
Summary of Results from Previous Courses

Grad, Div, Curl and the Laplacian in Cartesian Coordinates

In Cartesian coordinates, ∇ =
(

∂
∂x , ∂

∂y , ∂
∂z

)
. For a scalar field Φ(x) and a vector field

F(x) = (F1, F2, F3), we define:

Gradient ∇Φ =
(

∂Φ
∂x

,
∂Φ
∂y

,
∂Φ
∂z

)
(“grad Phi”)

Divergence ∇ . F =
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
(“div F”)

Curl ∇× F =
(

∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

)
(“curl F”)

Laplacian ∇2Φ = ∇ . (∇Φ) =
∂2Φ
∂x2

+
∂2Φ
∂y2

+
∂2Φ
∂z2

(“del-squared Phi”)

The normal to a surface Φ(x) = constant is parallel to ∇Φ.

Grad, Div and the Laplacian in Polar Coordinates

Cylindrical Polars (r, θ, z)

When the components (F1, F2, F3) of F are measured in cylindrical polar coordinates,

∇Φ =
(

∂Φ
∂r

,
1
r

∂Φ
∂θ

,
∂Φ
∂z

)
∇ . F =

1
r

∂

∂r
(rF1) +

1
r

∂F2

∂θ
+

∂F3

∂z

∇2Φ =
1
r

∂

∂r

(
r
∂Φ
∂r

)
+

1
r2

∂2Φ
∂θ2

+
∂2Φ
∂z2

Note: the formulae for plane polar coordinates (r, θ) are obtained by setting ∂
∂z = 0.

Spherical Polars (r, θ, φ)

When the components (F1, F2, F3) of F are measured in spherical polar coordinates,

∇Φ =
(

∂Φ
∂r

,
1
r

∂Φ
∂θ

,
1

r sin θ

∂Φ
∂φ

)
∇ . F =

1
r2

∂

∂r
(r2F1) +

1
r sin θ

∂

∂θ
(F2 sin θ) +

1
r sin θ

∂F3

∂φ

∇2Φ =
1
r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Φ
∂θ

)
+

1
r2 sin2 θ

∂2Φ
∂φ2
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Divergence and Stokes’ Theorems

Divergence Theorem in 3D
∫∫∫
V

∇ . FdV =
∫∫
S

F . n dS

where the surface S encloses a volume V and n is its outward-pointing normal.

Divergence Theorem in 2D
∫∫
S

(
∂f

∂x
+

∂g

∂y

)
dxdy =

∮
C

(f dy − g dx)

where S is a plane region enclosed by a contour C traversed anti-clockwise. We can also
write the right-hand side as

∮
C

F . ndl where F = (f, g) and n is the outward-pointing
normal on C.

Stokes’ Theorem
∫∫
S

(∇× F) . ndS =
∮
C

F . dl

where the open surface S is bounded by a contour C, n is the normal to S and dl is a
line element taken anti-clockwise around C.

Sturm–Liouville Theory

A Sturm–Liouville equation in self-adjoint form

− d
dx

(
p(x)

dy

dx

)
+ q(x)y = λw(x)y

in an interval a < x < b, where neither p(x) nor w(x) vanish in the interval, and with
“appropriate” boundary conditions, has non-zero solutions only for certain values of λ,
namely the eigenvalues λi. The corresponding solutions yi(x) (the eigenfunctions) are
orthogonal for distinct eigenvalues:

∫ b

a
wyiyj dx = 0, i 6= j.

Vectors and Matrices

Vector identities:

|u|2 = u . u

u× (v ×w) = (u . w)v − (u . v)w
u . (v ×w) = v . (w × u) = w . (u× v)

∇(ΦΨ) = Φ∇Ψ + Ψ∇Φ
∇(u . v) = u× (∇× v) + (u .∇)v + v × (∇× u) + (v .∇)u
∇ . (Φu) = Φ∇ . u + u .∇Φ

∇ . (u× v) = v . (∇× u)− u . (∇× v)
∇× (Φu) = Φ∇× u +∇Φ× u

∇× (u× v) = (∇ . v)u− u .∇v − (∇ . u)v + v .∇u

∇2u = ∇(∇ . u)−∇× (∇× u)

Mathematical Methods II
Natural Sciences Tripos Part IB



A matrix A is orthogonal if AT A = AAT = I where I is the identity matrix and AT is
the transpose of A. This is true if and only if the columns of A are mutually orthogonal
unit vectors; similarly for the rows. Then A−1 = AT . In 3D, an orthogonal matrix is
either a rotation, a reflection, or a combination of the two.

x is an eigenvector of a symmetric matrix A with eigenvalue λ if Ax = λx. The eigenval-
ues can be found by solving the equation det(A− λI) = 0. The three unit eigenvectors
are orthogonal (or in the case of repeated eigenvalues, can be chosen to be so). The
eigenvalues are also given by the stationary values of aTAa/aTa over all possible vectors
a (or equivalently, the eigenvalues are given by the stationary values of aTAa subject
to the constraint aTa = 1).

The determinant of a matrix is unchanged by adding a multiple of one row to a different
row, or by adding a multiple of one column to a different column. Swapping two rows
changes the sign of the determinant, as does swapping two columns. Multiplying a row,
or a column, by a constant factor α multiplies the determinant by α. If two rows, or
columns, are the same, then the determinant is zero. For any square matrices A and B,
detAT = det A and det AB = detA det B.

Fourier Series

Any (well-behaved) function f(x) with period L may be represented as the infinite sum

f(x) = A0 +
∞∑

n=1

(
An cos

2nπx

L
+ Bn sin

2nπx

L

)
where

A0 =
1
L

∫ L

0

f(x) dx, An =
2
L

∫ L

0

f(x) cos
2nπx

L
dx, Bn =

2
L

∫ L

0

f(x) sin
2nπx

L
dx.

A function f(x) which is defined only in the region 0 6 x 6 L may be represented as
a full Fourier Series as above by first turning it into a periodic function with period L;
or may alternatively be represented either by a Fourier cosine series, in which only the
cosine terms appear, or by a Fourier sine series, in which only the sine terms appear.
For a cosine series,

f(x) = A0 +
∞∑

n=1

An cos
nπx

L

where

A0 =
1
L

∫ L

0

f(x) dx and An =
2
L

∫ L

0

f(x) cos
nπx

L
dx.

For a sine series,

f(x) =
∞∑

n=1

Bn sin
nπx

L

where

Bn =
2
L

∫ L

0

f(x) sin
nπx

L
dx.
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Legendre Polynomials

Legendre’s equation for P (x) is

d
dx

(
(1− x2)

dP

dx

)
+ λP = 0.

There are regular singular points at x = ±1. A series solution may be sought about
x = 0; but the resulting series is ill-behaved (specifically, P is singular at x = ±1)
except when λ = n(n + 1) for some non-negative integer n. Then the series terminates
after a finite number of terms, and the solution is the Legendre polynomial Pn(x) of
degree n. Pn(x) is an even/odd function of x (i.e., contains only even/odd powers of x)
when n is even/odd respectively. It is normalised so that Pn(1) = 1 (and therefore
Pn(−1) = (−1)n). Legendre polynomials are orthogonal:∫ 1

−1

Pm(x)Pn(x) dx =

{
0 m 6= n,

2
2n+1 m = n.

They can be found explicitly using Rodrigues’ formula

Pn(x) =
1

2nn!
dn

dxn

{
(x2 − 1)n

}
.

Taylor’s Theorem (complex version)

Any smooth complex function can be expressed as a power series about z = z0 in the
form

f(z) =
∞∑

n=0

an(z − z0)n

where an = f (n)(z0)/n!.

Fourier Transforms

For suitable functions f(x), the Fourier Transform is defined by

f̃(k) =
∫ ∞

−∞
f(x)e−ikxdx,

and the inversion formula is

f(x) =
1
2π

∫ ∞

−∞
f̃(k)eikxdk.

The Fourier Transform of f ′(x) is ikf̃(k). The Fourier Transform of f(x−a) for constant
a is e−ikaf̃(k). The convolution h = f ∗ g, defined by

h(y) =
∫ ∞

−∞
f(x)g(y − x) dx,

satisfies h̃(k) = f̃(k)g̃(k).
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