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Chapter 1

Introduction

~ = c = k = 1.

1.1 Timetable

Lecture:
Fridays: 14:30-16:00
Problem classes:
Fridays (dates to be announced): 12:00-13:30

1.2 Bibliography

Ray d’Inverno, Introducing Einstein’s Relativity, Oxford University Press.
Sean M. Carroll, Spacetime and Geometry, Addison Wesley.
Steven Weinberg, Gravitation and Cosmology, Wiley & Sons.
Malcolm S. Longair, Galaxy Formation, Springer.
Marc L. Kutner, Astronomy: A Physical Perspective, Cambridge University
Press.
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Chapter 2

Cosmography

2.1 Relativistic Cosmology

2.1.1 The Cosmological Principle

As a generalization of the Copernican principle that the Earth is not at the
centre of the solar system, the cosmological principle states that we do not
occupy a special point in the universe, actually that there is no special point
in the universe.

The cosmological principle: At each epoch, the universe
presents the same aspect from every point, except for local
irregularities.

Mathematically this means that there exists a cosmic time t and that each
constant time slice is homogeneous and isotropic. Globally isotropic mani-
folds are homogeneous, so the cosmological principle requires that space-time
can be foliated into space-like hypersurfaces which are spherically symmetric
about each point. Homogeneity has to be understood like homogeneity of
gas, which is not homogeneous microscopically but on large scales.

2.1.2 Weyl’s Postulate

Hermann Weyl assumed 1923 that there is a privileged class of observers
associated with the smeared-out motion of galaxies. This follows the fact
that the relative motion in groups of galaxies is small.
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Weyl’s postulate: The particles of the substratum lie in
space-time on a congruence of time-like geodesics diverging
from a point in the finite or infinite past.

Weyl introduced the ’substratum’ or fluid pervading space in which galaxies
move like fundamental particles in a fluid, which follow a special motion.
The postulate requires that the geodesics of these particles do not inter-
cept. There is a unique geodesic in each point of space-time and hence each
’matter’ particle possesses a unique velocity. Hence the substratum may be
taken as a perfect fluid. Note that the motions of galaxies deviate from this,
but this deviation is random and it’s velocity is less than a thousands of the
speed of light, while the general relative motion is of the order of the speed
of light.

2.1.3 The Robertson-Walker Metric

Analyse universe which obey the cosmological principle and Weyl’s postu-
late. Hence the geodesics of the fluid particles (substratum) have to be
orthogonal to space-like hypersurfaces. We introduce coordinate system
(t, x1, x2, x3), where space-like hypersurfaces are given by t = const. and
(x1, x2, x3) are constant along geodesic as shown in Fig. 2.1. These coor-
dinates are called co-moving. From orthogonality we obtain for the line
element (metric)

ds2 = dt2 − habdxadxb ,

where Latin indices run over the spatial indices a = 1, 2, 3. And

hab = hab(t,x) ,

with t corresponding to the cosmic time. If we consider a small triangle
given by three particles of the fluid at a given time t and then at a later
time, the cosmological principle requires that the second triangle must be
geometrically similar to the first and the magnification factor must be inde-
pendent of the position of the triangle. Therefore time can only enter via a
common factor into hab and hence

hab = [a(t)]2gab(x
a) . (2.1)

The ratio of two values of a(t) at two different times is the magnification
ratio.
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geodesics
fluid particles

t=t

t=t0

1

Figure 2.1: Constant cosmic time hypersurfaces and fluid particle geodesics.

In order that the space is homogeneous and isotropic the curvature must
be constant, otherwise points are not geometrically equal. A space with
constant curvature is characterised by

Rαβγδ = K (gαγgβδ − gαβgβγ) ,

with K a constant, called the curvature. This must hold for the 3-dimensional
metric gab in Eqn. 2.1. This will lead to the Ricci tensor

Rbd = gacRabcd

= Kgac (gacgbd − gadgbc)

= K (3gbd − gbd)

= 2Kgbd (2.2)

and hence the Ricci or curvature scalar of R = gbdRbd = 6K is constant.
Because the 3-space has to be isotropic about every point it must be spherical
symmetric about every point. This has the general spatial metric (show with

d’Inverno 14.33 as an Exercise ! )

dσ2 = eλdr2 + r2
(

dθ2 + sin2 θdφ2
)

,

with λ = λ(r). And the non-vanishing components Exercise ! of the Ricci
tensor are

R11 = λ′/r , R22 = R33/ sin2 θ = 1 +
1

2
re−λλ′ − e−λ ,
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and hence the condition of constant curvature Eqn. 2.2 leads to

λ′/r = 2Keλ , 1 +
1

2
re−λλ′ − e−λ = 2Kr2 ,

with the solution
e−λ = 1 − Kr2 .

Therefore an isotropic 3-space of constant curvature has the metric

dσ2 =
dr2

1 − Kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

. (2.3)

For the space-time metric we absorb the arbitrariness of the magnitude of
K into the scale factor a(t) by defining K = k|K| and the rescaled radial
coordinate

r∗ = |K|1/2r ,

and we obtain

ds2 = dt2 − [a(t)]2

|K|

[

dr∗2

1 − kr∗2
+ r∗2

(

dθ2 + sin2 θdφ2
)

]

and define the rescaled scale function R(t) by

R(t) = a(t)/|K|1/2 if K 6= 0

R(t) = a(t) if K = 0

and we obtain

ds2 = dt2 − [R(t)]2
[

dr2

1 − kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

. (2.4)

As a warning we have to point out that in this rescaled units, the scale factor
has now a length dimension and the coordinates are dimensionless. This is
all right as long as we study cosmological models from a theoretical point of
view. But as soon as we will discuss more physical quantities we will prefer
the form in Eqn. 2.3. Furthermore we can introduce a new radial parameter

r = r̄/

(

1 +
1

4
Kr̄2

)

,

and drop the bars we get the metric in its conformally flat form Exercise !
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ds2 = dt2 − [R(t)]2
dr2 + r2

(

dθ2 + sin2 θdφ2
)

[

1 + 1
4kr2

]2 , (2.5)

which is the Robertson-Walker metric with k = +1,−1 or 0. For k = +1
the spatial part is a 3-sphere (S3) (closed, bounded or compact) and the
whole space-time has a cylindrical topology of R × S3, with R for the time
coordinate. For k = 0 is Euclidean four-dimensional space time R

4 which
is called open. For k = −1 the spatial part is a 3-dimensional hyperboloid
in four-dimensional Minkowski space. The topology is again R

4 and open.
Note that we only discussed the simplest topologies possible.

2.1.4 Friedmann Equations

In order to write down the equations which govern the large scale behaviour
of the universe we need to solve Einstein’s equation for general relativity

Gαβ − Λgαβ = 8πGTαβ , (2.6)

where G is Newton’s constant of gravity, Gαβ is the Einstein tensor

Gαβ = Rαβ − 1

2
gαβR ,

Λ the cosmological constant and Tαβ the energy momentum tensor of the
different components in the universe. Note that Greek indices run over
α = 0, 1, 2, 3. Weyl’s postulate requires the ’substratum’ to be a perfect
fluid. A perfect fluid is characterised by a 4-velocity uα = dxα/dτ , where τ
is the proper time along the world line, a proper density field ρ0(x) and a
scalar pressure field p(x). The energy - momentum tensor for a pressureless
fluid is Tαβ = ρ0u

αuβ and hence we choose as an ansatz

Tαβ = ρ0u
αuβ + pSαβ ,

with Sαβ a symmetric tensor due to covariance of the Einstein equations.
The only second-rank tensors associated with the fluid are uαuβ and gαβ

and we write
Sαβ = λuαuβ + µgαβ ,

with constants λ and µ. The energy-momentum conservation ∂βTαβ = 0
should reproduce the Eulerian equations of Newtonian motion of a perfect
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fluid in Minkowski space. If λ = 1 and µ = −1 Exercise ! we obtain the
continuity equation

∂ρ

∂t
+ ∇ (ρu) = 0

and the Navier-Stokes equation

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p ,

if there are no external forces and the fluid is moving with velocity u with
respect to the observer. Finally we obtain

Tαβ = (ρ + p)uαuβ − pgαβ . (2.7)

The preferred coordinate system (Weyl’s postulate) is uα ≡ (1, 0, 0, 0) and
we obtain with the the Robertson-Walker metric from Eqn. 2.3 and the Ein-
stein equations in Eqn. 2.6 we obtain for the αβ = 00 component Exercise !

−3
ä

a
= 4πG(ρ + 3p) − Λ (2.8)

and for the αβ = ab component Exercise !

ä

a
+ 2

(

ȧ

a

)2

+ 2
K

a2
= 4πG(ρ − p) + Λ , (2.9)

which is only one equation because of isotropy. Note that we used the
Robertson - Walker metric in its form with the dimensionless scale factor
and coordinates of length dimension

ds2 = dt2 − [a(t)]2
[

dr2

1 − Kr2
+ r2

(

dθ2 + sin2 θ dφ2
)

]

. (2.10)

With some simple algebra we obtain the two Friedmann equations

ȧ2

a2
+

K

a2
=

8πG

3
ρ +

Λ

3
, (2.11)

ä

a
= −4πG

3
(ρ + 3p) +

Λ

3
. (2.12)
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We can combine the two Friedmann equations to obtain

ρ̇ = −3(ρ + p)
ȧ

a
, (2.13)

which if we multiply this by a3 and note that the volume V ∝ a3 is the
equation for the conservation of energy with

dE + pdV = 0 ,

where we recognise that the pressure does work in the expansion.

2.1.5 Cosmological Models

We will first introduce some simplifying notations, where their meaning will
become clear during the course of this section. First we introduce the Hubble
parameter

H(t) ≡ ȧ

a
, (2.14)

which is the (normalized) expansion rate of the universe. Furthermore we
can formally associate an energy density with the cosmological constant

ρΛ ≡ Λ

8πG
. (2.15)

In this notation the 1st Friedmann equation reads like

H2 +
K

a2
=

8πG

3

(

∑

i

ρi + ρΛ

)

, (2.16)

where the index i is a label for the kind of particle fluid we study, like
matter or radiation. Note that in general we have to sum over all the
’particle’ species or energy components in the universe in order to obtain
the total energy-momentum tensor. In order to obtain a flat universe we
require K = 0 and hence

ρtot ≡
∑

i

ρi + ρΛ =
3H2

8πG
≡ ρcrit .

We can define then
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Ωi ≡
ρi

ρcrit
, (2.17)

which is the energy density in units of the critical density ρcrit. In this way
we can define quantities like ΩΛ, Ωm (for matter) and Ωr for radiation. Note
that we define these quantities time dependent and not only at ttoday, if we
want to specify the values today we will add an index 0, ie. Ωi,0

1. With this
notation the 1st Friedmann equation becomes

K

a2H2
=
∑

i

Ωi + ΩΛ − 1

and if we define Ωk ≡ −K/(aH)2

1 =
∑

i

Ωi +ΩΛ +Ωk . (2.18)

Note that the sign of the definition of Ωk varies in the literature.
In the following we will only discuss models with pressureless matter with

p = 0. In general the flat cosmologies we discuss here, which obey the cos-
mological principle and Weyl’s postulate, are called Friedmann-Robertson-

Walker or FRW models. For pressureless matter we obtain with the energy
conservation equation Eqn. 2.13

ρm = ρm,0

(

a

a0

)−3

,

where ρm,0 is the energy density in matter today and a0 is the scale factor
today. Note that we choose

a0 ≡ 1 (2.19)

in the rest of the lecture, unless otherwise noted. The 1st Friedmann equa-
tion for a flat (K=0) universe can then be written as

(

ȧ

a

)2

=
8πG

3
ρm,0a

−3 +
Λ

3
, (2.20)

1Note that in most articles and books Ωm and ΩΛ etc. refer actually to the densities
today.
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or
ȧ2 = H2

0Ωm,0a
−1 + H2

0ΩΛ,0a
2 , (2.21)

with H0 the Hubble constant (Hubble parameter today). Note that with
Eqn. 2.18 we have Ωm,0 + ΩΛ,0 = 1 in a flat universe.

Let us assume that Λ > 0 and if we substitute u = 2ΩΛ,0/Ωm,0a
3 we

obtain
u̇2 = 9H2

0ΩΛ,0

[

2u + u2
]

= 3Λ
[

2u + u2
]

.

If we take the positive root of this equation we obtain then

∫ u

0

du

(2u + u2)1/2
=

∫ t

0
(3Λ)1/2 dt = (3Λ)1/2t ,

where we assume a big bang model with a = 0 at t = 0. This can be
integrated by completing the square in the u-integral and substitutions v =
u + 1 and cosh w = v

u
∫

0

du
[

(u + 1)2 − 1
]1/2

=

v
∫

1

dv

(v2 − 1)1/2
=

w
∫

0

sinh wdw
(

cosh2 w − 1
)1/2

=

w
∫

0

dw = w

and we obtain finally the time evolution of the scale factor

a3 =
Ωm,0

2ΩΛ,0

[

cosh(3Λ)1/2t − 1
]

.

If Λ < 0 we introduce u = −2ΩΛ,0/Ωm,0a
3 and then obtain as above

a3 =
Ωm,0

2(−ΩΛ,0)

{

1 − cos [3(−Λ)]1/2 t
}

.

For Λ = 0 we have

a =

(

9

4
H2

0 t2
)1/3

, (2.22)

which is called the Einstein-de Sitter model. The Hubble parameter for this
model is

H(t) =
ȧ

a
=

2

3t
.

If we have a non-vanishing cosmological constant Λ the flat pressureless
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a

t
a

t

a

t

Figure 2.2: The three flat, pressureless cosmological models. On the left
Λ > 0, in the middle Λ < 0 and on the right the Einstein de-Sitter model
with Λ = 0.

models behave initially like an Einstein-de Sitter model since the first term in
Eqn. 2.20 dominates for small scale factors a over the cosmological constant
term.

The qualitative behaviour of the flat, pressureless solution can be studied
when we look at the right hand side of Eqn. 2.21. For Λ < 0 ȧ vanishes at

a = am =

[

−Ωm,0

ΩΛ,0

]1/3

,

which is a local maximum Exercise ! . For Λ ≥ 0 the solution grows without
bound. For large t and Λ > 0 the second term in Eqn. 2.20 dominates and
we obtain

a ∝ exp
[

(Λ/3)1/2 t
]

,

which grows exponentially with time.
We will now discuss non-flat models (K 6= 0) but with a vanishing cos-

mological constant (Λ = 0). We then have to solve

ȧ2 = Ωm,0H
2
0a−1 − K = Ωm,0H

2
0a−1 + Ωk,0H

2
0 . (2.23)

Note that for Λ = 0 we have Ωk,0 = 1 − Ωm,0. For K > 0 (Ωk < 0) we
substitute u2 = a/(Ωm,0H

2
0 ) and obtain

u̇2 =
u−2H2

0 |Ωk,0|3
4Ω2

m,0

[

u−2 − 1
]

.
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When we substitute u = sin θ we can integrate this differential equation and
obtain

t = c1

{

sin−1

[

a

c1

]1/2

−
[

a

c1

]1/2 [

1 − a

c1

]1/2
}

, (2.24)

with c1 = Ωm,0/(|Ωk,0|3/2H0). Similarly for Λ = 0, K < 0 (Ωk > 0) we

obtain Exercise !

t = c1

{

− sinh−1

[

a

c1

]1/2

+

[

a

c1

]1/2 [

1 +
a

c1

]1/2
}

.

Again we can analyse when the right hand side of Eqn. 2.23 is vanishing and
we find that for K > 0 we have a local maximum at

am =
Ωm,0

|Ωk,0|
(2.25)

For K < 0 we have growth without bounds. For K < 0 the curvature term
is dominating for large a with ȧ2 ∝ 1 and a ∝ t. Note that all other cases

a

t

a

t

Figure 2.3: The two non-flat FRW models with vanishing cosmological con-
stant Λ = 0. On the left with k = +1 and on the right with k = −1.

are slightly more involved and we refer the student to the literature (see
d’Inverno chapter 23).

Finally we will discuss the de Sitter model which are flat universes devoid
of matter (ρ = 0) with a positive cosmological constant. In this case we have

a = exp

[

(

1

3
Λ

)1/2

t

]

, (2.26)

where we chose a = 1 at t = 0.
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2.2 Redshift and Distances

2.2.1 Redshift

In order to study the influence of the expansion of the universe on light
emitted by a distant galaxy and received by an observer at the origin we
exploit the fact that propagation of light in general relativity is along a null
geodesic. If we put the observer at the origin with r = 0 and choose a radial
null geodesic we get

ds2 = dθ = dφ = 0

and hence from Eqn. 2.10

dt

a(t)
= ± dr

(1 − Kr2)1/2
, (2.27)

where the + sign corresponds to an emitted light ray and the − sign to a
received one. For light ray emitted at time t1 and a distance r1 which is
received at the origin at time t0 we obtain

t0
∫

t1

dt
a(t) = −

0
∫

r1

dr

(1−Kr2)1/2 = 1
|K|1/2

|K|1/2r1
∫

0

dr∗

(1−kr∗2)1/2

= 1
|K|1/2S

−1
k

(

|K|1/2r1

)

,

(2.28)

with

Sk (x) =























sin (x) if K > 0 or Ωk < 0 ,

x if K = 0 or Ωk = 0 ,

sinh (x) if K < 0 or Ωk > 0 ,

where we have used for the second equation the substitution r∗ = |K|1/2r
with K = k|K|. Now in order to understand how the frequency ν0 (wave-
length) of the received light behaves in relation to the emitted frequency ν1.
The time when a second wavefront arrives t0 + dt0 which has been emitted
after a short time dt1 is again given by

∫ t0+dt0

t1+dt1

dt

a(t)
=

1

|K|1/2
S−1

k (|K|1/2r1) ,

where the right hand side does not change because of Weyl’s postulate that
the ’substratum’ (galaxies) have constant coordinates. So we finally find the
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0      0
(t +dt , 0)

1      1    1(t +dt , r )

line
P’s world

line
O’s world 

(t , 0)
0 

1    1(t , r )

Figure 2.4: Propagation of light rays.

relation between the time difference of the two signals

dt0
a (t0)

=
dt1

a (t1)

and hence the relation of the emitted (ν1) and received (ν0) frequencies is
given by

ν0

ν1
=

dt1
dt0

=
a (t1)

a (t0)
,

which is usually expressed by the redshift parameter

z ≡ λ0 − λ1

λ1
=

a (t0)

a (t1)
− 1 , (2.29)

where λ1 and λ0 are the wavelength corresponding to ν1 and ν0. Light from
a distant object is usually redshifted2. Note that if we put the observer at
t0 today and use a0 = 1 we obtain

a =
1

1 + z
(2.30)

2.2.2 Proper and Angular Diameter Distance

Because of Weyl’s postulate there is a world time and one can define the
absolute distance between ’substratum’ particles by looking at their position
at the same world time. If we set dt = dθ = dφ = 0 in Eqn. 2.10 and assume

2Note that in a collapsing universe it is actually blueshifted.
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o P

dp
t

Figure 2.5: Distance between two fluid particles.

one particle is at the origin and the other at r1 we obtain as the proper

distance

dp = a(t)

∫ r1

0

dr

(1 − Kr2)1/2
,

however this requires a synchronous measurement of the distance which is of
no practical use. One more practical method would be to compare the known
absolute luminosity of an object with its observed apparent luminosity or
the true diameter with the observed angular diameter.

In this section we consider the second method, while in the next section
we will concentrate on the luminosity measurements. We calculate in the
following the angular diameter observed at the origin at t = t0 of a light
source of of true proper diameter D at r = r1 and t = t1. We choose the

δ

D

r=r

r=0

1

Figure 2.6: Angular diameter distance.
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coordinate system like in Fig. 2.6. The light travels then on a cone with
a half angle θ = δ/2. The proper diameter of the source is then given by
Eqn. 2.10

D = a(t1)r1δ for δ ≪ 1 ,

so we obtain for the angular diameter of the source

δ =
D

a(t1)r1
.

In Euclidean geometry the angular diameter of a source of diameter D at a
distance d is δ = D/d, so we define in general the angular diameter distance

dA ≡ D ,

δ
(2.31)

and hence we can write

dA = a(t1)r1 =
r1

1 + z
.

Since we are studying the propagation of light r1 is given by Eqns. 2.27-2.28
and we obtain

∫ t0

t1

dt

a(t)
=

∫ z

0

dz

H(z)
=

1

|K|1/2
S−1

k (|K|1/2r1) ,

where the first equation was obtained by substituting the time integration
with a redshift integration and using

dz

dt
= − ȧ

a2
= −H

a
.

and we finally obtain with |K|1/2 = H0

√

Ωk,0

dA(z) =
1

√

|Ωk|H0(1 + z)
Sk

(

H0

√

|Ωk|
∫ z

0

dz

H(z)

)

.

(2.32)

From Eqn. 2.16 we see that the angular diameter distance depends via the
Hubble parameter on the cosmological parameters like H0, ΩΛ,0 and Ωm,0. If
on could observe the angular diameter distance really accurately one could
measure these parameters and also the curvature or general geometry of
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the universe. An excellent probe in this way in the anisotropies in cosmic
microwave background radiation. One can calculate a typical size of an
overdense region at the time the microwave photons start to stream free
and we also know the the distance to this last scattering surface. We can
compare this with the observed angular size (in form of the anisotropy power
spectra) and hence obtain a very accurate measurement of the curvature of
the universe.

angular size of typical 
CMB patch

Figure 2.7: Angular anisotropy power spectrum of the cosmic microwave
background as observed by the WMAP team (2003).

2.2.3 Luminosity Distance and Deceleration Parameter

As mentioned before another way to measure distance is via comparing the
known absolute luminosity of an object with the the observed apparent
luminosity. For a telescope mirror with radius b as shown in Fig. 2.8 the
solid angle is given by

∆Ω =
πb2

a2(t0)r2
1

and the fraction of isotropically emitted photons that reach telescope is given
by ratio of solid angle ∆Ω to total solid angle 4π

∆Ω

4π
=

πb2

4πa2(t0)r2
1
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telescope mirror

b

ar

∆Ω

1

Figure 2.8: The luminosity distance.

If the source has an absolute (or bolometric3) luminosity L, which is the
total power emitted by the source (in a specified band), the question is
what is the received power ? Let us look at a single photon. Photons
which are emitted with energy hν1 are redshifted to hν1a(t1)/a(t0) = hν0.
Furthermore photons emitted at intervals δt1 are received at intervals δt0 =
δt1a(t0)/a(t1). So for a single photon we get

emitted power : Pem = hν1
δt1

received power : Prec = hν0
δt0

= hν1
δt1

a2(t1)
a2(t0)

,

hence for the total received power P , we get

P = L
(

a2(t1)

a2(t0)

)

A

4πa2(t0)r
2
1

,

3The term bolometric is usually applied when the luminosity is calculated over an
entire bandwidth ∆ν.
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where we have used A = πb2 for the total mirror area. Now the total
apparent luminosity or bolometric flux density is given by

F ≡ P

A
=

La2(t1)

4πr2
1

, (2.33)

where we applied a(t0) = 1. In Euclidean space the flux density is given by
F = L/(4πd2) and this is now generalized to define the luminosity distance

F =
L

4πd2
L

. (2.34)

Therefore we obtain

dL =
r1

a
= (1 + z)r1 = (1 + z)2dA ,

so we finally obtain

dL(z) =
1 + z

√

|Ωk|H0

Sk

(

H0

√

|Ωk|
∫ z

0

dz

H(z)

)

. (2.35)

It is interesting to note that for low redshifts z ≪ 1 and small r1 we have

dA ≃ dL ≃ dP ≃ r1

and the distinction becomes important only for objects billions of light years
away. Therefore we draw our attention to the redshift dependence of the
scale factor at late times (or small redshifts). We can Taylor expand the
scale factor around t = t0 and obtain

a(t) = a(t0)

[

1 + H0 (t − t0) −
1

2
q0H

2
0 (t0 − t)2 + · · ·

]

, (2.36)

where we used the definition of the Hubble constant H0 = ȧ(t0)/a(t0) and
we defined the deceleration parameter

q0 = − ä(t0)

a(t0)H2
0

. (2.37)
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As the name already suggests the deceleration parameter quantifies if the
expansion of the universe is accelerating (q0 < 0) or decelerating (q0 > 0).
It is quite convenient to express the cosmological models from Section 2.1.5
in terms of q0 and H0 but we leave this as an Exercise ! .

If we use this expansion in Eqn. 2.27 for the propagation of light we
obtain on for left hand side

∫ t0

t1

dt

a(t)
=

1

a(t0)

∫ t0

t1

[

1 + H0(t0 − t) +
(

1 +
q0

2

)

H2
0 (t0 − t)2 + · · ·

]

and for the right hand side

∫ r1

0

dr

(1 − Kr2)1/2
≈ 1

|K|1/2

∫ |K|1/2r1

0

(

1 +
1

2
kr∗2

)

dr∗ = r1 + O(r3
1)

and we obtain

r1 =
1

a(t0)

[

t0 − t1 +
1

2
H0 (t0 − t1)

2 + · · ·
]

.

Furthermore we obtain for the redshift

z =
1

a
− 1 = H0(t0 − t1) +

(

1 +
q0

2

)

H2
0 (t0 − t1)

2 + · · ·

and hence

r1 =
1

a(t0)H0

[

z − 1

2
(1 + q0) z2 + · · ·

]

.

Finally we can write the expansion of the luminosity distance for low red-
shifts

dL = H−1
0

[

z +
1

2
(1 − q0) z2 + · · ·

]

. (2.38)

This expansion will play a vital rôle for the calibration of the magnitude -
redshift relation for Supernovae as we will discuss it in Section 2.3.

2.2.4 Volumes

In general the volume element for a 3-space with metric hab is given by

dV =
√

h dx1dx2dx3 ,

where h ≡ det hab is the determinant of the metric4. In case of the spatial
part of the Robertson-Walker metric from Eqn. 2.10 we obtain for the proper
volume element at the coordinates (t1, r1, θ1, φ1)

dVp = a3(t1)(1 − Kr2
1)

−1/2r2
1 sin θ1 dφ1dθ1dr1 ,

4Note that actually the determinant is quite often referred to as the volume form.
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where r1 = r(t1) with
∫ t0

t

dt

a(t)
≡
∫ r(t)

0

dr√
1 − Kr2

,

and hence

dr1 = −
(

1 − Kr2
1

)1/2 dt1
a(t1)

.

Therefore
dVp = 4πa2(t1)r

2(t1)|dt1| .
here dt can be rewritten first in terms of a(t) with dt = da/(Ha) and then
with redshift to dt = −adz/H and we obtain,

dVp = 4πa3(t1)
r2
1

H(t1)
dz

and the comoving volume element per solid angle

dV

dzdΩ
=

r2

H
, (2.39)

where r(t) can be obtained from Eqn. 2.28.
If we want the overall comoving volume at (t1, r1) we have to integrate

dVp

a3
= dV = (1 − Kr)−1/2r2 sin θ dφdθdr ,

where the division by a3 on the left hand side has been performed in order
to obtain the comoving volume element. We can then integrate the right
hand side easily over the angles. For the r1 integration we first substitute
again r∗1 = |K|1/2r and K = k|K| and obtain

V =
4π

|K|3/2

∫ r∗1

0

r∗2dr∗√
1 − kr∗2

.

For flat space with K = 0 we obtain trivially

V =
4π

3
r3
1 .

For K > 0 we substitute r∗ = sin u and obtain

V =
2π

|K|3/2

[

sin−1 r∗1 − r∗1

√

1 − r∗21

]

.

For K < 0 we substitute r∗1 = sinh u and get

V =
2π

|K|3/2

[

− sinh−1 r∗1 + r∗1

√

1 + r∗21

]

.
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2.3 Distance vs. Redshift with Type Ia Super-

novae

We will now study an application of what we have learned so far. The
analysis of the distance - redshift relation with Type Ia Supernovae and the
what we can learn about the cosmological parameters H0, ΩΛ,0, Ωm,0 and
Ωk,0.

However in order to do this we need to introduce the notion of magni-
tudes.

2.3.1 Cosmological Magnitudes

When we discussed the luminosity distance in Section 2.2.3 we introduced
the notion of of bolometric flux, which is related to the bolometric brightness.
The brightness in general is the intensity of a radiating source, ie. the energy
flux per solid angle and per unit frequency. The bolometric brightness again
is integrated over a frequency wave band. Now the definition of magnitudes
is an ancient concept. Hipparchus (150 BC) divided stars into six classes
of brightness he called magnitudes. The brightest stars were called first
magnitude and the faintest sixth. With quantitative measurements it was
found that each jump in magnitude corresponded to a fixed ratio in flux,
hence the magnitude scale is logarithmic. This is not too surprising since
the eye has an approximately logarithmic response to light, which enables
a large dynamic range. It was found that a difference of five magnitudes
corresponds to a factor 100 in brightness and we have

b

B
= 100(M−m)/5 = 10(m2−m1)/2.5 .

Instead of using the brightness ratio we could have also used the ratio of the
received flux. We can now build up the magnitude ladder with a standard
candle. A standard candle is an object which has always the same emitted
luminosity L. We obtain then with Eqn. 2.33

M − m = 2.5 log
d2
L,0

d2
L

= 5 log
dL,0

dL
,

where M is the intrinsic magnitude of the standard candle at some close by
distance dL,0. In astronomical situations this distance is usually chosen to
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10 pc5. So usually one obtains

m = M + 5 log dL .

where dL is given in units of 10 pc. However in cosmological situation this
is a rather small distance and a more natural unit is 1Mpc. If we measure
the distance in this unit the apparent magnitude is given by

m = M + 5 log dL + 25 . (2.40)

If we use the approximation for z ≪ 1 for the luminosity distance in
Eqn. 2.38 we obtain

m = M − 5 log H0 + 5 log cz + · · · + 25 . (2.41)

Note that we explicitly write the speed of light c in this equation. This
approximation only depends on the Hubble constant H0 but not on other
cosmological parameters. So nearby objects can be used to calibrate for the
intrinsic magnitude M .

2.3.2 Type Ia Supernovae as Standardizable Candles – Phillips

Relation

In order to study the magnitude-redshift relation to very large distances,
one needs a very bright standard candle. Type Ia Supernovae explosions are
a good candidate for such a standard candle. Since Supernovae are almost
as bright as their host galaxies they can be observed to large distances. An
example how bright these objects are can be seen in Fig. 2.9. Observationally
Type I Supernovae are distinct from Type II that they have no hydrogen
lines in their maximum light spectrum. Additionally Type Ia show a strong
Si absorption feature at 6150Å.

Type Ia Supernovae are probably the product of mass being accreted to
a white dwarf in a close binary system. A white dwarf is a an approximately
earth size star which is only supported by its electron degeneracy pressure
(Pauli principle). Chandrasekhar showed that there is an upper mass limit
which can be supported by electron degenarcy pressure which is called the
Chandrasekhar mass which is

MCh = 1.44M⊙ .

5The unit 1 pc is defined to be the distance of an object which produces one arcsec of
a parallax angle for one astronomical unit (AU), which is the distance from the sun to the
earth. 1 pc = 3.09 × 1016 m.
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Figure 2.9: Type Ia Supernovae 1998aq in NGC3982 (picture taken by
H. Dahle). This is a spiral galaxy in Ursa Major of visual brightness
11.8 mag. The Supernovae itself was estimated to reach 11.4 mag. The
galaxy is at a distance of ≈ 20.5 Mpc (Stetson & Gibson 2001).

Sometimes there is too much mass accreted onto the white dwarf and its
starts to exceed the Chandrasekhar mass limit. In this case the degener-
ate electron pressure can no longer support the star and it collapses. The
collapse energy drives nuclear reaction which build up 56Ni which β-decays
into 56Co which in turn β-decays into 56Fe.

These thermonuclear explosions lead to typical typical brightening and
fading of the Supernovae, which in case of the Type Ia is governed by a
two exponential whose timescale is governed by the two β-decays. Note the
the β-decay of 56Ni has a halftime of τNi = 17.6 days. In Fig. 2.11 we see
a typical SNe observation, where the discovery was made from the ground
and the follow up with the Hubble Space Telescope. The brightening and
fading gives rise to a typical lightcurve for Type Ia Supernovae as shown
in Fig. 2.12. One problem with Type Ia SNe is however that, although
they have a narrow range of absolute peak magnitudes M , there is a slight
variation.

However Phillips (1993) discovered that there is a tight relation between
the peak magnitude and the decay time. This relation is not well understood
yet from a theoretical point of view but basically the time scale and the
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Figure 2.10: Model of close binary system which might be the progenitor to
a Type Ia Supernovae explosion [Picture take from Paul Rickers web page].

Figure 2.11: The brightening and fading of SNe 1998ay.
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Figure 2.12: Various lightcurves of Type Ia SNe as discussed by Perlmutter
et al. (1997).

overall energy of the Supernovae explosion depend both on the amount of
Ni which is present in the progenitor. With the Phillips relation it is possible
to normalize the peak flux and also “stretch” the time axis so that all Type Ia
SNe fit a universal lightcurve. Hence if we know the “intrinsic” , normalized
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magnitude of a Type Ia Supernovae and its decay time (sometimes measured
as the magnitude after 15 days) we can work out the intrinsic magnitude of
this particular SNe. With spectral information of the host galaxy we can
work out the redshift of the SNe and hence draw an apparent magnitude -
redshift diagram.

If we have a sample of low redshift Type Ia SNe we can use Eqn. 2.41,
measure the apparent magnitude and redshift and hence work out

M ≡ m − log cz = M − 5 log H0 + 25 , (2.42)

which is a measure of the absolute magnitude. If we know this for all SNe
we can write

m = M + 5 logDL , (2.43)

with DL = H0dL the Hubble constant free luminosity distance. In Fig. 2.13
we show the measured magnitude redshift relation and some theoretical
predications. We see that a flat matter dominated universe (short dashed
line) is systematically under-predicting the magnitudes and hence is not a
good fit. However the presence of a cosmological constant improves the fit
considerably.

2.3.3 Parameter Estimation

In order to quantify which cosmological model fits the data the best we
have to address a parameter estimation problem. The topics discussed in
this Section apply in general for the estimation of parameters and are hence
a valuable tool for every physicist who has to deal with data.

Let us assume that we have a sample of Type Ia SNe with a given mag-
nitude mi and uncertainty in the magnitude σm,i, which is typically of the
order σm = 0.15 mag. Furthermore we know the redshift zi of the Su-
pernovae. In general this redshift has an errorbar as well, but it can be
neglected in comparison to the magnitude uncertainty. We can than com-
pare the measurement with the theoretical prediction of Eqn. 2.43 for each
set of parameters (Ωm,0,ΩΛ,0,M). There are two ways to tackle the absolute
magnitude M. We could first just look at the low redshift SNe sample from
Calan/Tololo and use Eqn. 2.42 to measure the absolute magnitude. Note
that this equation does not depend on the cosmological parameters. Sec-
ondly we could view M as a free parameter like the cosmological parameters
(Ωm,0,ΩΛ,0) and try to find the best fit value for it.

We will follow the second approach here. In order to get a compact
notation we define the parameter vector

θ ≡ (Ωm,0,ΩΛ,0,M) .
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Figure 2.13: Magnitude - Redshift diagram from Knop et al. (2003). The
data points are from the Supernovae Cosmology project at high redshifts
and from the Calan/Tolo survey at low redshifts. The lower panel shows
the relative magnitudes to an empty (Milne) universe with Ωk,0 = 1 and
ΩΛ,0 = Ωm,0 = 0.
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If we assume that the errors in the magnitude follow a Gaussian distri-
bution we can obtain the best fit parameters by maximising the posterior
probability (likelihood)

L(θ) ∝ exp

[

−1

2
χ2

]

with

χ2 =

N
∑

i=1

(

m(zi; θ) − mi

σm,i

)2

,

where N is the number of data points. One can then numerically minimize
Eqn. 2.3.3 and obtain the best fit values θ̂. As a matter of fact by calcu-
lating L(θ) over the entire sensible parameter range we obtain the posterior
distribution6.

Since from a cosmological point of view we are not interested in the abso-
lute magnitude M we can marginalize over it and obtain the 2-dimensional
probability distribution

L̃(Ωm,0,ΩΛ,0) =

∫

dM L(Ωm,0,ΩΛ,0,M) .

Fig. 2.14 shows the joint joint likelihood contour where different contours
correspond to different likelihood levels. The best fit value is roughly at
Ωm,0 = 0.3 and ΩΛ,0 = 0.7, but from a statistical point of view models with in
the 68% (1−σ) or even the 95% (2−σ) contour are still viable. However even
on the 99% level the cosmological constant is positive and non-vanishing.
In 1997 Supernovae Cosmology Project and the High-z Supernovae Search
team (Perlmutter et al. and Riess et al.) reported similar results, which led
to a renewed interest into the cosmological constant. Historically Einstein
introduced the cosmological constant in order to balance the gravitational
effects of matter and obtain a static universe. After Hubble’s discovery that
the universe is expanding Einstein abandoned the idea of a static universe
and the cosmological constant.

6Note that a very efficient way of sampling posterior probabilities is the so called
Markov Chain Monte Carlo (MCMC) method. This method randomly selects a parameter
set and calculates the likelihood for it. The next parameter set is chosen randomly again.
Now this new parameter set is only selected if it fulfils a certain probability criteria,
otherwise the previous parameter set is counted twice. This method is iterated and one
can show that for a sufficient amount of samples one obtains a good “picture” of the true
likelihood. This has advantages over sampling the likelihood just over a gridded parameter
space.
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Figure 2.14: Joint likelihood contours in the Ωm,0 −ΩΛ,0 plane. The plot is
from the Knop et al. (2003) analysis.
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Chapter 3

Dark Energy

In order to explain the Type Ia Supernovae data discussed in the previous
section 2.3 it is necessary that the expansion of the universe is accelerating.
Hence the deceleration parameter q0 has to be negative.

3.1 Generalized Equation of State

As it is obvious from the discussion in beginning of Section 2.1.5 the cosmo-
logical constant can be viewed as another fluid component in the universe,
like matter or radiation. If we write the 2nd Friedman equation 2.12 in
terms of ρΛ and require that it takes the generic form

ä

a
= −

∑

i

4πG

3
(ρi + 3pi) ,

where the summation runs over all fluid components we obtain for consis-
tency reasons

pΛ = −ρΛ ,

which means the pressure in a cosmological constant fluid is negative. If we
use the conservation of energy for this fluid we obtain from Eqn. 2.13

ρ̇Λ = −3 (ρΛ + pΛ)
ȧ

a
= 0 ,

and hence as we see already from the definition of ρΛ in Eqn.2.15 that
ρΛ = const.. As a matter of fact we could have started with this and than
showed with Eqn. 2.13 that the pressure has to be the negative of the energy
density.
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Now in general the behaviour of simple fluids (or gases) is governed by
their equation of state

p = wρ , (3.1)

with w the constant equation of state factor. Note that “ordinary” cold
dark matter has an equation of state factor w = 0, since it is pressureless.
Relativistic matter like radiation has a pressure p = ρ/3 and hence w = 1/3.
While as argued before a cosmological constant has an equation of state of
w = −1.

Let us now explore the question what type of fluid to get accelerated ex-
pansion of the universe if we drop the cosmological constant. From Eqn. 2.13
we obtain for a fluid with an equation of state factor w

ρde(a) = ρde,0a
−3(1+w) , (3.2)

with a0 = 1 where we introduced the label “de” for dark energy. The
phrase “dark energy” was coined to describe a component which does not
gravitationally clump and has no large interactions with ordinary and cold
dark matter. As before we can define the densities in units of the critical
density ρcrit and obtain the quantities Ωde and Ωde,0.

If we assume we have a flat (K = 0) universe which has only the dark
energy component it is straight forward to show

a(t) =

[

3(1 + w)

2
H0t

]
2

3(1+w)

where this solution is only valid for w 6= −11. From the 2nd Friedmann
equation 2.12 we obtain in this case

ä0

a0
= −Ωde,0H

2
0

2
(1 + 3w) ,

where Ωde,0 = 1 because we assumed K = 0. Therefore we obtain for the
deceleration parameter from Eqn. 2.37

q0 = − ä0

a0H2
0

=
1 + 3w

2

1Note however that fluids with w < −1 are very unphysical since they lead to negative
energy densities which are unstable.
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and from the condition q0 < 0 for acceleration we obtain w < −1/3. If we
include a matter component this condition generalises in a flat universe to
w < −1/(3Ωde,0) Exercise ! .

We can now as described in Section 2.3.3 estimate the best fit values
on w, Ωm,0 and ΩΛ,0. However for this analysis it is usually assumed the
universe is flat and ΩΛ,0 = 1 − Ωm,0 is not a free parameter. In Fig. 3.1
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Figure 3.1: Joint likelihood contours in the Ωm,0−w plane. The plot is from
the Perlmutter et al. (1998) analysis for the Supernovae Cosmology Project.

we show the result of the parameter estimation procedure as performed by
the SCP collaboration (1998). Again we recognize a non-vanishing Ωde,0 =
1 − Ωm,0 component and a w < −1/3 on the 99% level, which is a clear
indication that the expansion of the universe is accelerating.
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3.2 Scalar Fields and Fine Tuning

In the last Section we have shown that an equation of state for the dark
energy component with w < −1/3 is sufficient to explain accelerated expan-
sion. For a cosmological constant with w = −1 the energy density remains
constant over the entire evolution of the universe. One way to interpret the
cosmological constant is that it corresponds to an energy of the vacuum.
This is can be seen directly from the Einstein equation 2.6, since the pres-
ence of Λ leads to a curvature of the universe without the presence of any
other energy component. The energy density in the cosmological constant
with current measurements is

ΩΛ = 0.7 → ρΛ ≈ 10−48 GeV ≈ 10−121 M4
pl ,

where the Planck units are the characteristic scale for the initial conditions
of the universe, when the system becomes governed by a still absent theory
of quantum gravity2. The Planck mass is defined, where the de Broglie
wavelength of a particle becomes equal to its Schwarzschild radius

2π~

mPlc
=

2GmPl

c2
.

Note that in the notes here it is more convenient to talk in terms of the
reduced Planck mass

MPl =

√

~c

8πG
≈ 2 × 1018 GeV , (3.3)

and hence the initial conditions for the cosmological constant need to be
fined tuned to a quite unnatural number, which is about 120 (!) orders of
magnitude lower than the natural expected value. This is one of the biggest
embarrassments of modern cosmology.

Now as mentioned above the cosmological constant can be viewed as
the vacuum energy present in the universe. If we believe in supersymmetric
fundamental theories there is no vacuum energy, which is one of it strength.
This is because each fundamental particle has a fermionic or bosonic partner
which cancels the vacuum energy exactly to zero. However we know that
supersymmetry must be broken at some stage in the universe, because we
do not observe it at low energies today. Models for supersymmetry breaking

2Although string theory looks as a very promising candidate.
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roughly predict a scale of 1 TeV which is still too large to explain the
observed values.

Still looking for a field which has a vacuum energy of the cosmological
constant might still bring valuable insights. The simplest field we can thin
about is a scalar field with the Lagrangian

L =
1

2
∂µφ∂µφ − V (φ) ,

which has the usual form of kinetic minus potential energy, with the action

A =

∫

d4x
√−gL .

Note the
√−g factor is the Jacobian due to the integration over the 4-

dimensional space-time volume in the action. Now in order to look at the
cosmological consequences we need the energy-momentum tensor for a the
scalar field. It can be obtained by applying Noether’s theorem3. The con-
served quantity corresponding to infinitesimal changes in time and space
parameters is

Tµν =
∂L

∂(∂νφ)

∂φ

∂φµ
− Lgµν .

If we assume we have a homogeneous scalar field, which we have to have from
a cosmological point of view in order to fulfill the cosmological principle, we
can show that in Minkowski space (gµν = ηµν) we have for the energy density

T00 = ρφ =
1

2
φ̇2 + V (φ) (3.4)

and for the momentum density (pressure)

Tij = pφ =
1

2
φ̇2 − V (φ) . (3.5)

From this we see that the equation of state is given by

w =
1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

.

If the kinetic part is much smaller than the potential energy (φ̇2/2 ≪ V (φ))
the equation of state factor w → −1 if V 6= 0. This again stating that a

3Noether’s theorem is powerful tool which states that each symmetry of the Lagrangian
has a corresponding conserved quantity. Symmetry in time results in energy conservation
and the homogeneity in space in momentum conservation.
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cosmological constant corresponds to a constant vacuum energy. Hence in
order to obtain accelerated expansion we need a scalar field whose kinetic
energy is negligible compared to the potential4. In Fig. 3.2 we see two

Figure 3.2: Typical potential for scalar field dark energy models
(Quintessence). On the left a “slow roll” configuration and on the right
a “false vacuum” configuration.

typical potentials for dark energy configurations. On the left is a “slow
roll” configuration where the scalar field is still dynamically evolving, but
its kinetic energy is negligible compared to the potential. On the right
is a configuration where the scalar field is actually frozen in, in a “false
vacuum” state (false vacuum, because the “true “ vacuum represents the
lowest energy state). In general dark energy models with (canonical) scalar
field are called Quintessence to describe the fifth element character (besides,
gravitational, electro-magnetic, weak and strong interactions). Besides of
describing a dynamical approach there is hope that these fields can be linked
with fundamental theories, like string theory.

3.2.1 The Exponential Potential

One of the earliest studies of scalar fields and their influence on the evolution
on the late universe, was done in 1988 for an exponential potential (Ratra &
Peebles; Wetterich). In general we obtain from the conservation of energy

4This is the same requirement as for so called inflationary models, which describe a
phase of exponential expansion in the early universe. As a matter of fact the dark energy
scalar field dark energy models we are going to discuss represent some sort of late time
inflation.
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in Eqn. 2.13
φ̈ + 3Hφ̇ + V ′ = 0 , (3.6)

with the prime denoting the derivative with respect to the field and

H2 =
1

3M2
Pl

(

1

2
φ̇2 + V (φ) + ρn

)

, (3.7)

Let us start with the simple example where there is no other component.
We then would like to answer the question if there are any potentials which
would lead to an equation of state pφ = wρφ with w constant. By subtracting
and adding Eqns. 3.4 and 3.5 we obtain

V =
1 − w

2
ρφ

and
φ̇2 = (1 + w)ρφ .

If we then use again Eqn. 3.4 we get

φ̇2 = 2
(1 + w)

1 − w
V

and from the time derivative of this equation we obtain

φ̈ =
1 + w

1 − w
V ′ ,

where we have used V̇ = V ′φ̇. From Eqn. 3.7 with ρn = 0 we obtain then

H2 =
2V

3M2
Pl

1

1 − w
.

Combining this into the equation of motion, Eqn. 3.6 for the scalar field φ
we obtain finally

2V ′ +
V

MPl

√

12(1 + w) = 0 ,

which is a simple 1st order differential equation we can solve with the ansatz

V (φ) = V0e
−λφ/MPl . (3.8)

We then obtain
λ =

√

3(1 + w) ,
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and if we require −1 < w < 1 we get λ <
√

6. With this we can easily obtain
the solution for a generic exponential potential V = V0 exp[−λφ/MPl]

φ(t) = φ0 +
2MPl

λ
ln(tMPl) ,

w =
λ2

3
− 1 ,

ρφ ∝ a−λ2
,

a ∝ t2/λ2
. (3.9)

Note that the second last relation is a trivial consequence of ρφ ∝ a−3(1+w)

for constant w. These are attractor solutions, where small perturbations
around it decay like t−1 and t1−6/λ2

. To show this is an Exercise ! in the
stability of nonlinear differential equations which is beyond the scope of this
lecture. For λ >

√
6 there is not a single attractor and ρφ ∝ a−6, with

w → 1, which corresponds to kinetic domination of the energy density.
We will now consider the behaviour when a second component with

ρ̇n + nHρn = 0 ,

is present, with n = 3 (w = 0) for matter and n = 4 (w = 1/3) for radiation
with ρn ∝ a−n. There are now two different cases: Those potentials in which
the scalar energy density scales slower than a−n (λ <

√
n) and those where

the scalar energy density scales faster (λ >
√

n). Adding an extra component
increases the damping term in Eqn. 3.6 and it follows that the scaling in
ρφ ∝ 1/aλ2−δ is always slower (than without an extra component ρn) with
λ2 ≥ δ ≥ 0. For λ <

√
n the dark energy component scales slower than

the other component and will eventually become dominant and reaches the
attractor solution in Eqns. 3.9. For λ >

√
n there is a different behaviour. If

the field would scale like in the ρn = 0 case it would be arbitrarily damped
(by the present ρn component and hence its kinetic energy will be so far
reduced that it reaches the w → −1 branch and begins to catch up again
and the final behaviour is that the field mimics the dominant component
with the attractor

Ωde ≡ ρφ

ρφ + ρn
=

n

λ2
,

ρφ ∝ 1

an
,

w =
n

3
− 1 . (3.10)
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Figure 3.3: Attractor behaviour for exponential dark energy (Ferreira &
Joyce 1998). In the left panel we plot the evolution of the energy density in
the scalar field (ρφ) and in a component of radiation-matter as a function
of scale factor for a situation in which the scalar field (with λ = 4) initially
dominates, then undergoes a transient and finally locks on to the scaling
solution. In the right panel we plot the evolution of the fractional density
in the scalar field.

In Fig. 3.3 we show the behaviour for λ = 4 how the attractor works.
Initially the scalar field is domination over radiation and matter and is ki-
netically dominant and scales like 1/a6, until the energy density in radiation
is undershot. Then it turns around scaling much slower than radiation or
matter until it has caught up and settles down to the fraction given in
Eqns. 3.10.

The big advantage of this attractor solutions is that they can start of
on an energy scale at early times which is of the order of the Planck scale
ρφ,i = O(M4

Pl) and still reaches the attractor. However the attractor given
here with Ωde = n/λ2 can not explain a universe where the dark energy
component dominates. But this is exactly what is required in a flat universe
with Ωde,0 = 0.7 and Ωm,0 = 0.3.

41



3.3 Tracker Solution

We have seen in the previous Section that although while a exponential po-
tential provides an elegant way to avoid the fine tuning of initial conditions,
it unfortunately does not explain why the matter and dark energy density
today roughly coincide. One would want that the energy density in the dark
energy component somehow tracks below the the other components for most
of the evolution of the universe and then suddenly dominates and leads to
an accelerated expansion.

The difference of the tracker solutions to the previously discussed expo-
nential potential is that its energy density is changing steadily with φ and
evtl. manages to overtake the background fields. So we can write down the
following two conditions:

(a) As for the self-adjusting exponential potential a wide range of initial
conditions should be drawn towards a common cosmic history; but
(b) these tracking solutions should not “self-adjust to th background
equation of state, but, instead, maintain some finite difference in the
equation-of-state such that the dark energy ultimately dominates and
the universe enters a period of acceleration.

Two potentials which fulfill this are

V (φ) = M4+αφ−α

and
V (φ) = M4eMPl/φ ,

where M is a free parameter which needs to be adjusted in order to obtain
ΩΛ,0 = 0.7 today. The tracker solutions fulfils

V ′′ = (9/2)
(

1 − w2
)

[(α + 1)/α] H2 (3.11)

at all times. Sine ρφ should begin to dominate today we need φ to be
O(MPl) since V ′′ ≈ ρφ/φ2 and H2 ≈ ρφ/M2

Pl. In order to obtain ΩΛ,0 = 0.7
or ρφ,0 ≈ 10−47 GeV we obtain with V (φ) ≈ ρφ imposes the constraint

M ≈ (ρφ,0M
α
Pl)

1/(α+4). For low values of α the mass M has to be as small
as 1 meV. However M > 1 GeV - comparable to particle physics scales -
is possible for α ≥ 2. In Fig. 3.4 we show the evolution of the dark energy
density and the equation of state for the exponential tracker. If initially ρφ is
smaller than the tracker solution the field remains frozen until H2 decreases
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Figure 3.4: Left: Evolution of energy densities for exponential tracker.
Right: The evolution of the equation of state [Zlatev et al. 1998].

that the tracker equation 3.11 is fulfilled. Then the field rolls down the
potential maintaining Eqn. 3.11. If the energy density ρφ is larger than the
tracker solution, the field starts rolling down the potential immediately and
very fast, so that the kinetic energy dominates and shifts as a−6 (w = 1)
until φ falls below the tracker and is frozen until it follows it. The equation
of state initially is minutely smaller than radiation (w = 1/3) and then drops
at matter radiation equality below zero and approaches w → −1 when the
dark energy becomes to dominate.

To conclude our discussion about dark energy we mention that there is
now a plethora of valid dark energy models and we show in Fig. 3.5 the
low redshift evolution of the dark energy equation for a sample of models.
One of the biggest challenges in modern cosmology is to test which of these
models fits the data best and to find out more about the nature of dark
energy.
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Figure 3.5: Low redshift evolution of the equation of state for a sample of
dark energy models [Weller and Albrecht 2001].
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Chapter 4

Large Scale Structure

So far we have only studied the large scale evolution of the universe governed
by the cosmological principle. However we know that the matter in the
universe is not distributed entirely homogeneous. An excellent example for
this is the recently completed two degree field galaxy redshift survey (2dF)
built by the Anglo-Australian observatory, which measure the redshifts of
more than 220.000 galaxies

Figure 4.1: Distribution of galaxies as observed by 2dF (2003).

In order to tackle the problem of the distribution of matter in the uni-
verse we will first attempt to predict the behaviour of small perturbations
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to the smooth background.

4.1 Linear Perturbation Theory

In this Section we will discuss small perturbation to the background fluid.
In order to get a better understanding of the effects we will first consider a
Newtonian fluid before we move on to a full relativistic description.

4.1.1 Non-expanding Newtonian Fluid

As stated in Section 2.1.4 the evolution of a fluid is governed by the Eulerian
equations for a perfect fluid

∂ρ

∂t
+ ∇ · (ρu) = 0 ,

∂u

∂t
+ (u · ∇)u +

1

ρ
∇p + ∇Φ = 0 ,

∇2Φ = 4πGρ , (4.1)

where Φ is the gravitational potential and the last equation is the Poisson
equation. The trivial solution for this system is u0 = 0, ρ0 = const. and we
choose the potential zero point that the gravitational force vanishes ∇Φ0 =
0. If we consider perturbations around this static solution

ρ = ρ0 + δρ

p = p0 + δp

u = u0 + δu

Φ = Φ0 + δΦ . (4.2)

The pressure and density are related by the equation of state p = wρ. We
assume for the moment that there is no spatial variation in the equation of
state and define the adiabatic1 sound speed

c2
s ≡

(

∂p

∂ρ

)

adiabatic

(4.3)

and since there are no spatial variations

c2
s =

δp

δρ
.

1Note that in general the sound speed of a fluid is c2
s ≡ δp/δρ.
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We then obtain from the Euler equations 4.1

∂ (δρ)

∂t
+ ρ0∇ · (δu) = 0 ,

∂ (δu)

∂t
+

c2
s

ρ0
∇ (δρ) + ∇ (δΦ) = 0 ,

∇2 (δΦ) = 4πG (δρ) , (4.4)

which can be combined to a single 2nd order differential equation for (δρ)

¨(δρ) − c2
s∇2 (δρ) = 4πGρ0 (δρ) .

This is a wave equation with the solution

δρ(x, t) = ρ0δ(x, t) = Aρ0 exp [−ik · x + iωt] , (4.5)

with

δ(x, t) ≡ δρ(x, t)

ρ0
(4.6)

and ω and k satisfy the dispersion relation

ω2 = c2
sk

2 − 4πGρ0 ,

with k = |k|. If ω is imaginary, there will be exponentially growing (and
decaying) modes, while if ω is real the perturbations will oscillate as sound
waves. ω is imaginary if k is smaller than some critical value

kJ ≡
(

4πGρ0

c2
s

)1/2

, (4.7)

which is called the Jeans wavenumber. For k2 ≪ k2
J , δρ grows (or decays)

exponentially on the dynamical timescale

τdyn = (Im ω)−1/2 ≃ (4πGρ0)
−1/2 .

It is convenient to define the Jeans mass, the total mass contained within a
sphere of radius λJ = π/kJ

MJ =
4π

3
(π/kJ )3 ρ0 =

π5/2

6

c3
s

G3/2ρ
1/2
0

.
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Perturbations of mass less than MJ are stable against gravitational collapse,
while those of mass greater than MJ collapse. The timescale of the gravita-
tional collapse is given by the dynamical timescale τdyn, while the timescale
for the response of the pressure is governed by the size of the perturbation
λ divided by the sound speed τpressure ∼ λ/cs. If τpressure > τdyn there is not
enough time for the pressure to oppose the gravitational collapse and the
perturbation collapses.

4.1.2 Expanding Newtonian Fluid

Our next step in describing small density perturbations in the Universe is
by including the expansion. In this case the unperturbed matter solution is
given by

ρ0 = ρm,0a
−3(t) , u0 =

ȧ

a
x , ∇Φ0 =

4πGρ0

3
x ,

where a(t) is the scale factor as usual. Note that this perturbation analysis
here is still not in a general relativistic context and is only valid for pertur-
bations on scales smaller than the size of the universe |x| < H−1. The first
order perturbation equations are then

∂ (δρ)

∂t
+ 3

ȧ

a
(δρ) +

ȧ

a
(x · ∇) (δρ) + ρ0∇ · (δu) = 0 ,

∂ (δu)

∂t
+

ȧ

a
(δu) +

ȧ

a
(x · ∇) (δu) +

c2
s

ρ0
∇ (δρ) + ∇ (δΦ) = 0 ,

∇2 (δΦ) = 4πG (δρ) . (4.8)

If we introduce the Fourier transform

Ψ(x, t) =
1

(2π)3/2

∫

Ψk(t) exp

[−ik · x
a(t)

]

d3r

and perform this for the quantities Ψ = δ, δu, δΦ with δ = δρ/ρ0 we obtain

δ̇k − ik

a
· δuk = 0 ,

d (aδuk)

dt
− ikc2

sδk − ikδΦk = 0 ,

δΦk = −4πGρ0

k2
a2δk . (4.9)

It is useful to decompose the perturbed velocity field in rotational (u⊥) and
irrotational modes (u‖)

δu = u⊥ + u‖ , δuk = u⊥ (k) + u‖ (k) ,
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with

∇ · u⊥ = 0 , ∇× u‖ = 0 ,

k · u⊥ (k) = 0 , k · u‖ (k) = |k||u‖ (k) | , (4.10)

and hence the first order equations become

d [au⊥ (k)]

dt
= 0 ⇒ u⊥ ∝ a−1(t) ,

u‖ (k) =
a

ik
δ̇k +

const

a(t)
,

δ̈k + 2
ȧ

a
δ̇k +

(

c2
sk

2

a2
− 4πGρ0

)

δk = 0 . (4.11)

We notice that the rotational modes are not coupled to the density pertur-
bations and decay as a−1. From here on we will hence only be interested in
irrotational modes and drop the index ‖. Also we will always work in Fourier
space and drop the index k. Note that from the equation for δ we recover
the previous result if we neglect the expansion (ȧ = 0) and identify |k|/a
with the physical wavenumber and hence k is the comoving wavenumber.
Similar to the previous section the Jeans wavenumber

k2
J ≡ 4πGρ0a

2

c2
s

separates gravitationally stable and unstable modes. For short-wavelength
modes, k ≫ kJ the perturbations oscillate as a sound wave with approxi-
mately

ω ≈ csk

a(1 − n)
,

where we assume a ∼ tn. In general the exact solution is given by a Bessel
function and the amplitude of the soundwave slowly decreases because of the
expansion of the Universe. For k ≪ kJ there are unstable growing modes.
If we assume that the Universe is flat (K = 0) , matter dominated with
ȧ/a = (2/3)t−1 and ρ0 = (6πGt2)−1 we obtain

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0 ,

where we exploited that the pressure gradient is negligible in this limit
(c2

sk
2/a2 ≪ 4πGρ0). This equation has two independent solutions, a grow-

ing mode, δ+ and a decaying mode δ− with time dependence given by

δ+(t) = δ+(ti)

(

t

ti

)2/3
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and

δ−(t) = δ−(ti)

(

t

ti

)−1

,

where ti is a convenient time chosen for the normalization of the modes.
Here we see the effect of the expansion of the universe. The expansion of
the Universe slows the otherwise exponential growth of the perturbation and
results in a power-law growth for the unstable modes. We note that for the
long term evolution only the growing mode is relevant, which will begin to
dominate any general solution.

In general the Universe consists of multiple components. This will influ-
ence the evolution of the perturbations in the non-relativistic component i
by

δ̈i + 2
ȧ

a
δ̇i +





c2
s,ik

2

a2
δi − 4πGρtot

∑

j

ǫjδj



 = 0 , (4.12)

with ǫj ≡ ρj/ρtot the fraction of mass in species j.
Let us consider a two component fluid consisting of baryons and photons

in the radiation dominated era. In this case ȧ/a = 1/2t. If we look at the
unstable modes (k ≪ kJ) assume that the photons are smooth (δγ = 0) and
ǫb ≪ 1, we obtain

δ̈b +
1

t
δ̇b = 0 .

The solution in this case is

δb(t) = δb(ti) [1 + A ln(t/ti)]

and only a perturbation with initial δb(ti) can grow and if so very slow.
Next consider a perturbation during a curvature dominated epoch. When

the Universe is curvature dominated 4πGρtot = 3
2ρtot(t)/ρcrit(t) ≪ t−2 and

we obtain

δ̈b +
2

t
δ̇b +

3

2t2
ρtot(t)

ρcrit(t)
δb ≃ δ̈b +

2

t
δ̇ = 0 .

In this case the solution is

δb(t) = A + Bt−1

and small perturbations cease to grow and decay. Hence the growth of per-
turbations in a non-relativistic component during the radiation of curvature
dominated epochs is inhibited. The reason for this is simple. In a Uni-
verse which is radiation or curvature dominated the expansion is faster as it
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would be if only matter is present and the growth of perturbations is further
moderated compared to the exponential growth in a non-expanding fluid.

We will now draw our attention to a fluid which consists just out of
baryons and photons. The energy density in photons (radiation)is give by
the Stefan-Boltzmann law with

ργ =
π2

15
T 4 ,

where T is the temperature of the black body. First we consider the Jeans’
mass of the baryons in the radiation era, i.e. before electrons and protons
recombine to neutral hydrogen. In this phase the baryons and photons
are tightly coupled and the pressure provided by the photons leads to the
adiabatic sound speed

c2
s =

1

3

and we obtain for the physical Jeans’ wavenumber

kJ−phys =
kJ

a(t)
=

(

4πGρtot

c2
s

)1/2

=

(

4π3

5

)1/2
T 2

mPl

which leads to the physical Jeans’ mass in baryons in the pre-recombination
era

MB−J =
4π

3
ρB

(

π

kJ−phys

)3

≃ 5.4 × 1018(ΩB,0h
2)T−3

eV M⊙ .

Let us assume that the size of the universe (horizon) is dH = c/H ∼ t. We
obtain then for the baryonic mass inside the horizon

MB−HOR ≡ 4π

3
ρBd3

H =
t3

(π/kJ−phys)3
MJ−B .

In the radiation dominated era we obtain from the 1st Friedmann equation
t−1 = (32πGρtot/3)

1/2) and we obtain

π

kJ−phys
=

(

8

3

)3/2

πcst ,

the baryon Jeans mass can then be written in terms of the baryon mass
within the horizon

MB−J

MB−HOR
=

(

8

3

)3/2

(πcs)
3 ≃ 26 .
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So during radiation domination the baryonic Jeans mass is larger than the
mass within the horizon and if there are unstable modes they can not be
treated within the Newtonian analysis.

After recombination matter decouples from radiation. The pressure sup-
port is only provided by non-relativistic hydrogen atoms, and the sound
speed is

c2
s =

5

3

TB

m
,

where TB is the temperature of the baryons and m the mass. After decou-
pling from the photons the temperature of the baryons scales as a−2 (instead
of a−1), and we obtain for the baryon temperature after recombination

TB =
arec

a
T =

T 2

Trec
.

This results in the Jeans mass

MB−J ≃ 1.3 × 105(ΩB,0h
2)−1/2

( z

1100

)3/2
M⊙ ,

with M⊙ ≈ 2 × 1030 kg the solar mass. We recognize that now the Jeans’
mass is much smaller than in the radiation dominated era, because of the
enormous decrease in pressure due to the decoupling of photons and baryons.
Hence, before recombination baryons can not form structures and only af-
terwards sub-horizon overdensities begin to grow.

So far we have treated the photon-baryon fluid as perfect fluid. However
during recombination this assumption breaks down. During decoupling the
photon mean free path grows, λγ = (neσT )−1, and the photons can diffuse
out of overdense regions into under-dense regions and hence smoothing the
inhomogeneities of the photon-baryon fluid. An exact treatment requires
the use of the Boltzmann equation and is part of the proper calculation of
cosmic microwave background anisotropies.

4.1.3 Fluctuations in General Relativity

So far our analysis has been Newtonian. For modes well within the horizon
λPhys ≪ H−1 this is sufficient. For larger scales the Newtonian expansion
velocity exceeds c and the analysis is not valid.

To obtain a simple geometric picture we analyse perturbations of a flat
(K = 0) FRW model

H2 =
8πG

3
ρ0 ,
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with ρ0 = ρtot = ρcrit. If we now consider a model with the same expansion
rate H but a density ρ1 > ρ0

H2 =
8πG

3
ρ1 −

K

a2
,

with K > 0. Note that if the Hubble expansion is these models is equal we
obtain

δ ≡ ρ1 − ρ0

ρ0
=

K/a2

8πGρ0/3
. (4.13)

The evolution of δ is hence related to the evolution of the curvature K/a2

relative to the density ρ0. In a matter dominated universe ρ0 ∝ a−3 and in
a radiation dominated universe ρ0 ∝ a−4 and hence

δ ∝ a−2

ρ0
∝
{

a2 radiation domination
a matter domination

(4.14)

If we use a ∝ t2/3 for a matter dominated universe and a ∝ t1/2 in a radiation
dominated universe we get

δ = δi

{

t/ti radiation domination

(t/ti)
2/3 matter domination

(4.15)

We will now start our relativistic analysis by introducing the perturbed
FRW metric

gµν = g0
µν + hµν

where hµν is a small perturbation to the metric. We choose the synchronous
gauge h00 = hi0 = 0, ie. the perturbations are only in the spatial part,
which is achieved by choosing appropriate equal time slices. This does by
no means exhaust all of the gauge freedom. If we are only interested in
large scales; micro-physical perturbations to the stress energy tensor can be
ignored and the perturbations is simply described by ρ = ρ0+δρ, p = p0+δp
and uµ = uµ

0 + δuµ. In this instance we will again assume that the equation
of state is constant everywhere. We than must solve the perturbed Einstein
equation

δRµν − 1

2
δ[gµνR] = 8πGδTµν ,

or equivalent
δRµν = 8πGδTµν − 4πGδ[gµνT ] ,

with T the trace of the energy-momentum tensor

T = ρ − 3p = (ρ0 − 3p0) + (δρ − 3δp) .
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For solving the perturbed Einstein equations we first have to calculate
the Christoffel connection δΓµ

να to first order in hµν . For the unperturbed

FRW metric we have Γ0
ij = −(1/2)∂gij∂t Exercise ! and hence

δΓ0
ij = −1

2

∂hij

∂t
.

We further have to calculate δRµν to first order in hµν and obtain for example

δR00 =
1

2
ḧ +

ȧ

a
ḣ ,

where we defined

h ≡ hµ
µ = hk

k = −
3
∑

k=1

hkk

a2

as the trace of the metric perturbation. For the unperturbed FRW met-
ric one obtains R00 = −3(ä/a)g00. If we calculate the energy-momentum
perturbation to first order we obtain

δTµν = −δpg0
µν + (δρ + δp)u0µu0ν − p0hµν + (ρ0 + p0)(u0µδuν + δuµu0ν)

and
δ[gµνT ] = g0

µν (δρ − 3δp) + hµν (ρ0 − 3p0) .

We then obtain three equations, one for the (00), one for the (ij) and one
for the (0i) component. The (00) component is then

ḧ + 2Hḣ = 8πG (δρ + 3δp) . (4.16)

As when analysing solutions for the FRW models it is useful to exploit
the energy-momentum conservation ∂νT µν = 0 instead of one of the field
equations. To 1st order this equation is

δ̇ρ + 3H(δρ + δp) + (ρ0 + p0)

[

− ḣ

2
+ ∇ · δu

]

= 0 .

The metric tensor can always be decomposed in its trace, a transverse trace-
less and a vectorial piece and the spatial (and only non-vanishing part in
synchronous gauge) of the perturbed metric can be written as

hij = h
δij

3
+ h

‖
ij + h⊥

ij + hT
ij ,
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where we decomposed the vectorial part further into a transverse (rota-

tional), h⊥
ij, and longitudinal (irrotational) part, h

‖
ij .

We will concentrate in this lecture on the scalar perturbations but note
that the traceless tensor part corresponds to a perturbation like a gravita-
tional wave and the vectorial perturbations couples to the rotational part of
the matter velocity du and decays like in the Newtonian approach. For the
remaining scalar perturbations we obtain in Fourier space

ḧ + 2Hḣ − 3H2
(

1 + 3c2
s

)

δ = 0 ,

δ̇ + (1 + p0/ρ0)
(

θ − ḣ/2
)

+ 3H(c2
s − p0/ρ0)δ = 0 ,

θ̇ + (2 − 3c2
s)Hθ − k2c2

s

a2(1 + p0/ρ0)
δ = 0 , (4.17)

with
θ ≡ ∇ · δu = −ikδu (4.18)

and as usual δ = δρ/ρ. If we assume the perturbation is adiabatic with
p0/ρ0 = c2

s ≡ δp/δρ, define ϕ ≡ θ/H and use y = ln a as the time variable
we obtain

h′′ +
1

2

(

1 − 3c2
s

)

h′ − 3
(

1 + 3c2
s

)

δ = 0 ,

δ′ + (1 + c2
s)(ϕ − h′/2) = 0 ,

ϕ′ − 1

2

(

9c2
s − 1

)

ϕ = 0 , (4.19)

where the prime denotes d/dy = H−1d/dt. Note that we have neglected the
last term in Eqn. 4.17 because we want to focus on super horizon modes
in this section. This set of equations is equivalent to a single 4th order
equation and we expect four independent solutions. Note that there are
only two physical modes like in the Newtonian analysis and the other two
correspond to the remaining gauge freedom in the synchronous gauge.

In order to solve Eqns. 4.19 we use the ansatz

[

δ, ϕ, h, h′
]

∝ χit
λi ,

where χi is a 4-dimensional vector. We then can easily find the solutions
λ1 = 0, λ2 = −1, λ3 = (2 + 6c2

s)/(3 + 3c2
s) and λ4 = (9c2

s − 1)/(3 + 3c2
s) with

the χi

χ1 = [0, 0, 1, 0] ,
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χ2 = [(1 + c2
s)/2, 0, 1,−3(1 + c2

s)/2] ,

χ3 = [(1 + c2
s)/2, 0, 1, (1 + 3c2

s)/2] ,

χ4 = [c2
s(1 + c2

s)(9c
2
s − 1), (3c2

s + 1/2)(1 − c2
s)(9c

2
s − 1),

2(1 + 3c2
s)(1 + c2

s), (1 + 3c2
s)(1 + c2

s)(9c
2
s − 1)] . (4.20)

The first two modes are pure gauge modes and we obtain for the growing
and decaying modes in the matter dominated era (c2

s = 0)

δ+(t) = δ+(ti)(t/ti)
2/3 , δ−(t) = δ−(ti)(t/ti)

−1/3

and for a radiation dominated universe (c2
s = 1/3)

δ+(t) = δ+(ti)(t/ti) , δ−(t) = δ−(ti)(t/ti)
1/2 .

Note that the growing mode solutions are the same as for the expanding
Newtonian fluid.

To illustrate the gauge modes we look at a solution with δ = ϕ = 0 and
define hij in terms of derivatives of a vector field ξ(x) with

hij(x, t) = a2(t) [∂jξi + ∂iξj] . (4.21)

Consider now a coordinate transformation xµ → x′µ = xµ−ǫµ(x). For small
ǫµ the new metric is

g′µν(x) = gµν(x) + gλν(x)
∂ǫλ(x)

∂xµ
+ gλµ(x)

∂ǫλ(x)

∂xν

+
∂gµν(x)

∂xλ
ǫλ(x) + · · ·

= gµν(x) + ∂νǫµ + ∂µǫν . (4.22)

Hence the solution in Eqn. 4.21 merely represents a coordinate transforma-
tion. The gauge modes discussed above correspond in a similar, but more
complicated way, to a coordinate transformation.

4.2 The Power Spectrum - Statistics of Density

Fluctuations

We developed now the tools to calculate the evolution density perturbations
in different cosmological models. However to compare with observations we
are often interested in the statistics of this density field. The first non-trivial
quantity is the second moment of the density field given by
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ξ(r) ≡ 〈δ(x)δ(x + r)〉 , (4.23)

which is called the correlation function. The angular brackets refer to aver-
aging over the volume V . Since the density perturbation is real we can then

x

x+r

Figure 4.2: Density correlation measurement.

use the Fourier transform of the density field to obtain

ξ =

〈

V

(2π)3

∫

dk3

∫

dk′3δkδ∗
k′ei(k′−k)·xe−ik·r

〉

and we obtain

ξ(r) =
V

(2π)3

∫

|δk|e−ik·rd3k (4.24)

and we define the power spectrum

P (k) ≡
〈

|δk|2
〉

(4.25)

We can now go ahead and define the isotropic power spectrum with <
|δk|2(k) >= |δk|2(k). We further define polar coordinates along the k-
axis for the integration in Eqn. 4.24. Since ξ is real it is sufficient to use
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e−ik·r → cos(kr cos θ) and we obtain

ξ(r) =
V

(2π)3

∫

dkk2

∫ 2π

0
dφ

∫ 1

−1
d(cos θ)P (k) cos(kr cos θ) =

V

(2π)3

∫

P (k)
sin kr

kr
4πk2dk .

Sometimes it is convenient to express the variance per logarithmic k interval
(∆2(k) = d < δ2 > /d ln k ∝ k3P [k]):

∆2(k) ≡ V

(2π)3
4πk3P (k) =

2

π
k3

∫ ∞

0
ξ(r)

sin kr

kr
r2dr .

(4.26)

This is easier to interpret, since ∆2(k) = 1 means that there are order
unity density fluctuations from modes around the logarithmic bin around
wavenumber k.

From inflationary models one can motivate he expectation of a featureless
power spectrum with

〈

|δk|2
〉

∝ kn , (4.27)

where n the spectral index governs the power between large and small-scale
power. If we measure the power inside a box of comoving length x we obtain

〈

δ2
〉

∝
∫ 1/x

0
kn4πk2 dk ∝ x−(n+3)

and in terms of mass M ∝ x3 we can write

δrms =
√

〈δ2〉 ∝ M−(n+3)/6

Similarly a power law spectrum implies a power-law correlation function. If

ξ(r) =

(

r

r0

)−γ

,

with γ = n + 3 we obtain

∆2(k) =
2

π
(kr0)

γΓ(2 − γ) sin
(2 − γ)π

2
≡ β(kr0)

γ ,

which is only valid for n < 0. The general limit from asymptotic homogene-
ity requires n > −3. Furthermore, according to Zel’dovich, the discreteness
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of matter requires n < 4. n = 0 is know as white noise because the power is
the same on all scales.

A very important scale factor is n = 1, ie. ∆ ∝ k4. From Eqn. 4.9 we
have

δΦk ∝ δk

k2

and hence from ∆2 ∝ k3δ2
k we obtain

∆2
Φ ∝ δΦ2

kk3 = const

and hence for n = 1 the potential perturbations δΦk which govern the metric
are scale-invariant.

A common way to normalize the power spectrum is normalize it to the
observed fluctuations on an 8h−1 Mpc scale2. It is quite common to define
the scale by a spherical top-hat window function with a real-space represen-
tation of

W (r) =
V

(4π)/3R3
T

,

which is in Fourier space

W (kRT ) =
3

(kRT )3
[sin(kRT ) − (kRT ) cos(kRT )] . (4.28)

The normalization parameter is then

σ2
8 = 4π

∫

dk

k
k3P (k)W 2(k8h−1 Mpc) , (4.29)

which is the filtered variance on 8h−1 Mpc. The measured σ8 is currently
between 0.75 − 1.1 dependent on the measurement. There are two notes
of caution required when comparing the normalization here with observa-
tions. First the measured powerspectrum is usually obtained from discrete,
collapsed object where linear perturbation theory (δ ≪ 1) clearly breaks
down. Furthermore one is usually observing (apart from lensing observa-
tions) the distribution of light, which does not necessarily have to follow the
distribution of mass, particularly in the cold dark matter model. This might
introduce a bias which is commonly parametrised with the bias parameter
b.

2Remember that k in the power spectrum is the comoving wavenumber and this is why
the factor h−1 appears in the scale.
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4.2.1 Redshift Space Effects

So far we have discussed the power spectrum in 3-dimensional space. Usually
one has information about the angular pattern and the redshift. However
the redshift is modified by peculiar velocities (see Exercise ! ) with 1 +
z → (1 + z)(1 + δu/c). Since the peculiar velocities are related to the
clustering (δρ) the clustering in redshift space , if redshift is assumed to
be from the Hubble expansion, differs systematically from realspace. In
the large distance approximation we can assume that an objects subtends
a small angle and the radial distortions are along a Cartesian axis. From
Eqn. 4.11 we obtain

δuk = − iHf(Ω)a

k
δkk̂ ,

with

f(Ω) =≡ a

δ

dδ

da
.

Note that fΩ) is called the velocity suppression factor, with f(Ωm,0) ≈ Ω0.6
m,0.

In real space the velocity perturbation and the displacement are related by

δu = Hf(Ω)x .

In redshift space the apparent distance

rapparent = r + (r̂ · u/H)r̂ = r + (µu/H)r ,

with µ = r̂ · k̂. If we assume now a plane-wave disturbance running at
some angle to the line of sight, producing a displacement fieldx parallel to
k, the apparent displacement is x+f(Ω)µxr̂. For determining the apparent
amplitude along the wavevector we need x + f(Ω)µ2x. We then obtain

δm,z = δm,r

[

1 + f(Ω)µ2
]

, (4.30)

where δm,z is the perturbation in real space and δm,r in redshift space. If we
assume that there is a linear constant bias between the distribution of light
emitting mass δlem and mass we obtain

δlem = bδm = δm + (b − 1)δm .

The trivial rearrangement emphasises that the observed density fluctuation
must be a combination of the dynamically generated density contrast plus
the additional term due to bias, which might be different in different regions
of space. Hence we realize that the first term is associated with peculiar

velocities, but the second is not. We then obtain
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δlem,z = δm,r

[

1 + f(Ω)µ2
]

+ (b − 1)δm,r = δlem,r

[

1 +
f(Ω)µ2

b

]

. (4.31)

When we define

β ≡ Ω0.6/b (4.32)

we can write for the ratio of power spectra

Pz

Pr
=
(

1 + βµ2
)2

.

Note that this approximation does not hold on small scales, where non-linear
effects become important.

We can now finally discuss the power spectrum as measured from the
2dF galaxy redshift survey.

Figure 4.3: Galaxy-galaxy powerspectrum as measured from the 2dF survey
(left) and binned data points with models [Tegmark et al. 2002]. Note that
β = 0.5 is assumed.
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4.3 Press-Schechter Formalism

We will now enter the are of non-linear perturbations and a descriptions
and study a theory introduced by Press & Schechter 1974. Indeed in recent
years it has been established that a full numerical simulation reveals only
slight, although important, deviations from this scheme [Jenkins 2001].

Press-Schechter theory assumes that if we smooth the linear
density perturbations on some mass scale M , then the frac-
tion of space in which the smoothed density field exceeds
some critical threshold δc is in collapsed objects of mass
greater than M.

ρ

position

threshold

mean

coll
coll

Figure 4.4: Schematic description of the Press-Schechter formalism.

We hence smooth the linear density field with the spherical top-hat in
Eqn. 4.28. If we associate the mass of the cluster, before collapse, with the
matter M and the background density ρm,0 we obtain for the radius R of
this region

M =
4π

3
ρm,0R

3 ,

which we then can use to calculate the rms fluctuation σ(M,z)

σ2(M,z) = 4π

∫

dk k2P (k)W 2(kR) .
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In the next chapter we will find that the linear over-density required for
collapse is δc ≈ 1.69. If we assume that the density field is a Gaussian we
can then write for the probability that a given point in space has the over-
density between δ and δ + dδ, smoothed on the mass scale M is pM (δ)dδ,
with

pM(δ) =
1√
2πσ

exp

{

−1

2

δ2

σ2(M,z)

}

. (4.33)

Then the probability of a point in space forming part of a cluster with radius
larger than R is equal to the probability of the density field, after smoothing
over scale M (R), having an over-density larger than the critical over-density
δc. That is

P>R =

∫ ∞

δc

pM(δ) dδ .

To obtain the probability PR dR of a point in space forming a cluster with
radius between R and R + dR, we differentiate the above expression with
respect to R and take the absolute value

PR dR =

∣

∣

∣

∣

d

dR
P>R

∣

∣

∣

∣

dR .

We can then obtain the number density of such clusters by dividing through
the cluster volume

n(R)dR =
3f

4πR3

∣

∣

∣

∣

d

dR
P>R

∣

∣

∣

∣

dR , (4.34)

where we have introduced a correction factor, whose value will ensure that
the final mass function accounts for the entire mass in the universe. The
number of clusters with mass larger than M is then

N>M =
3f

4π

∫ ∞

R

dR

R3

∣

∣

∣

∣

d

dR
P>R

∣

∣

∣

∣

.

To fix the value of the correction factor f we use for the mass density

ρm,0 =

∫ ∞

0
M(R)n(R) dR

and we obtain with Eqns. 4.33 and 4.34 f = 2. If we include this factor into
the probability density we obtain for the probability P>R

P>R = P>M = 1 − erf

[

δc√
2σ(M,z)

]

, (4.35)
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The power of the Press-Schechter model is that it leads to a mass function
of collapsed (virialized; see next chapter) objects, ie. the number density of
objects of a given mass. To obtain the comoving number density of objects
of mass M , per mass interval dM , at redshift z, we perform, as above, the
following: Differentiate Eqn. 4.35 with respect to the mass. If we multiply
this by the comoving number density ρm,0 we obtain the change in the mass
density above the threshold. If we divide this by the mass M we obtain the
comoving number density and we finally obtain, by applying the chain rule

dn(M,z)

dM
dM = −

√

2

π

ρm,0

M

δc

σ2(M,z)

dσ(M,z)

dM
exp

(

− δ2
c

2σ2(M,z)

)

dM ,

(4.36)

which is the Press-Schechter mass function.

Figure 4.5: Left: structure in a N-body simulation. Right: the multiplic-
ity function f(σ) = Mdn(M,z)/d ln σ−1/ρm,0, with the dashed line for the
Press-Schechter function from a simulation by the Virgo consortium [Jenk-
ins, 2001].
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Chapter 5

Clusters of Galaxies

In this final chapter we will move on to study the properties of truly non-
linear structures on extra-galactic scales, namely clusters of galaxies. In
order to obtain a theoretical description how these clusters might form we
will study the behaviour of a spherical over-density in a flat matter domi-
nated universe.

5.1 Spherical Collapse and Virialization

In Fig. 5.1 we show the set up for the spherical collapse model. The over-
density δ of radius R is take from a thin shell with density zero in order to
maintain the mean density. The universe inside the spherical over-density
behaves according to Gauss law completely detached from the evolution
of the surrounding universe, which itself is unaffected by the over-density
because of the thin shell of zero density. The universe inside the over-density
behaves like a closed universe with Ωm = 1 + δ. As we saw in Fig.2.3 such
a universe will re-collapse in a finite time. From the analysis of a closed
matter dominated universe in Sec. 2.1.5, Eqn. 2.24 we obtain

a = (1 − cos θ)
Ωm

2(Ωm − 1)

H0t = (θ − sin θ)
Ωm

2(Ωm − 1)3/2
, (5.1)

where we have chosen the parametric solution. Expressing this in terms of
the scale factor am and time tm at maximum expansion from Eqn. 2.25 we
obtain

a

am
=

1

2
(1 − cos θ) ,

t

tm
=

1

π
(θ − sin θ) .
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ρcrit

ρ> ρ
crit

Figure 5.1: Spherical over-density, with “decoupled” evolution from the
background universe.

To study the linear regime we need an expansion in θ and obtain

a

am
≃ θ2

4
− θ4

48
,

t

tm
≃ 1

π

(

θ3

6
− θ5

120

)

.

If we combine these we obtain the linearised scale factor with

alin

am
≃ 1

4

(

6π
t

tm

)2/3
[

1 − 1

20

(

6π
t

tm

)2/3
]

. (5.2)

Note that if we ignore the term in square brackets we just obtain the ex-
pansion of the background in a flat matter dominated universe. Including
both terms gives the linear theory expression for the growth of a perturba-
tion. Usually we call the point of maximum expansion turnaround, which is
reached for θ = π. Up to this point the general expansion of the universe
has been dominating over the collapse and the physical size of the region
was still growing. Because we are studying a matter dominated universe the
energy densities are always ∝ a−3. Hence the relation between the linear
over-density and the background density is

1 + δlin =
a3

back

a3
lin

,
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Figure 5.2: The evolution of the background scale factor, the linear scale
factor and the non-linear, collapsing scale factor.

where aback is given by the lowest order truncation of Eqn. 5.2. We then
obtain (after linearising)

δlin =
3

20

(

6π
t

tm

)2/3

.

So, at turnaround, t = tm we get

δturn
lin =

3

20
(6π)2/3 = 1.06 .

This tells us that at the breakdown of linear theory, where δlin is unity,
structures break away from the background evolution, but gravitationally
bound structures have yet to form. After turnaround the collapse proceeds
symmetrically to the expansion phase and the object collapses at t = 2tm.
At this time the linear density contrast has become

δcoll
lin = δc =

3

20
(12π)2/3 = 1.686 . (5.3)

So the linear density contrast of about 1.7 corresponds to the epoch of
complete gravitational collapse of a spherical symmetric perturbation. Note
that this is exactly the critical over-density δc we used for the Press-Schechter
model in the previous Section.
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Ultimately we do not expect the object to collapse to a point but rather
to reach virial equilibrium. This is reached when the radius has shrunk by
a factor of 2 from that of turnaround. Numerical estimation show that δcoll

lin

is a good estimate for the epoch of virialization.
The actual nonlinear density contrast at turnaround is

1 + δturn
nonlin =

a3
back

a3
max

=
(6π)2

43
= 5.55 .

In the spherical collapse model, the density goes infinite at the collapse
time. However if we assume that the collapsing object virializes at half
the radius1. Since the background scale factor is ∝ t2/3 the density of the
background has fallen in the same time by a factor of 4. In combination the
over-density at virialization is then 5.55 · 4 · 8 and hence

1 + δvir
nonlin ≃ 178 (5.4)

which is remarkably well verified by simulations. In a low density universe
δcoll
lin is hardly changed but the true density contrast at virialization is in-

creased to 178Ω−0.6
m,0 . Finally we obtain from the virial theorem for bound

objects

v2 =
GM

Rg
,

where M is the mass of the system and Rg the radius where the gravitational
energy is −GM2/Rg. The mass within an initial comoving radius Rcom is

M =
4π

3
ρm,0R

3
com .

The virial theorem tells us (see above) that the cluster collapses at half the
turnaround radius, Rg = Rturn/2. We then obtain

R3
turn =

1

5.55
R3

phys =
1

5.55

1

(1 + zturn)3
R3

com .

Because the virialization time is twice the time to the maximum and we
assume matter domination, we have 1+zturn = 22/3(1+zvir) and hence with

R3
g =

1

178

1

(1 + zvir)
3 R3

com ,

we obtain
1This can be obtained from the virial theorem Uvir = −2Tvir, with U the potential

energy and T the kinetic energy. At turnaround the kinetic energy of the collapsing
sphere is zero. With Uturn = Uvir + Tvir we obtain, since U ∝ 1/R, 2Rvir = Rturn.
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( v

127 km sec−1

)2
=

(

M

1012h−1M⊙

)2/3

(1 + zvir) . (5.5)

The scaling of this relation is well established in numerical simulations how-
ever the normalization is different than in this rough analytical analysis.
Note that objects with the same mass have a larger virial velocity because
they are more compact because they formed when the Universe was smaller
and denser. Galaxies have virial velocities of order 100 km sec−1, whereas
clusters have 1, 000 km sec−1. If we assume that the cosmological fluid inside
the cluster is in hydrostatic equilibrium, ie. the pressure is only provided
by gravity, we can relate T ∝ v2 and hence obtain

kBT

0.07 keV
=

(

M

1012h−1M⊙

)2/3

(1 + zvir) .

This gives rise to x-ray emissions of the hot gas.

5.2 X-ray Signatures

The main x-ray signature of a cluster is thought to be thermal bremsstrahlung
of the diffuse hot intra-cluster gas.

5.2.1 Thermal Bremsstrahlung

Let’s assume a region of size R containing charges with non-relativistic mo-
tion v ≪ c. We will consider the radiation field at a distance L with L ≫ R.
The electro-magnetic field at (t, r) depends on the behaviour of a charge at
time t′ with ct′ = ct − |r − x(t′)| and x(t) the trajectory of the charge. For
large distances we obtain

L ≡ |r − x(t′)| ≃ r − x · n ,

where n is the unit vector r/r. Also, in calculating the field at large dis-
tances, we can replace the L−1 in the Lienard-Wiechert potential (see for

example Jackson, Electrodynamics Exercise ! ) with r−1 and ignore v ·n/c
in the denominator to obtain

A(t, r) =
1

cr

∑

i

qivi(t
′) , t′ = t − r

c
+

x · n
c
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If T is the characteristic time in which the charge distribution changes, then
the typical wavelength of emitted radiation is λ ≃ cT . With (x · n)/c) is of
the order of R/c. Hence we can ignore this term if (R/c) ≪ T , or R ≪ λ.
This is satisfied if v ≪ c with v the typical velocity of the charges. Hence
we can write

A(t, r) =
1

cr

∑

i

qivi[t − (r/c)] =
ḋ[t − (r/c)]

cr
,

where d =
∑

qixi is the dipole moment of the system and the sum is over
all the charges in the system. This is a dipole radiation field.

The angular distribution of dipole radiation can be obtained as follows:
At large distances from the system of charges, the electromagnetic wave may
be treated as a plane wave. Then, noting that the vector potential depends
on only [t − (r/c)], we can write B = ∇× A ≃ (Ȧ × n)/c and E = B × n,
we obtain for the dipole radiation

B =
1

c2r

(

d̈× n
)

, E =
1

c2r

(

d̈× n
)

× n .

The energy flux (Poynting vector) is given by S = c(E×B)/4π = c(B2/4/pi)n
and hence the amount of energy propagating into a solid angle dΩ in unit
time is |S|r2dΩ, giving

dE

dtdΩ
= |S|r2 =

cB2r2

4π
=

1

4πc3

(

d̈× n
)2

=
|d̈|2
4πc3

sin2 θ , (5.6)

where the right hand side should be evaluated at the retarded time.
The spectral composition of radiation, e.g. the amount of energy that is

radiated by the system between frequencies ω and ω + dω, can be obtained
as follows: The Fourier transform of B(t) is B(ω) = (c2r)−1[d̈(ω) × n, with
d̈(ω) = −ω2d(ω). With

∫ +∞

−∞
B2(t)dt =

∫ +∞

−∞
|B(ω)|2 dω

2π
= 2

∫ ∞

0
|B(ω)|2 dω

2π

and we can write Eqn. 5.6

dE

dΩ
=

cr2

4π

∫ +∞

−∞
B2(t)dt =

cr2

2π

∫ ∞

0
|B(ω)|2 dω

dt
,

which results in

dE

dωdΩ
=

cr2|B(ω)|2
4π2

=
ω4|d(ω)|2

4π2c3
sin2 θ . (5.7)
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This expression give the amount of energy radiated into a solid angle dΩ
and frequency range dω.

Consider now the situation in which the velocity of a charged particle
changes from v1 to v2 in a short time τ . In this case very little radiation
will be emitted at frequencies higher than ω0 ≈ 1/τ and we obtain

B(ω) ≡
∫ +∞

−∞
B(t)e−iωtdt ≃

∫ +∞

−∞
B(t)dt

for ω ≪ τ−1. With B = (Ȧ × n)/c we obtain

cB(ω) = −n×
∫ +∞

−∞
Ȧdt = −n× [A2 − A1] ,

where A1 and A2 are the initial and final values of the vector potential.
Then we obtain with Eqn. 5.7

dE

dωdΩ
=

cr2|B(ω)|2
4π2

=
r2

4π2c
[(A2 − A1) × n]2 .

We obtain the vector potential from the Lienard-Wiechert formula

A =
qv

cr[1 − (v · n)/c]
≃ qv

cr
,

where we applied the non-relativistic approximation. We then obtain

dE

dωdΩ
≃ q2

4π2c3
[(v2 − v1) × n]2 =

q2

4π2c3
(∆v)2 sin2 θ .

The total energy emitted over all directions is then obtained by integrating
over dΩ and we finally get

dE

dω
=

2

3π

q2

c3
(∆v)2 . (5.8)

Note that the energy emitted per unit frequency interval is independent of
ω for ω ≪ τ−1, while there is very little energy emitted for ω ≫ τ−1.

In a plasma the electrons are constantly accelerated during their collision
with ions, which leads to the emission of radiation by the plasma called
thermal bremsstrahlung.

We consider now an individual scatter event between an electron and
an ion of charge Ze. The electron has an initial velocity v and the impact
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Figure 5.3: Scattering of an electron at an ion, with impact parameter b.

parameter (point of closest approach of the electron to the ion) is b. The
Coulomb force leads then to an acceleration of the electron of

a ≃ Ze2

meb2
,

which lasts a typical time t = 2b/v. Hence we obtain a velocity change

∆v = at =
Ze2

meb2

2b

v
.

Because the scattering lasts for a time t = 2b/v there will be very little
power at frequencies ω > ωmax ≃ v/2b. From Eqn. 5.8 we then obtain

dE

dω
=

2

3π

e2

c3

(

Ze2

meb2

2b

v

)2

=
8

3π

Z2e6

m2
ec

3

(

1

vb

)2

. (5.9)

This is the amount of radiation emitted in a single collision. If the number
density of ions ni and electrons ne are the same ni = ne = n, then the
total amount of energy emitted per unit volume per second that is due to
all collisions with impact parameter in the range (b, b + db) will be
(

dE

dV dωdt

)

total

= ninev(2πb db )
dE

dω
= n2v db

(

dE

dω

)

2πb =
16Z2e6n2

3m2
ec

3v

1

b
db .

Integrating over b in the limits b1 and b2 we obtain
(

dE

dV dωdt

)

=
16Z2e6n2

3m2
ec

3v
ln

(

b2

b1

)

=
16πZ2e6n2

3
√

3m2
ec

3

1

v
gff (v, ω) , (5.10)
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where we have introduced the Gaunt factor

gff (v, ω) =

√
3

π
ln

(

b2

b1

)

.

The upper limit b2 is determined by the fact that most of the radiation
comes from ω < v/2b and therefore b < v/ω. Note that the lower limit is
determined by the kinetic energy of the electron and quantum effects. gff

is altogether a slowly varying function of velocity and frequency.
We can now move on to average the emission over the velocity distribu-

tion of the electrons. For a plasma in thermal equilibrium the electrons have
a Maxwell distribution of velocities. Since an electron needs to have a min-
imum energy 1

2mev
2
min ≃ ~ω to emit a photon of energy ~ω, the averaging

of 1/v will lead to a factor

〈

1

v

〉

=

(

me

2πkBT

)3/2 ∫ ∞

vmin

1

v
4πv2 dv exp

[

−mev
2

2kBT

]

=

√

2me

πkBT
exp

(

− ~ω

kBT

)

. (5.11)

We finally obtain as the specific emissivity

j(ω) =
dE

dV dtdω
=

16πZ2e6n2

3
√

3m2
ec

3

(

2me

πkBT

)1/2

exp

(

− ~ω

kBT

)

ḡff (ω) ∝ n2T−1/2 ,

(5.12)

with ḡff (ω) the velocity averaged Gaunt factor which can vary between
1 and 5. As discussed in the previous section about spherical infall, it is
thought that the intra-cluster gas is heated during its formation process.

5.2.2 X-ray Observables

Including numerical Gauntfactors a good approximation for the net free-free
luminosity is

J =

∫

dωj(ω) ≈ 1.42 × 10−27T 1/2n2 erg cm−3 sec−1 ,

where we have introduced the energy unit erg which is typically used in x-
ray astronomy and is erg = 10−7 Joule. If we assume that the temperature
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across the cluster is uniform (isothermal) and has an electron density

n(r) =
nc

1 + r2/r2
c

(5.13)

we can calculate the total bremsstrahlung luminosity LX of the cluster with

LX =

∫

J d3r = 1.4 × 1042nc(cm
−3)2rc(kpc)3TX(keV)1/2 erg sec−1 ,

where nc is the central electron number density nc measured in units of
cm−3 and the core radius rc in kiloparsecs. A typical value for the cluster
x-ray luminosity is

LX ∼ 1 × 1044h−2 erg sec−1 .

For the core radius, density and temperature of the plasma typical values
are

rc ∼ 200h−1 kpc , TX ∼ 4 keV , nc ∼ 0.003h1/2 electrons/cm3 .

Figure 5.4: On the left the Hydra cluster from an optical observation on La
Palma (B. MacNamara) and on the right the same region observed with the
Chandra X-ray satellite.

Hydra A in Fig. 5.4 is a galaxy cluster that is 840 million light years
from Earth (redshift z = 0.054). Optical observations show a few hundred
galaxies in the cluster. Chandra X-ray observations reveal a large cloud of
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hot gas that extends throughout the cluster. The gas cloud is several million
light years across and has a temperature of about 40 million degrees in the
outer parts decreasing to about 35 million degrees in the inner region.

In general the observed X-ray spectra are generally fit fairly well by
Eqn. 5.12 with gas temperatures of 2× 107 to 108 K. The equation predicts
the observed rapid fall off of the spectrum at high frequencies. If we relate
the temperature of the gas to the mean kinetic energy of the atoms in the
gas we find

kBT

µmp
≈ σ2

r ,

where µ is the mean atomic weight and mp is the proton mass. This inferred
velocity is similar to typical line of sight velocities σr of galaxies in the
cluster. This is because the gas is exposed to the same gravitational potential
as the galaxies.

5.3 Sunyaev-Zel’dovich Effect

Another signature we obtain from clusters of galaxies is the imprint of the
Compton scattering of the CMB photons off the hot electrons of the intra-
cluster medium, i.e.

e− + γ → e−′ + γ′ .

The spectrum of the CMB radiation is to very high accuracy Planckian as
can be seen in Fig. 5.5. Since Compton scattering conserves the number of
photons, their energy gain is obtained by redistribution in frequency and
hence distortion of the Planckian spectrum.

5.3.1 Kompaneets Equation

We will first discuss how a homogenous, isotropic distribution of photons
is elastically scattered by a homogenous non-relativisitc gas of hot elec-
trons. The net effect of many scatterings by the moving electrons produces
a random walk in the energy of each photon, while conserving the photon
number. As usual in scattering calculation we move between the labora-
tory frame (no subscripts), to the initial restframe of the electron before the
scattering (subscript 1) to the primed quantities after scattering.

If the electron moves along the x-axis with velocity v in the laboratory
frame we obtain with Lorentz transformation

t = γ(t1 + vx1) , x = γ(x1 + vt1) .
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Figure 5.5: The CMB spectrum as measured by COBE (including errorbars
!).

The same transformation can be applied to the energy and momentum of a
photon of frequency ν which moves along an angle θ to the electron

ν = γν1(1 + v cos θ1) , ν cos θ = γν1(cos θ1 + v) .

The ratio of these two equations results in

cos θ =
cos θ1 + v

1 + v cos θ1
,

which is the transformation of the angle θ. The derivative of this expression
gives the transformation of the solid angle dΩ = d(cos θ)dφ of a beam of
photons,

dΩ =
dΩ1

γ2(1 + v cos θ1)2
,

where we have used γ−2 = 1 − v2.
Because of Liouville’s theorem (constant phase space) the photon occu-

pation number N is a Lorentz scalar quantity in the absence of collisions
and hence

N1(θ1, ν1, t1, x1) = N (ν = γν1(1 + v cos θ1), t = γ(t1 + vx1)) . (5.14)
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Finally we can write for the Boltzmann collision equation the the electron
rest frame,

∂N1

∂t1
+ cos θ1

∂N1

∂x1
= R1 ,

where the right hand side is the rate R1 of scattering of photons into the
beam, less the rate of scattering out of the beam as seen by an observer in
the electron rest frame. The left hand side is the derivative moving with the
photon beam. From Eqn. 5.14 we obtain further

∂N1

∂t1
= γ

∂N
∂t

,
∂N1

∂x1
= γv

∂N
∂t

and we obtain as the collision equation

γ
∂N
∂t

(1 + v cos θ1) = R1 .

If we use the inverse energy transformation ν1 = γν(1 − v cos θ) we obtain

γ(1 − v cos θ) =
1

γ(1 + v cos θ1)

and hence
∂N
∂t

= 〈γ(1 − v cos θ)R1〉θ . (5.15)

The brackets indicate averaging over the photon direction to get the time
evolution of the occupation number in the laboratory frame.

Now we have to adress the scattering rate, R1, where we have to take
account of the electron recoil because the order of our calculation is O(v2).
In the initial electron rest frame the electron momentum is zero before scat-
tering and afterwards

mev
′
1 = ν1k̂1 − ν ′

1k̂
′
1 .

The square of this expression gives the final kinetic energy of the electron,
which is the energy lost by the photon. To lowest non-trivial order this is
the Compton shift

ν1 − ν ′
1 = δν1 =

ν2
1

me
(1 − cos Θ) ,

with Θ the scattering angle. The rate of change of the number of photons
in a beam of solid angle dΩ1 and bandwidth ν1 to ν1 + dν1, measured in the
initial rest frame of the electron is then

R1ν
2
1dν1dΩ1 =

d

dt1
N1(θ1, ν1)ν

2
1dν1dΩ1 =

∫

dσ

dΩs
I ,
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where on the right hand side the differential scattering cross section is inte-
grated over the intensity I with

I = [1 + N1(θ1, ν1)]
[

N1(θ
′
1, ν

+
1 )(ν+

1 )2dν+
1 dΩ′

1

]

dΩ1

−
[

1 + N1(θ
′
1, ν

−
1 )
] [

N1(θ1, ν1)ν
2
1dν1dΩ1

]

dΩ′
1 , (5.16)

with

ν±
1 = ν1 ± δν

= ν1

[

1 ± ν1

me
(1 − cos Θ)

]

. (5.17)

The second line in Eqn. 5.16 gives the rate of scattering out of the beam.
The second factor in this line in square brackets is the number of photons
in the beam element. In the stimulated emission factor in front of it, the
ocupation number is evaluated at the direction and frequency of the emitted
photon. The frequency of the emitted photon is lowered by the Compton
effect to ν−

1 . These photons are scattered into the solid angle dΩ′
1, with cross

section dσ/dΩs at a scattering angle Θ. The first line in Eqn. 5.16 is the rate
of scattering into the beam element. Here the Compton effect requires that
the incident photon has the energy ν+

1 = ν1 + δν. Here the incident beam
with solid angle dΩ′

1 is scattered into the beam with solid angle dΩ1. Note
that we are ignoring the energy dependence of the cross section, because we
are performing our analysis in the non-relativistic limit to order ν1/me.

The next step is to write the occupation numbers in Eqn. 5.16 in the
laboratory frame, with

ν± = ν±
1 γ
(

1 + v cos θ′1
)

= ν
ν±
1

ν1

1 + c cos θ′1
1 + v cos θ1

.

We can now expand this expression to order O(v2) and O(ν/me) and obtain

ν± = ν
[

1 ± (ν/me)(1 − cos Θ) + v(cos θ′1 − cos θ1) + v2(cos2 θ1 − cos θ′1 cos θ1)
]

≡ ν ± ∆± (5.18)

and we obtain

N1(θ1, ν1) = N (ν) , N1(θ
′
1, ν

±
1 ) −N (ν ± ∆±) .

We can now use Eqn. 5.16 to work out the rate R1 and include this into
Eqn. 5.15. The only additional ingredient we require is the momentum
volume element

(ν+
1 )2dν+

1 =
[

1 + 4
ν1

m
(1 − cos Θ)

]

ν2
1dν1 .
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We then obtain

∂N
∂t

=

∫

γ(1 − v cos θ)
dΩ

4π

dσ

dΩs
dΩ′

1(A + B) , (5.19)

with

A =
4ν

me
(1 − cos Θ)N (ν)[1 + N (ν)]

and
B = [1 + N (ν)]N (ν + ∆+) − [1 + N (ν + ∆−)]N (ν) .

The integration over dΩ/4π corresponds to the averaging in Eqn. 5.15. We
can now expand B to second order in electron speed v and obtain

B = (1 + N )

[

N +
dN
dν

∆+ +
1

2

d2N
dν2

(∆+)2
]

−N
[

1 + N +
dN
dν

∆− +
1

2

d2N
dν2

(∆−)2
]

.

If we calculate A + B including the expressions for ∆± we realize A + B is
of 1st order in v. Hence we only require 1st order terms in all subsequent
approximations. We can then re-express the integration over the solid angle
in Eqn. 5.19 to the relevant order

(1 − v cos θ)dΩ = (1 − 3v cos θ1)dΩ1 .

Since A + B is of order v we can use the classical Thomson scattering cross
section (σT = 6.65× 10−25 cm2) which is symmetric under θ1 → θ1 + π and
θ′1 → θ′1 + π, so all odd terms in cos θ1 and cos θ′1 vanish in the integral. If
we perform the final integration we than obtain

∂N
∂t

=

∫

dΩ1dΩ′
1

4π

dσ

dΩs
(1 − 3v cos θ1)(A + B) = σT C ,

with

C =
ν

me

[

4N (1 + N ) + (1 + 2N )ν
dN
dν

]

+
4

3

dN
dν

νv2 +
1

3

d2N
dν2

ν2v2 .

This is the expectation value for scattering by a single electron. For a gas
of electrons with number density ne and mean square velocity < v2 > we
obtain the Kompaneets equation
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1

σT ne

∂N
∂t

=
ν

me

[

4N (1 + N ) + (1 + 2N )ν
∂N
∂ν

]

+
4

3

〈

v2
〉

ν
∂N
∂dν

+
1

3

〈

v2
〉

ν2 ∂2N
∂ν2

. (5.20)

5.3.2 Sunyaev Zel’dovich effect

We can now move on to discuss the effect of hot intracluster gas in a rich
cluster of galaxies on the CMB photons. The plasma is much hotter than

Figure 5.6: Scattering of CMB photons by hot intracluster gas.

the CMB and hence the terms with the kinetic factor < v2 > are dominating
the Kompaneets equation Eqn. 5.20. In this case we have

1

σT nec

∂N
∂t

=

〈

v2
〉

3c2

[

ν2 ∂2N
∂ν2

+ 4ν
∂N
∂ν

]

. (5.21)

If the electrons have a Maxwell-Boltzmann energy distribution at tempera-
ture Te we have

〈

v2
〉

=
3kBTe

me
.
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We can rewrite Eqn. 5.21 more compact if we introduce

x =
hν

kBTe
, dy =

kBTe

mec2
σT nec dt =

〈

v2
〉

3c2
σT nec dt

and obtain
∂N
∂y

= x2 ∂2N
∂x2

+ 4x
∂N
∂x

.

As mentioned before the CMB is a nearly perfect black body with

N =
1

ehν/kBTγ − 1
.

We if we assume that the perurbations to the Planckian distribution are
small we can write as the solution N + δN and hence

∂N
dy

=
δN
y

(5.22)

with

y =
kBTe

mec2

∫ t

σT nec dt , (5.23)

which is proportional to the pressure in the electron gas nekBTe. This can
also be interpreted as the product between the gas temperature measured
in units of electron mass and the scattering optical depth τ =

∫

σT nec dt.
We then obtain for Eqn. 5.22

δN
N = y

[

x2ex(ex + 1)

(ex − 1)2
− 4xex

ex − 1

]

→







−2y at x ≪ 1 ,

x2y at x ≫ 1 .
(5.24)

Hence the perturbed spectrum in the long wavelength limit, x ≪ 1, where
N ∝ Tγ , has the thermal Rayleigh-Jeans form with the effective temperature
lowered by

δTγ

Tγ
= −2y . (5.25)

Sunyaev and Zel’dovich (1972) pointed out that the plasma in a rich cluster
is hot enough to upscatter the photons, increasing the surface brightness at
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Figure 5.7: Spectral distortion due to SZ effect (S. Church). Lower panel,
differential effects (green is the kinematic SZ effect due to the peculiar mo-
tion of the cluster). The bands are the frequency bands of the SuZie instru-
ment.

short wavelength, and lowering the effective temperature at long wavelength.

If we assume an isothermal profile (Eqn. 5.13) with a constant temper-
ature TX we obtain for the optical depth at a distance R from the cluster
centre

τ = σT

∫

n(r)dl =
τ0

(1 + R2/r2
c )

1/2
,

with
τ0 = 0.0064nc(cm

−3)rc(kpc) ,

with rc ∼ 200h−1 kpc and nc ∼ 0.003h1/2 electrons/cm3 we obtain

τ0 ∼ 0.003h−1/2 .

For the long wavelength side of the CMB spectrum the temperature as seen
through the centre of the cluster is lowered by

δTγ

Tγ
= −2τ0

kBTX

mec2
∼ −5 × 10−5h−1/2
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This temperature decrement should be roughly constant over the core of the
cluster, which extends an angle

θ =
2rc

dA(z)
≈ 2H0rc

cz
∼ 0.5

z
arcmin ,

where the approximation is for low redshifts z ≪ 1.
We can now look at some Sunyaev Zel’dovich observations, of which some

have been pioneered by the Astrophysics group at the Cavendish laboratory.

Figure 5.8: The Ryle telescopes at Lord’s bridge Cambridge.

The Ryle telescope array consists of 8 individual parabolic 13m antennas
observing at 15 GHz (2cm). It is common to talk in terms of a flux decrement
instead of a temperature decrement which is given by

Sν = 2ν2∆Tf(x) ,

with f(x) = x2ex[x/tanh(x/2) − 4]/(ex − 1)2. Usually the flux in radio
astronomy is given in units of Jansky with 1Jy = 10−26J/(sec m2 Hz).

Finally we should note that the SZ effect is an excellent probe for clusters
at large redshifts because the dimming of the flux due to redshift is exactly
canceld by the increased CMB photon energy density at larger redshifts.
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Figure 5.9: The cluster A2218 as observed with the Ryle telescope. The
central flux decrement is 500 ± 70 µJy, corresponding to a temperature
decrement of 0.09 mK (Jones & Grainge 1993).

Figure 5.10: Another observation of Abell 2218, with the BIMA array at
28.5 GHz. The contours are lines of constant flux decrement. The colours
are intensities from X-ray emission of the hot gas as observed by the ROSAT
satellite (Carlstrom et al.).
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