

1 + y′2
.

Hence y(1 + y′2) = c, say, a constant, so that

y′ =

√
c− y

y
or

√
y

c− y
dy = dx.

Substitute y = c sin2 θ; then

dx = 2c

√
sin2 θ

1− sin2 θ
sin θ cos θ dθ

= 2c sin2 θ dθ

= c(1− cos 2θ) dθ.

Using the initial condition that when y = 0 (i.e., θ = 0), x = 0, we obtain

x = c(θ − 1
2
sin 2θ),

y = c sin2 θ

which is an inverted cycloid. The constant c is found by applying the other condition,

y = yB when x = xB.
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Note that strictly speaking we should have said that y′ = ±
√

(c− y)/y above. Taking the negative root
instead of the positive one would have lead to

x = −c(θ − 1
2 sin 2θ),

y = c sin2 θ,

which is exactly the same curve but parameterised in the opposite direction. It is rarely worth spending
much time worrying about such intricacies as they invariably lead to the same effective result.

Light and Sound

Consider light rays travelling through a medium with refractive index inversely propor-

tional to
√

z where z is the height. By Fermat’s principle, we must minimise∫
dl√
z
.

This is exactly the same variational problem as for the Brachistochrone, so we conclude

that light rays will follow the path of a cycloid.

More realistically, consider sound waves in air. Sound waves obey a principle similar

to Fermat’s: except at very long wavelengths, they travel in such a way as to minimise

the time taken to travel from A to B, ∫ B

A

dl

c
,

where c is the (variable) speed of sound (comparable to 1/µ for light). Consider a situation

where the absolute temperature T of the air is linearly related to the height z, so that

T = αz + T0 for some temperature T0 at ground level. Since the speed of sound is

proportional to the square root of the absolute temperature, we have c ∝
√

αz + T0 =
√

Z

say. This leads once again to the Brachistochrone problem (for Z rather than z), and we

conclude that sound waves follow paths z(x) which are parts of cycloids, scaled vertically

by a factor 1/α (check this as an exercise).

1.7 Hamilton’s Principle in Mechanical Problems

Hamilton’s principle can be used to solve many complicated problems in rigid-body me-

chanics. Consider a mechanical system whose configuration can be described by a number

of so-called generalised coordinates q1, q2, . . . , qn. Examples:

• A particle with position vector r = (x1, x2, x3) moving through

space. Here we can simply let q1 = x1, q2 = x2 and q3 = x3:

there are three generalised coordinates.
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• A pendulum swinging in a vertical plane: here there is only

one generalised coordinate, q1 = θ, the angle to the vertical.

• A rigid body (say a top) spinning on its axis on a smooth plane.

This requires five generalised coordinates: two to describe the

position of the point of contact on the plane, one for the angle

of the axis to the vertical, one for the rotation of the axis

about the vertical, and one for the rotation of the top about

its own axis.

The Lagrangian L = T − V is a function of t, q1, . . . , qn and q̇1, . . . , q̇n, so

S =

∫
L
(
t, q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)

)
dt.

This is a functional with n dependent variables qi(t), so we can use Euler’s equation (with

t playing the role of x, and qi(t) playing the role of yi(x)) for each of the qi independently:

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi

for each i. In this context these equations are known as the Euler–Lagrange equations.

In the case whenL has no explicit time-dependence, the first integral (from §1.5)

gives us that

L −
n∑

i=1

q̇i
∂L

∂q̇i

= constant.

It is frequently the case that T is a homogeneous quadratic in the q̇i, i.e., it is of the form

n∑
i=1

n∑
j=1

aij(q1, . . . , qn) q̇iq̇j

where the coefficients aij do not depend on any of the “generalised velocities” q̇i or on t,

and V also does not depend on the velocities or time so that V = V (q1, . . . , qn). Then it

can be shown that

L −
n∑

i=1

q̇i
∂L

∂q̇i

= (T − V )− 2T = −(T + V ),

i.e., the total energy E = T + V is conserved when there is no explicit time-dependence.

This fails however when the external forces vary with time or when the potential is

velocity-dependent, e.g., for motion in a magnetic field.
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A Particle in a Conservative Force Field

Here

L = 1
2
m(ẋ2

1 + ẋ2
2 + ẋ2

3)− V (x1, x2, x3);

hence the Euler–Lagrange equations are

d

dt
(mẋ1) = − ∂V

∂x1

,
d

dt
(mẋ2) = − ∂V

∂x2

,
d

dt
(mẋ3) = − ∂V

∂x3

,

or in vector notation
d

dt
(mṙ) = −∇V,

i.e., F = ma where F = −∇V is the force and a = r̈ is the acceleration.

Two Interacting Particles

Consider a Lagrangian

L = 1
2
m1|ṙ1|2 + 1

2
m2|ṙ2|2 − V (r1 − r2),

where the only force is a conservative one between two particles with masses m1 and m2

at r1 and r2 respectively, and depends only on their (vector) separation.

We could use the six Cartesian coordinates of the particles as generalised coordinates;

but instead define

r = r1 − r2,

the relative position vector, and

R =
m1r1 + m2r2

M
,

the position vector of the centre of mass, where M = m1 + m2 is the total mass. Now

|ṙ1|2 =
∣∣∣Ṙ +

m2

M
ṙ
∣∣∣2 =

(
Ṙ +

m2

M
ṙ
)

.
(
Ṙ +

m2

M
ṙ
)

= |Ṙ|2 +
m2

2

M2
|ṙ|2 +

2m2

M
Ṙ . ṙ

and similarly

|ṙ2|2 = |Ṙ|2 +
m2

1

M2
|ṙ|2 − 2m1

M
Ṙ . ṙ.

Let r = (x1, x2, x3), R = (X1, X2, X3), and use these as generalised coordinates. Then

L = 1
2
M |Ṙ|2 +

m1m2

2M
|ṙ|2 − V (r)

= 1
2
M(Ẋ2

1 + Ẋ2
2 + Ẋ2

3 ) +
m1m2

2M
(ẋ2

1 + ẋ2
2 + ẋ2

3)− V (x1, x2, x3).

The Euler–Lagrange equation for Xi is therefore

d

dt
(MẊi) = 0,
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i.e., R̈ = 0 (the centre of mass moves with constant velocity); and for xi is

d

dt

(m1m2

M
ẋi

)
= −∂V

∂xi

,

i.e., µr̈ = −∇V where µ is the reduced mass m1m2/(m1 + m2) (the relative position

vector behaves like a particle of mass µ).

Note that the kinetic energy T is a homogeneous quadratic in the Ẋi and ẋi; that V

does not depend on the Ẋi and ẋi; and that L has no explicit t-dependence. We can

deduce immediately that the total energy E = T + V is conserved.

1.8 The Calculus of Variations with Constraint

In §1.1 we studied constrained variation of functions of several variables. The exten-

sion of this method to functionals (i.e., functions of an infinite number of variables) is

straightforward: to find the stationary values of a functional F [y] subject to G[y] = c, we

instead find the stationary values of F [y] − λG[y], i.e., find the function y which solves

δ(F − λG) = 0, and then eliminate λ using G[y] = c.

1.9 The Variational Principle for Sturm–Liouville

Equations

We shall show in this section that the following three problems are equivalent:

(i) Find the eigenvalues λ and eigenfunctions y(x) which solve the Sturm–Liouville

problem

− d

dx

(
p(x)y′

)
+ q(x)y = λw(x)y

in a < x < b, where neither p nor w vanish in the interval.

(ii) Find the functions y(x) for which

F [y] =

∫ b

a

(py′2 + qy2) dx

is stationary subject to G[y] = 1 where

G[y] =

∫ b

a

wy2 dx.

The eigenvalues of the equivalent Sturm–Liouville problem in (i) are then given by

the values of F [y].
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(iii) Find the functions y(x) for which

Λ[y] =
F [y]

G[y]

is stationary; the eigenvalues of the equivalent Sturm–Liouville problem are then

given by the values of Λ[y].

Hence Sturm–Liouville problems can be reformulated as variational problems.

Note the similarity between (iii) and the stationary property of the eigenvalues of a symmetric matrix
(recall that it is possible to find the eigenvalues of a symmetric matrix A by finding the stationary values
of aTAa/aTa over all possible vectors a). The two facts are in fact closely related.

To show that (ii) is equivalent to (i), consider

δ(F − λG) = δ

∫ b

a

(py′2 + qy2 − λwy2) dx.

Using Euler’s equation, F − λG is stationary when

d

dx
(2py′) = 2qy − 2λwy,

i.e.,

− d

dx
(py′) + qy = λwy,

which is the required Sturm–Liouville problem: note that the Lagrange multiplier of the

variational problem is the same as the eigenvalue of the Sturm–Liouville problem.

Furthermore, multiplying the Sturm–Liouville equation by y and integrating, we ob-

tain ∫ b

a

(
−y

d

dx
(py′) + qy2

)
dx = λ

∫ b

a

wy2 dx = λG[y] = λ

using the constraint. Hence

λ =

∫ b

a

(
−y

d

dx
(py′) + qy2

)
dx

= [−ypy′]ba +

∫ b

a

(py′2 + qy2) dx

[integrating by parts]

=

∫ b

a

(py′2 + qy2) dx = F [y],

using “appropriate” boundary conditions. This proves that the stationary values of F [y]

give the eigenvalues.
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There are two ways of showing that (ii) is equivalent to (iii).

The first, informal way is to note that multiplying y by some constant α say does not in fact change the
value of Λ[y]. This implies that when finding the stationary values of Λ we can choose to normalise y so
that G[y] = 1, in which case Λ is just equal to F [y]. So finding the stationary values of Λ is equivalent
to finding the stationary values of F subject to G = 1.

The second, formal way is to calculate

δΛ =
F + δF

G + δG
− F

G

=
F + δF

G

(
1− δG

G

)
− F

G

[using a Taylor expansion for (1 + δG/G)−1 to first order]

=
δF

G
− F δG

G2

(again to first order). Hence δΛ = 0 if and only if δF = (F/G) δG; that is, Λ is stationary

if and only if

δF − Λ δG = 0.

But this is just the same problem as (ii); so finding the stationary values of Λ is the same

as finding the stationary values of F subject to G = 1.

In the usual case that p(x), q(x) and w(x) are all positive, we have that Λ[y] ≥ 0.

Hence all the eigenvalues must be non-negative, and there must be a smallest eigenvalue

λ0; Λ takes the value λ0 when y = y0, the corresponding eigenfunction. But what is the

absolute minimum value of Λ over all functions y(x)? If it were some value µ < λ0, then

µ would be a stationary (minimum) value of Λ and would therefore be an eigenvalue,

contradicting the statement that λ0 is the smallest eigenvalue. Hence Λ[y] ≥ λ0 for any

function y(x).

As an example, consider the simple harmonic oscillator

−y′′ + x2y = λy

subject to y → 0 as |x| → ∞. This is an important example as it is a good model for

many physical oscillating systems. For instance, the Schrödinger equation for a diatomic

molecule has approximately this form, where λ is proportional to the quantum mechanical

energy level E; we would like to know the ground state energy, i.e., the eigenfunction

with the lowest eigenvalue λ.

Here p(x) = 1, q(x) = x2 and w(x) = 1, so

Λ[y] =

∫∞
−∞(y′2 + x2y2) dx∫∞

−∞ y2 dx
.
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We can solve this Sturm–Liouville problem exactly: the lowest eigenvalue turns out to

be λ0 = 1 with corresponding eigenfunction y0 = exp(−1
2
x2). But suppose instead that

we didn’t know this; we can use the above facts about Λ to try to guess at the value of

λ0. Let us use a trial function

ytrial = exp(−1
2
αx2),

where α is a positive constant (in order to satisfy the boundary conditions). Then

Λ[ytrial] =
(α2 + 1)

∫∞
−∞ x2 exp(−αx2) dx∫∞

−∞ exp(−αx2) dx
.

We recall that
∫∞
−∞ exp(−αx2) dx =

√
π/α and

∫∞
−∞ x2 exp(−αx2) dx = 1

2

√
π/α3 (by

integration by parts). Hence Λ[ytrial] = (α2 + 1)/2α.

We know that Λ[ytrial], for any α, cannot be less than λ0. The smallest value of

(α2 + 1)/2α is 1, when α = 1; we conclude that λ0 ≤ 1, which gives us an upper bound

on the lowest eigenvalue.

In fact this method has given us the exact eigenvalue and eigenfunction; but that is

an accident caused by the fact that this is a particularly simple example!

The Rayleigh–Ritz Method

The Rayleigh–Ritz method is a systematic way of estimating the eigenvalues, and in

particular the lowest eigenvalue, of a Sturm–Liouville problem. The first step is to re-

formulate the problem as the variational principle that Λ[y], the Rayleigh quotient, is

stationary. Secondly, using whatever clues are available (for example, symmetry consid-

erations or general theorems such as “the ground state wavefunction has no nodes”) we

make an “educated guess” ytrial(x) at the true eigenfunction y0(x) with lowest eigenvalue

λ0. It is preferable for ytrial to contain a number of adjustable parameters (e.g., α in the

example above).

We can now find Λ[ytrial], which will depend on these adjustable parameters. We

calculate the minimum value Λmin of Λ with respect to all the adjustable parameters; we

can then state that the lowest eigenvalue λ0 ≤ Λmin. If the trial function was a reasonable

guess then Λmin should actually be a good approximation to λ0.

If we wish, we can improve the approximation by introducing more adjustable param-

eters.

The fact that Λ[y] is stationary with respect to variations in the function y means that

if ytrial is close to the true eigenfunction y0 (say within O(ε) of it) then the final calculated

value Λmin will be a very good approximation to λ0 (within O(ε2) in fact). If the inclusion

17 © R. E. Hunt, 2002



of further adjustable parameters fails to significantly improve the approximation then we

can be reasonably sure that the approximation is a good one.

Note that if the trial function happens to include the exact solution y0 as a special

case of the adjustable parameters, then the Rayleigh–Ritz method will find both y0 and

λ0 exactly. This is what happened in the example above.

An alternative to calculating Λ[ytrial] and minimising it with respect to the adjustable

parameters is to calculate F [ytrial] and G[ytrial], and to minimise F subject to G = 1.

These procedures are equivalent, as we showed at the start of this section.

Higher eigenvalues [non-examinable]

Once we have found a good approximation y0 trial to y0, we can proceed to find approximations to the
higher eigenvalues λ1, λ2, . . . . Just as λ0 is the absolute minimum of Λ[y] over all possible functions y, so
λ1 is the absolute minimum of Λ[y] over functions which are constrained to be orthogonal to y0. (Recall
that y1 is orthogonal to y0 in the sense that

∫ b

a
wy0y1 dx = 0.) Hence, to estimate λ1 we proceed as

before but choose our new trial function y1 trial in such a way that it is orthogonal to our previous best
approximation y0 trial.

This process can be continued to higher and higher eigenvalues but of course becomes less and less
accurate.
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