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Chapter 1

Introduction

1.1 Timetable

Lecture:
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Problem classes:

Fridays (dates to be announced): 12:00-13:30
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Chapter 2

Cosmography

2.1 Relativistic Cosmology

2.1.1 The Cosmological Principle

As a generalization of the Copernican principle that the Earth is not at the
centre of the solar system, the cosmological principle states that we do not
occupy a special point in the universe, actually that there is no special point
in the universe.

The cosmological principle: At each epoch, the universe
presents the same aspect from every point, except for local
irregularities.

Mathematically this means that there exists a cosmic time ¢ and that each
constant time slice is homogeneous and isotropic. Globally isotropic mani-
folds are homogeneous, so the cosmological principle requires that space-time
can be foliated into space-like hypersurfaces which are spherically symmetric
about each point. Homogeneity has to be understood like homogeneity of
gas, which is not homogeneous microscopically but on large scales.

2.1.2 Weyl’s Postulate

Hermann Weyl assumed 1923 that there is a privileged class of observers
associated with the smeared-out motion of galaxies. This follows the fact
that the relative motion in groups of galaxies is small.



Weyl’s postulate: The particles of the substratum lie in
space-time on a congruence of time-like geodesics diverging
from a point in the finite or infinite past.

Weyl introduced the ’substratum’ or fluid pervading space in which galaxies
move like fundamental particles in a fluid, which follow a special motion.
The postulate requires that the geodesics of these particles do not inter-
cept. There is a unique geodesic in each point of space-time and hence each
‘matter’ particle possesses a unique velocity. Hence the substratum may be
taken as a perfect fluid. Note that the motions of galaxies deviate from this,
but this deviation is random and it’s velocity is less than a thousands of the
speed of light, while the general relative motion is of the order of the speed
of light.

2.1.3 The Robertson-Walker Metric

Analyse universe which obey the cosmological principle and Weyl’s postu-
late. Hence the geodesics of the fluid particles (substratum) have to be
orthogonal to space-like hypersurfaces. We introduce coordinate system
(t,z', 22, 23), where space-like hypersurfaces are given by t = const. and
(x', 22, 23) are constant along geodesic as shown in Fig. 2.1. These coor-
dinates are called co-mowving. From orthogonality we obtain for the line
element (metric)

ds® = dt? — hgpda®da® |

where Latin indices run over the spatial indices a = 1,2,3. And
hab = hab(tyx) ’

with ¢ corresponding to the cosmic time. If we consider a small triangle
given by three particles of the fluid at a given time ¢ and then at a later
time, the cosmological principle requires that the second triangle must be
geometrically similar to the first and the magnification factor must be inde-
pendent of the position of the triangle. Therefore time can only enter via a
common factor into h,, and hence

hab = [a(t)]*gap(?) - (2.1)

The ratio of two values of a(t) at two different times is the magnification
ratio.



fluid particles
geodesics

Figure 2.1: Constant cosmic time hypersurfaces and fluid particle geodesics.

In order that the space is homogeneous and isotropic the curvature must
be constant, otherwise points are not geometrically equal. A space with
constant curvature is characterised by

Raﬂ'yé =K (ga'yg,@cS - gaﬂgﬂ’y) s
with K a constant, called the curvature. This must hold for the 3-dimensional
metric gqp in Eqn. 2.1. This will lead to the Ricci tensor
Rog = 9" Rabed
= Kg" (9acIvd — Gadve)
= K (39bd — 9bd)
= 2Kgpq (2.2)
and hence the Ricci or curvature scalar of R = ¢**Rp; = 6K is constant.

Because the 3-space has to be isotropic about every point it must be spherical
symmetric about every point. This has the general spatial metric (show with

d’Inverno 14.33 as an )

do? = eMdr? + r? (d92 + sin? 9d<b2) ,
with A = A(7). And the non-vanishing components of the Ricci

tensor are

1
Ri1=\N/r, Ry = R33/sin2 0=1+ 5?”67)\/\/ —e



and hence the condition of constant curvature Eqn. 2.2 leads to
1
N/r=2Ke, 1+ 5?“6‘“’ —e N =2Kr?,
with the solution
e r=1-Kr?.
Therefore an isotropic 3-space of constant curvature has the metric
B dr?
11— Kr?
For the space-time metric we absorb the arbitrariness of the magnitude of

K into the scale factor a(t) by defining K = k|K| and the rescaled radial
coordinate

do? + 7% (d6* + sin® 0 d¢?) . (2.3)

= |K|Y?r,

and we obtain

t 2 d *2
ds* = dt* — [“|(K)‘] . _T;W*z + 7% (d6” + sin® fd¢*)

and define the rescaled scale function R(t) by

R(t) = a(t)/|K|'? if K #0
R(t) = a(t) K =0
and we obtain
2 2 2 dr? 2 2 .2 2
ds* =dt* — [R(t + 72 (df” + sin” Od¢ . 2.4
1— kr2

As a warning we have to point out that in this rescaled units, the scale factor
has now a length dimension and the coordinates are dimensionless. This is
all right as long as we study cosmological models from a theoretical point of
view. But as soon as we will discuss more physical quantities we will prefer
the form in Eqn. 2.3. Furthermore we can introduce a new radial parameter

1
r=r/ <1+ZKT2> :

and drop the bars we get the metric in its conformally flat form



9 dr? +r? (d92 + sin? 9d¢2)

ds? = di — [R(t)] ST

o (25)

which is the Robertson- Walker metric with £k = +1,—1 or 0. For &k = +1
the spatial part is a 3-sphere (S%) (closed, bounded or compact) and the
whole space-time has a cylindrical topology of R x S3, with R for the time
coordinate. For k = 0 is Euclidean four-dimensional space time R* which
is called open. For k = —1 the spatial part is a 3-dimensional hyperboloid
in four-dimensional Minkowski space. The topology is again R* and open.
Note that we only discussed the simplest topologies possible.

2.1.4 Friedmann Equations

In order to write down the equations which govern the large scale behaviour
of the universe we need to solve Einstein’s equation for general relativity

Gop — Nap = 87GTag (2.6)

where G is Newton’s constant of gravity, G5 is the Einstein tensor

Ga,ﬁ’ = Raﬁ - %gaﬁRa

A the cosmological constant and T3 the energy momentum tensor of the
different components in the universe. Note that Greek indices run over
a = 0,1,2,3. Weyl’s postulate requires the ’substratum’ to be a perfect
fluid. A perfect fluid is characterised by a 4-velocity u® = dx®/dr, where T
is the proper time along the world line, a proper density field pg(x) and a
scalar pressure field p(z). The energy - momentum tensor for a pressureless
fluid is TP = pyu®u” and hence we choose as an ansatz

T = pouu® + pS?

with S%% a symmetric tensor due to covariance of the Einstein equations.
The only second-rank tensors associated with the fluid are u®u?® and ¢
and we write

S = Au®u® + pg®”,

with constants A and pu. The energy-momentum conservation 8gT°‘ﬁ =0
should reproduce the Eulerian equations of Newtonian motion of a perfect



fluid in Minkowski space. If A =1 and p = —1 e obtain the

continuity equation

ap B
E'FV(/)U)—O

and the Navier-Stokes equation
p [88—1: + (u-V)u] = —Vp,

if there are no external forces and the fluid is moving with velocity u with
respect to the observer. Finally we obtain

Top = (p + P)uats — PGas - (2.7)

The preferred coordinate system (Weyl’s postulate) is u® = (1,0,0,0) and
we obtain with the the Robertson-Walker metric from Eqn. 2.3 and the Ein-

stein equations in Eqn. 2.6 we obtain for the o8 = 00 component

—3% — 47G(p +3p) — A (2.8)
and for the a8 = ab component
. . 2
K
2+2<2> +2— =4rG(p —p) + A, (2.9)
a a a

which is only one equation because of isotropy. Note that we used the
Robertson - Walker metric in its form with the dimensionless scale factor
and coordinates of length dimension

dr?

ds? = dt?* — [a(t))? [m

+ 7% (d6? + sin? 0 d¢?) | . (2.10)

With some simple algebra we obtain the two Friedmann equations

> K 8rG A

—t+ =+ 2.11

a2t a= g3 Pty (2.11)
G A

2:__7; (p+3p) + 3 (2.12)




We can combine the two Friedmann equations to obtain

p=-3p+7)", (2.13)

which if we multiply this by a® and note that the volume V o a® is the
equation for the conservation of energy with

dE +pdV =0,

where we recognise that the pressure does work in the expansion.

2.1.5 Cosmological Models

We will first introduce some simplifying notations, where their meaning will
become clear during the course of this section. First we introduce the Hubble
parameter

H(t) = g (2.14)

which is the (normalized) expansion rate of the universe. Furthermore we
can formally associate an energy density with the cosmological constant

A
= —. 2.1
PA= 580G (2.15)

In this notation the 1st Friedmann equation reads like

K 8rG
HQ‘*‘EZT(ZPH‘PA) ; (2.16)

where the index i is a label for the kind of particle fluid we study, like
matter or radiation. Note that in general we have to sum over all the
'particle’ species or energy components in the universe in order to obtain
the total energy-momentum tensor. In order to obtain a flat universe we
require K = 0 and hence

H2

3
Prot = Y pi+PA = = = Perit -
- 8tG

We can define then

10



o= (2.17)
Pcrit

which is the energy density in units of the critical density perit. In this way
we can define quantities like Q4, €y, (for matter) and Q, for radiation. Note
that we define these quantities time dependent and not only at tioday, if we
want to specify the values today we will add an index 0, ie. le. With this
notation the 1st Friedmann equation becomes

K

and if we define Q) = —K/(aH)?

1= Q+Qa+Q. (2.18)

Note that the sign of the definition of 2 varies in the literature.

In the following we will only discuss models with pressureless matter with
p = 0. In general the flat cosmologies we discuss here, which obey the cos-
mological principle and Weyl’s postulate, are called Friedmann-Robertson-
Walker or FRW models. For pressureless matter we obtain with the energy
conservation equation Eqn. 2.13

-3
a
Pm = Pm,0 <_> )
ao

where pp, o is the energy density in matter today and ag is the scale factor
today. Note that we choose

ap=1 (2.19)

in the rest of the lecture, unless otherwise noted. The 1st Friedmann equa-
tion for a flat (K=0) universe can then be written as

<—>2 e (2.20)

!Note that in most articles and books Q. and Qa etc. refer actually to the densities
today.

11



or
a® = HjQmoa ' + HZQ 0a® (2.21)

with Hy the Hubble constant (Hubble parameter today). Note that with
Eqn. 2.18 we have Q0,0+ 25,0 = 1 in a flat universe.
Let us assume that A > 0 and if we substitute u = 2Q o/Qm0a® we
obtain
= 9HZOQ 0 [2u + u2] =3A [2u+ uQ] .

If we take the positive root of this equation we obtain then

" du ! 1/2 1/2
= [ (3M)2dt = (30)"/%,
0 (2u+u2) 0

where we assume a big bang model with ¢ = 0 at ¢ = 0. This can be
integrated by completing the square in the u-integral and substitutions v =
u+ 1 and coshw = v

u v w w

/ du B / dv B / sinh wdw B /dw —w
[(u F1)% 1] 1/2 (2 —1)1/2 , (cosh? w — 1)1/2 ]

0 1

and we obtain finally the time evolution of the scale factor

a® o [cosh(?)A)l/Qt - 1] .

T 204,
If A < 0 we introduce u = —QQAVO/Qm,OaB and then obtain as above
Q
3 _ m,0 { _ _AN1/2 }
a’=—2-—<1—cos[3(—A te .

For A = 0 we have

9 1/3
a:<ZH§t2> . (2.22)

which is called the Einstein-de Sitter model. The Hubble parameter for this
model is ) 9
Hit) =12

a 3t
If we have a non-vanishing cosmological constant A the flat pressureless

12



t t t

Figure 2.2: The three flat, pressureless cosmological models. On the left
A > 0, in the middle A < 0 and on the right the Einstein de-Sitter model
with A = 0.

models behave initially like an Einstein-de Sitter model since the first term in
Eqn. 2.20 dominates for small scale factors a over the cosmological constant
term.

The qualitative behaviour of the flat, pressureless solution can be studied
when we look at the right hand side of Eqn. 2.21. For A < 0 & vanishes at

|: Qm70:|1/3
aGa=0n = |—F7F )
Qa0

which is a local maximum . For A > 0 the solution grows without
bound. For large ¢t and A > 0 the second term in Eqn. 2.20 dominates and

we obtain

a X exp [(A/i%)l/2 t} ,

which grows exponentially with time.
We will now discuss non-flat models (K # 0) but with a vanishing cos-
mological constant (A = 0). We then have to solve

a2 = QuoHZa ™' — K = QuoHZa ' + Oy 0 HZ . (2.23)

Note that for A = 0 we have Qg =1 — Qpo. For K > 0 (2 < 0) we
substitute u? = a/(Qm,oHJ) and obtain

2 u?HE Q0] [u—2 _ 1]
492

13




When we substitute v = sin  we can integrate this differential equation and

obtain /o 2 /o
t=c {sim1 [ﬁ] - [ﬁ] [1 - ﬁ] } , (2.24)
€1 €1 €1

with ¢; = Quo/(|Quo>?Hp). Similarly for A = 0, K < 0 (Q > 0) we

obtain

1/2 1/2 1/2
t:q{_smh—l[ﬁ] ] e ] }
C1 C1 C1

Again we can analyse when the right hand side of Eqn. 2.23 is vanishing and
we find that for K > 0 we have a local maximum at
Ay, = Qm,o
| 0]

For K < 0 we have growth without bounds. For K < 0 the curvature term
is dominating for large a with @? oc 1 and a oc t. Note that all other cases

(2.25)

t t

Figure 2.3: The two non-flat FRW models with vanishing cosmological con-
stant A = 0. On the left with £ = +1 and on the right with £ = —1.

are slightly more involved and we refer the student to the literature (see
d’Inverno chapter 23).

Finally we will discuss the de Sitter model which are flat universes devoid
of matter (p = 0) with a positive cosmological constant. In this case we have

(éA) v t] L (2.26)

a = exp

where we chose a =1 at t = 0.

14



2.2 Redshift and Distances

2.2.1 Redshift

In order to study the influence of the expansion of the universe on light
emitted by a distant galaxy and received by an observer at the origin we
exploit the fact that propagation of light in general relativity is along a null
geodesic. If we put the observer at the origin with » = 0 and choose a radial
null geodesic we get

ds®> =df =dop =0

and hence from Eqn. 2.10

dt dr
=+ , 2.27
a(t) (1— Kr2)l/? (2.27)

where the + sign corresponds to an emitted light ray and the — sign to a
received one. For light ray emitted at time ¢; and a distance r; which is
received at the origin at time ty we obtain

jg dt fo d ) \Kl}/gh .
gt — [ —dr — _drt
5 90 2 (1—Kr2)'/? R A e (2.28)
_ 1 g-1
= &% (|&["2r) ;
with
sin () ifK>0 or Q<0,
Sk () = x ifK=0 or =0,
sinh (z) ifK<0 or >0,

where we have used for the second equation the substitution r* = |K|'/2r
with K = k|K|. Now in order to understand how the frequency vy (wave-
length) of the received light behaves in relation to the emitted frequency 1.
The time when a second wavefront arrives ty + dty which has been emitted
after a short time dt; is again given by

to+dto dt 1
[ = s UK ),
t1+dtq (I(t) ‘K|

where the right hand side does not change because of Weyl’s postulate that
the ’substratum’ (galaxies) have constant coordinates. So we finally find the

15



O's world
line

Figure 2.4: Propagation of light rays.

relation between the time difference of the two signals

dto

dtq

a (to)

a(t1)

and hence the relation of the emitted (v1) and received (1) frequencies is

given by
140 o

dtl . a (tl)

1% _d_to_a(to)’

which is usually expressed by the redshift parameter

Ao — M1

a(to)

z w

a(t1)

—1,  (2.29)

where A; and Ay are the wavelength corresponding to v; and vg. Light from
a distant object is usually redshifted?. Note that if we put the observer at
tp today and use ag = 1 we obtain

(2.30)

2.2.2 Proper and Angular Diameter Distance

Because of Weyl’s postulate there is a world time and one can define the
absolute distance between ’substratum’ particles by looking at their position
at the same world time. If we set dt = dff = d¢ = 0 in Eqn. 2.10 and assume

2Note that in a collapsing universe it is actually blueshifted.

16



Oy

0 P

Figure 2.5: Distance between two fluid particles.

one particle is at the origin and the other at r; we obtain as the proper

distance - p
T
d, = a(t / )
p=all) )] (1— Kr2)'/?

however this requires a synchronous measurement of the distance which is of
no practical use. One more practical method would be to compare the known
absolute luminosity of an object with its observed apparent luminosity or
the true diameter with the observed angular diameter.

In this section we consider the second method, while in the next section
we will concentrate on the luminosity measurements. We calculate in the
following the angular diameter observed at the origin at ¢ = ¢y of a light
source of of true proper diameter D at r = ry and ¢ = ¢;. We choose the

- D -

r=rq

r=0

Figure 2.6: Angular diameter distance.
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coordinate system like in Fig. 2.6. The light travels then on a cone with
a half angle 6§ = §/2. The proper diameter of the source is then given by
Eqn. 2.10

D= a(tl)rlé for § < 1,

so we obtain for the angular diameter of the source

In Euclidean geometry the angular diameter of a source of diameter D at a
distance d is 6 = D/d, so we define in general the angular diameter distance

D
dy = — (2.31)
1)
and hence we can write
1
da = alt = .
A = a(ty)r T3

Since we are studying the propagation of light r; is given by Eqns. 2.27-2.28
and we obtain

to dt z dZ 1 X
= IR — ) L 1/2
/t1 a(t) 0 H(Z) ‘K|1/25k (| ‘ 7“1),

where the first equation was obtained by substituting the time integration
with a redshift integration and using

at a2

dz a H
o

and we finally obtain with \K|1/2 = Ho+\/S o

da(z)

(2.32)

1
~ V% Ho(1 +Z)Sk<

From Eqn. 2.16 we see that the angular diameter distance depends via the
Hubble parameter on the cosmological parameters like Hy, 25 o and 2y, 9. If
on could observe the angular diameter distance really accurately one could
measure these parameters and also the curvature or general geometry of

18



the universe. An excellent probe in this way in the anisotropies in cosmic
microwave background radiation. Omne can calculate a typical size of an
overdense region at the time the microwave photons start to stream free
and we also know the the distance to this last scattering surface. We can
compare this with the observed angular size (in form of the anisotropy power
spectra) and hence obtain a very accurate measurement of the curvature of
the universe.

angular size of typica
CMB patch

Angular Scale
2 0.2°

T Cross Power
Spectrum

1{1+1)Cyin (uK?)

1E Cross Power
Spectrum

(1)Ch/2x (K2

40 100 2 40 800 1400
Multipole moment (2)

Figure 2.7: Angular anisotropy power spectrum of the cosmic microwave
background as observed by the WMAP team (2003).

2.2.3 Luminosity Distance and Deceleration Parameter

As mentioned before another way to measure distance is via comparing the
known absolute luminosity of an object with the the observed apparent
luminosity. For a telescope mirror with radius b as shown in Fig. 2.8 the
solid angle is given by

B b2

a®(to)r?
and the fraction of isotropically emitted photons that reach telescope is given
by ratio of solid angle A to total solid angle 47

80
4 Ama®(to)r?

19



telescope mirror

Figure 2.8: The luminosity distance.

If the source has an absolute (or bolometric®) luminosity £, which is the
total power emitted by the source (in a specified band), the question is
what is the received power 7 Let us look at a single photon. Photons
which are emitted with energy hvy are redshifted to hvya(ty)/a(to) = hvyp.
Furthermore photons emitted at intervals §t; are received at intervals §ty =
dtra(to)/a(ty). So for a single photon we get

hvy

emitted power : P, = 5t

hg

received power : P = S

huy a2 (t1)
31 a2(0)

hence for the total received power P, we get
2(t A
poc (vl -
a’(to) ) 4ma(to)r?

3The term bolometric is usually applied when the luminosity is calculated over an
entire bandwidth Av.

20



where we have used A = wb? for the total mirror area. Now the total
apparent luminosity or bolometric flux density is given by

B o EaQ(tl)

F —
A 471'7"% ’

(2.33)

where we applied a(tp) = 1. In Euclidean space the flux density is given by
F = L/(4wd?) and this is now generalized to define the luminosity distance

L

= . (2.34)
4ﬂd%

Therefore we obtain

dL:%:(1+z)r1:(1+z)2dA,

so we finally obtain

142 ? dz
di(z) = msk <H0\/ \Qk|/0 %> - (235)

It is interesting to note that for low redshifts z < 1 and small r; we have
dg~dy, ~dp>~mr

and the distinction becomes important only for objects billions of light years
away. Therefore we draw our attention to the redshift dependence of the
scale factor at late times (or small redshifts). We can Taylor expand the
scale factor around ¢ = ty and obtain

a(t) = alto) |1 + Ho (t — to) — %qug(to 24| (2.36)

where we used the definition of the Hubble constant Hy = a(ty)/a(ty) and
we defined the deceleration parameter

a(to)
a(to)Hg

G =— (2.37)

21



As the name already suggests the deceleration parameter quantifies if the
expansion of the universe is accelerating (go < 0) or decelerating (go > 0).
It is quite convenient to express the cosmological models from Section 2.1.5
in terms of gy and Hy but we leave this as an .

If we use this expansion in Eqn. 2.27 for the propagation of light we
obtain on for left hand side

/:%Zﬁ/: [1+Ho(to—t)—i—<1+q2—0)H§(to—t)2+---

and for the right hand side

” dr 1 K[/ 1 x 3
/0 A= K27 ~ \K|1/2/0 (1—1—514:7" )dr =71+ O(17)

and we obtain

1 1
71 —[to—t1+—H0(t0—t1)2+---:|.

~ alto) 2

Furthermore we obtain for the redshift
1
z = E_leO(tO_tl)"’_ (1+%> Hg(to—tl)Z‘i‘"'
and hence
1 1 (1+qo) 2% +
r=——>_\|z—-= z -
LT alto) Hy g\ T

Finally we can write the expansion of the luminosity distance for low red-
shifts

d, = Hy'! [z+%(1—q0)22+~-} . (2.38)
This expansion will play a vital réle for the calibration of the magnitude -
redshift relation for Supernovae as we will discuss it in Section 2.3.
2.2.4 Volumes
In general the volume element for a 3-space with metric hgy, is given by
dV = Vh dz1dzodas

where h = det hgy, is the determinant of the metric*. In case of the spatial
part of the Robertson-Walker metric from Eqn. 2.10 we obtain for the proper
volume element at the coordinates (t1,r1,601, ¢1)

AV, = a3(t1)(1 — Kr?)"V22sin 6y dpydfydr

4Note that actually the determinant is quite often referred to as the volume form.
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where 1, = r(t1) with

IR
1—K7“2’

and hence
12 dty

dri = — (1 - Kr3) i)

Therefore

d‘/p = 47Ta2(t1)?“2(t1)‘dt1| .
here dt can be rewritten first in terms of a(t) with dt = da/(Ha) and then
with redshift to dt = —adz/H and we obtain,

2

d‘/p = 47Ta3(t1)%d2

and the comoving volume element per solid angle

v r?
dzdQ  H’

(2.39)

where 7(t) can be obtained from Eqn. 2.28.
If we want the overall comoving volume at (¢;,71) we have to integrate

dVv,

—L =dV = (1 - Kr)"*?sin0 dpddr,

a

where the division by a3 on the left hand side has been performed in order
to obtain the comoving volume element. We can then integrate the right
hand side easily over the angles. For the r; integration we first substitute

again rf = |K|"/?r and K = k|K| and obtain
47 T2y
K32 ), 1—kr 2
For flat space with K = 0 we obtain trivially

V=

4
V:?ﬂr:f.

For K > 0 we substitute r* = sinu and obtain

2
V= —|K\7;/2 [sin1 ry —riy/1— TTQ] .

For K < 0 we substitute ] = sinhu and get

2

= —\K|3/2 [— sinh ™! ¥ + iy /1 + TTQ] .
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2.3 Distance vs. Redshift with Type Ia Super-
novae

We will now study an application of what we have learned so far. The
analysis of the distance - redshift relation with Type Ia Supernovae and the
what we can learn about the cosmological parameters Hy, 250, (o and
Q0

However in order to do this we need to introduce the notion of magni-
tudes.

2.3.1 Cosmological Magnitudes

When we discussed the luminosity distance in Section 2.2.3 we introduced
the notion of of bolometric flux, which is related to the bolometric brightness.
The brightness in general is the intensity of a radiating source, ie. the energy
flux per solid angle and per unit frequency. The bolometric brightness again
is integrated over a frequency wave band. Now the definition of magnitudes
is an ancient concept. Hipparchus (150 BC) divided stars into six classes
of brightness he called magnitudes. The brightest stars were called first
magnitude and the faintest sixth. With quantitative measurements it was
found that each jump in magnitude corresponded to a fixed ratio in flux,
hence the magnitude scale is logarithmic. This is not too surprising since
the eye has an approximately logarithmic response to light, which enables
a large dynamic range. It was found that a difference of five magnitudes
corresponds to a factor 100 in brightness and we have

E — 100M-m)/5 _ q(m2—m1)/2.5

B
Instead of using the brightness ratio we could have also used the ratio of the
received flux. We can now build up the magnitude ladder with a standard
candle. A standard candle is an object which has always the same emitted
luminosity £. We obtain then with Eqn. 2.33

di dro

M —m = 2.5log —— = 5log ——,
where M is the intrinsic magnitude of the standard candle at some close by
distance dr, . In astronomical situations this distance is usually chosen to
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10 pc®. So usually one obtains
m = M + 5logdy, .

where dy, is given in units of 10 pc. However in cosmological situation this
is a rather small distance and a more natural unit is 1 Mpc. If we measure
the distance in this unit the apparent magnitude is given by

m = M + 5logdy, +25. (2.40)

If we use the approximation for z <« 1 for the luminosity distance in
Eqn. 2.38 we obtain

m = M — 5log Hy +5logcz + -+ +25. (2.41)

Note that we explicitly write the speed of light ¢ in this equation. This
approximation only depends on the Hubble constant Hy but not on other
cosmological parameters. So nearby objects can be used to calibrate for the
intrinsic magnitude M.

2.3.2 Type Ia Supernovae as Standardizable Candles — Phillips
Relation

In order to study the magnitude-redshift relation to very large distances,
one needs a very bright standard candle. Type Ia Supernovae explosions are
a good candidate for such a standard candle. Since Supernovae are almost
as bright as their host galaxies they can be observed to large distances. An
example how bright these objects are can be seen in Fig. 2.9. Observationally
Type I Supernovae are distinct from Type II that they have no hydrogen
lines in their maximum light spectrum. Additionally Type Ia show a strong
Si absorption feature at 6150A.

Type Ia Supernovae are probably the product of mass being accreted to
a white dwarf in a close binary system. A white dwarf is a an approximately
earth size star which is only supported by its electron degeneracy pressure
(Pauli principle). Chandrasekhar showed that there is an upper mass limit
which can be supported by electron degenarcy pressure which is called the
Chandrasekhar mass which is

Mcy, = 1.44M,, .

5The unit 1 pc is defined to be the distance of an object which produces one arcsec of
a parallax angle for one astronomical unit (AU), which is the distance from the sun to the
earth. 1 pc = 3.09 x 10'% m.
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Figure 2.9: Type Ia Supernovae 1998aq in NGC3982 (picture taken by
H. Dahle). This is a spiral galaxy in Ursa Major of visual brightness
11.8 mag. The Supernovae itself was estimated to reach 11.4 mag. The
galaxy is at a distance of ~ 20.5 Mpc (Stetson & Gibson 2001).

Sometimes there is too much mass accreted onto the white dwarf and its
starts to exceed the Chandrasekhar mass limit. In this case the degener-
ate electron pressure can no longer support the star and it collapses. The
collapse energy drives nuclear reaction which build up *°Ni which 3-decays
into Co which in turn S-decays into *°Fe.

These thermonuclear explosions lead to typical typical brightening and
fading of the Supernovae, which in case of the Type la is governed by a
two exponential whose timescale is governed by the two -decays. Note the
the 3-decay of °°Ni has a halftime of 7y; = 17.6 days. In Fig. 2.11 we see
a typical SNe observation, where the discovery was made from the ground
and the follow up with the Hubble Space Telescope. The brightening and
fading gives rise to a typical lightcurve for Type la Supernovae as shown
in Fig. 2.12. One problem with Type Ia SNe is however that, although
they have a narrow range of absolute peak magnitudes M, there is a slight
variation.

However Phillips (1993) discovered that there is a tight relation between
the peak magnitude and the decay time. This relation is not well understood
yet from a theoretical point of view but basically the time scale and the
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Figure 2.10: Model of close binary system which might be the progenitor to
a Type Ia Supernovae explosion [Picture take from Paul Rickers web page].

Figure 2.11: The brightening and fading of SNe 1998ay.
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Figure 2.12: Various lightcurves of Type Ia SNe as discussed by Perlmutter
et al. (1997).

overall energy of the Supernovae explosion depend both on the amount of
Ni which is present in the progenitor. With the Phillips relation it is possible
to normalize the peak flux and also “stretch” the time axis so that all Type Ia
SNe fit a universal lightcurve. Hence if we know the “intrinsic” , normalized
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magnitude of a Type Ia Supernovae and its decay time (sometimes measured
as the magnitude after 15 days) we can work out the intrinsic magnitude of
this particular SNe. With spectral information of the host galaxy we can
work out the redshift of the SNe and hence draw an apparent magnitude -
redshift diagram.

If we have a sample of low redshift Type la SNe we can use Eqn. 2.41,
measure the apparent magnitude and redshift and hence work out

M=m—logez=M — 5log Hy + 25, (2.42)

which is a measure of the absolute magnitude. If we know this for all SNe
we can write
m = M+ 5log Dy, (2.43)

with Dy, = Hody, the Hubble constant free luminosity distance. In Fig. 2.13
we show the measured magnitude redshift relation and some theoretical
predications. We see that a flat matter dominated universe (short dashed
line) is systematically under-predicting the magnitudes and hence is not a
good fit. However the presence of a cosmological constant improves the fit
considerably.

2.3.3 Parameter Estimation

In order to quantify which cosmological model fits the data the best we
have to address a parameter estimation problem. The topics discussed in
this Section apply in general for the estimation of parameters and are hence
a valuable tool for every physicist who has to deal with data.

Let us assume that we have a sample of Type Ia SNe with a given mag-
nitude m; and uncertainty in the magnitude o, ;, which is typically of the
order o, = 0.15 mag. Furthermore we know the redshift z; of the Su-
pernovae. In general this redshift has an errorbar as well, but it can be
neglected in comparison to the magnitude uncertainty. We can than com-
pare the measurement with the theoretical prediction of Eqn. 2.43 for each
set of parameters (2, 0, 24,0, M). There are two ways to tackle the absolute
magnitude M. We could first just look at the low redshift SNe sample from
Calan/Tololo and use Eqn. 2.42 to measure the absolute magnitude. Note
that this equation does not depend on the cosmological parameters. Sec-
ondly we could view M as a free parameter like the cosmological parameters
(2m,0,Q4,0) and try to find the best fit value for it.

We will follow the second approach here. In order to get a compact
notation we define the parameter vector

0 = (Qm,0, 20,0, M) .
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Figure 2.13: Magnitude - Redshift diagram from Knop et al. (2003). The
data points are from the Supernovae Cosmology project at high redshifts
and from the Calan/Tolo survey at low redshifts. The lower panel shows
the relative magnitudes to an empty (Milne) universe with Qo = 1 and

Qa0 = Qmo = 0.
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If we assume that the errors in the magnitude follow a Gaussian distri-
bution we can obtain the best fit parameters by maximising the posterior
probability (likelihood)

with

= Z <m(zi;9) —mi>2 7
: Om,i

where N is the number of data points. One can then numerically minimize
Eqn. 2.3.3 and obtain the best fit values 6. As a matter of fact by calcu-
lating L(#) over the entire sensible parameter range we obtain the posterior
distribution®.

Since from a cosmological point of view we are not interested in the abso-
lute magnitude M we can marginalize over it and obtain the 2-dimensional
probability distribution

E(Qmos Qno) = / M L( @m0, .00 M)

Fig. 2.14 shows the joint joint likelihood contour where different contours
correspond to different likelihood levels. The best fit value is roughly at
Qmo = 0.3 and Q4 o = 0.7, but from a statistical point of view models with in
the 68% (1—o) or even the 95% (2—o0) contour are still viable. However even
on the 99% level the cosmological constant is positive and non-vanishing.
In 1997 Supernovae Cosmology Project and the High-z Supernovae Search
team (Perlmutter et al. and Riess et al.) reported similar results, which led
to a renewed interest into the cosmological constant. Historically Einstein
introduced the cosmological constant in order to balance the gravitational
effects of matter and obtain a static universe. After Hubble’s discovery that
the universe is expanding Einstein abandoned the idea of a static universe
and the cosmological constant.

SNote that a very efficient way of sampling posterior probabilities is the so called
Markov Chain Monte Carlo (MCMC) method. This method randomly selects a parameter
set and calculates the likelihood for it. The next parameter set is chosen randomly again.
Now this new parameter set is only selected if it fulfils a certain probability criteria,
otherwise the previous parameter set is counted twice. This method is iterated and one
can show that for a sufficient amount of samples one obtains a good “picture” of the true
likelihood. This has advantages over sampling the likelihood just over a gridded parameter
space.
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Figure 2.14: Joint likelihood contours in the Q, o — 24 ¢ plane. The plot is
from the Knop et al. (2003) analysis.
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Chapter 3

Dark Energy

In order to explain the Type Ia Supernovae data discussed in the previous
section 2.3 it is necessary that the expansion of the universe is accelerating.
Hence the deceleration parameter gy has to be negative.

3.1 (Generalized Equation of State

As it is obvious from the discussion in beginning of Section 2.1.5 the cosmo-
logical constant can be viewed as another fluid component in the universe,
like matter or radiation. If we write the 2nd Friedman equation 2.12 in
terms of pp and require that it takes the generic form

7} 4G
—==) —(pi+3pi),
- Zi:g(erp)

where the summation runs over all fluid components we obtain for consis-
tency reasons

PA = —PA,

which means the pressure in a cosmological constant fluid is negative. If we
use the conservation of energy for this fluid we obtain from Eqn. 2.13

. a
pA = =3 (pa +pA) 0,

a =
and hence as we see already from the definition of py in Eqn.2.15 that
pa = const.. As a matter of fact we could have started with this and than
showed with Eqn. 2.13 that the pressure has to be the negative of the energy
density.
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Now in general the behaviour of simple fluids (or gases) is governed by
their equation of state

p=wp, (3.1)

with w the constant equation of state factor. Note that “ordinary” cold
dark matter has an equation of state factor w = 0, since it is pressureless.
Relativistic matter like radiation has a pressure p = p/3 and hence w = 1/3.
While as argued before a cosmological constant has an equation of state of
w = —1.

Let us now explore the question what type of fluid to get accelerated ex-
pansion of the universe if we drop the cosmological constant. From Eqn. 2.13
we obtain for a fluid with an equation of state factor w

pde(a) = pde,Oa_g(H—w)’ (3'2)

with ag = 1 where we introduced the label “de” for dark energy. The
phrase “dark energy” was coined to describe a component which does not
gravitationally clump and has no large interactions with ordinary and cold
dark matter. As before we can define the densities in units of the critical
density perit and obtain the quantities Qg and 4e 0.
If we assume we have a flat (K = 0) universe which has only the dark
energy component it is straight forward to show
.
o= [

where this solution is only valid for w # —1'. From the 2nd Friedmann
equation 2.12 we obtain in this case

do Qae,0Hj

—=—"—(14+3w),

o 5 (1+3w)
where €400 = 1 because we assumed K = 0. Therefore we obtain for the
deceleration parameter from Eqn. 2.37

do o 1+3w
apHZ 2

qo =

!Note however that fluids with w < —1 are very unphysical since they lead to negative
energy densities which are unstable.
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and from the condition gy < 0 for acceleration we obtain w < —1/3. If we
include a matter component this condition generalises in a flat universe to
w < —1/(30e,0) [Exercise 1]

We can now as described in Section 2.3.3 estimate the best fit values
on w, Oy and 25 9. However for this analysis it is usually assumed the
universe is flat and Qp0 = 1 — Qp, is not a free parameter. In Fig. 3.1
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Q
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0.0
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L
g
0 5 04k I
w— QO
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g 3 0 R\
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w=-1
Qu =1-0Q,

Figure 3.1: Joint likelihood contours in the ,, o —w plane. The plot is from
the Perlmutter et al. (1998) analysis for the Supernovae Cosmology Project.

we show the result of the parameter estimation procedure as performed by
the SCP collaboration (1998). Again we recognize a non-vanishing Qqe o =
1 — Q0 component and a w < —1/3 on the 99% level, which is a clear
indication that the expansion of the universe is accelerating.
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3.2 Scalar Fields and Fine Tuning

In the last Section we have shown that an equation of state for the dark
energy component with w < —1/3 is sufficient to explain accelerated expan-
sion. For a cosmological constant with w = —1 the energy density remains
constant over the entire evolution of the universe. One way to interpret the
cosmological constant is that it corresponds to an energy of the vacuum.
This is can be seen directly from the Einstein equation 2.6, since the pres-
ence of A leads to a curvature of the universe without the presence of any
other energy component. The energy density in the cosmological constant
with current measurements is

Qp =0.7— pp ~ 107 GeV ~ 102! M},

where the Planck units are the characteristic scale for the initial conditions
of the universe, when the system becomes governed by a still absent theory
of quantum gravity?. The Planck mass is defined, where the de Broglie
wavelength of a particle becomes equal to its Schwarzschild radius

2rh  2G'mp

mpic c?

Note that in the notes here it is more convenient to talk in terms of the
reduced Planck mass

he
Mp =/ — ~ 2 x 10%® .
Pl 87TG X O GeV 5 (3 3)

and hence the initial conditions for the cosmological constant need to be
fined tuned to a quite unnatural number, which is about 120 (!) orders of
magnitude lower than the natural expected value. This is one of the biggest
embarrassments of modern cosmology.

Now as mentioned above the cosmological constant can be viewed as
the vacuum energy present in the universe. If we believe in supersymmetric
fundamental theories there is no vacuum energy, which is one of it strength.
This is because each fundamental particle has a fermionic or bosonic partner
which cancels the vacuum energy exactly to zero. However we know that
supersymmetry must be broken at some stage in the universe, because we
do not observe it at low energies today. Models for supersymmetry breaking

2 Although string theory looks as a very promising candidate.
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roughly predict a scale of 1 TeV which is still too large to explain the
observed values.

Still looking for a field which has a vacuum energy of the cosmological
constant might still bring valuable insights. The simplest field we can thin
about is a scalar field with the Lagrangian

1
L = 50,00"6 =V (9),

which has the usual form of kinetic minus potential energy, with the action
A= /d4a: v—gL.

Note the /—g factor is the Jacobian due to the integration over the 4-
dimensional space-time volume in the action. Now in order to look at the
cosmological consequences we need the energy-momentum tensor for a the
scalar field. It can be obtained by applying Noether’s theorem?®. The con-
served quantity corresponding to infinitesimal changes in time and space
parameters is

_ ot o,
T a@rg) oo
If we assume we have a homogeneous scalar field, which we have to have from

a cosmological point of view in order to fulfill the cosmological principle, we
can show that in Minkowski space (g,,, = 7,,,) we have for the energy density

1.
Too = pg = §</52 +V(¢) (3.4)
and for the momentum density (pressure)
1.
Ty =ps = 58 ~V(6). (35)

From this we see that the equation of state is given by

302 = V(9)

567+ V(9)

If the kinetic part is much smaller than the potential energy (¢2/2 < V(¢))
the equation of state factor w — —1 if V 2 0. This again stating that a

3Noether’s theorem is powerful tool which states that each symmetry of the Lagrangian
has a corresponding conserved quantity. Symmetry in time results in energy conservation
and the homogeneity in space in momentum conservation.
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cosmological constant corresponds to a constant vacuum energy. Hence in
order to obtain accelerated expansion we need a scalar field whose kinetic
energy is negligible compared to the potential*. In Fig. 3.2 we see two

1 3
0.8 -
= 52
~. 06 1~ [
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=] =)
= -
X X
§0.4— - §
> > 1
0.2 —
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Figure 3.2: Typical potential for scalar field dark energy models
(Quintessence). On the left a “slow roll” configuration and on the right
a “false vacuum” configuration.

typical potentials for dark energy configurations. On the left is a “slow
roll” configuration where the scalar field is still dynamically evolving, but
its kinetic energy is negligible compared to the potential. On the right
is a configuration where the scalar field is actually frozen in, in a “false
vacuum” state (false vacuum, because the “true ¢ vacuum represents the
lowest energy state). In general dark energy models with (canonical) scalar
field are called Quintessence to describe the fifth element character (besides,
gravitational, electro-magnetic, weak and strong interactions). Besides of
describing a dynamical approach there is hope that these fields can be linked
with fundamental theories, like string theory.

3.2.1 The Exponential Potential

One of the earliest studies of scalar fields and their influence on the evolution
on the late universe, was done in 1988 for an exponential potential (Ratra &
Peebles; Wetterich). In general we obtain from the conservation of energy

4This is the same requirement as for so called inflationary models, which describe a
phase of exponential expansion in the early universe. As a matter of fact the dark energy
scalar field dark energy models we are going to discuss represent some sort of late time
inflation.
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in Eqn. 2.13 ) .
d+3Hp+V' =0, (3.6)

with the prime denoting the derivative with respect to the field and

1

H? =
3M3,

<%q52 +V(9) + pn> 7 (3.7)

Let us start with the simple example where there is no other component.
We then would like to answer the question if there are any potentials which
would lead to an equation of state py = wpy with w constant. By subtracting
and adding Eqns. 3.4 and 3.5 we obtain

1—w
V=——
5 P

and .
¢* = (1 +w)py.

If we then use again Eqn. 3.4 we get

¢-)2:2(1+w)v

1—w
and from the time derivative of this equation we obtain

v 14w

IR v
¢_1—wv’

where we have used V = V' gf) From Eqn. 3.7 with p, = 0 we obtain then

s 2V 1
C3ME1-—w’
Combining this into the equation of motion, Eqn. 3.6 for the scalar field ¢

we obtain finally

v
2V/+M—Pl 12(1+w) =0,

which is a simple 1st order differential equation we can solve with the ansatz

V(@) = Voe /M1, (3.8)

We then obtain

A=+V3(1+w),
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and if we require —1 < w < 1 we get A < /6. With this we can easily obtain
the solution for a generic exponential potential V' = Vj exp[—A¢/Mpj]

Mp

2
o(t) = do+ In(tMp),
2
wo = % -1,
ps o a N,
a o« ¥V (3.9

Note that the second last relation is a trivial consequence of pg o q—30+w)
for constant w. These are attractor solutions, where small perturbations
around it decay like ¢~ and ¢1~6/ A To show this is an in the
stability of nonlinear differential equations which is beyond the scope of this
lecture. For A\ > /6 there is not a single attractor and Py X a~%, with
w — 1, which corresponds to kinetic domination of the energy density.

We will now consider the behaviour when a second component with

pn+nHp, =0,

is present, with n = 3 (w = 0) for matter and n = 4 (w = 1/3) for radiation
with p, < a™". There are now two different cases: Those potentials in which
the scalar energy density scales slower than ¢~ (A < /n) and those where
the scalar energy density scales faster (A > y/n). Adding an extra component
increases the damping term in Eqn. 3.6 and it follows that the scaling in
pp < 1 /a* =9 is always slower (than without an extra component p,) with
A2 > 6§ > 0. For A < y/n the dark energy component scales slower than
the other component and will eventually become dominant and reaches the
attractor solution in Eqns. 3.9. For A > /n there is a different behaviour. If
the field would scale like in the p, = 0 case it would be arbitrarily damped
(by the present p, component and hence its kinetic energy will be so far
reduced that it reaches the w — —1 branch and begins to catch up again
and the final behaviour is that the field mimics the dominant component
with the attractor

Qde = Pe :ﬁy
P¢ + pn A2
1
Py X a_nv
w = %—1. (3.10)
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Figure 3.3: Attractor behaviour for exponential dark energy (Ferreira &
Joyce 1998). In the left panel we plot the evolution of the energy density in
the scalar field (py) and in a component of radiation-matter as a function
of scale factor for a situation in which the scalar field (with A = 4) initially
dominates, then undergoes a transient and finally locks on to the scaling
solution. In the right panel we plot the evolution of the fractional density
in the scalar field.

In Fig. 3.3 we show the behaviour for A = 4 how the attractor works.
Initially the scalar field is domination over radiation and matter and is ki-
netically dominant and scales like 1/a%, until the energy density in radiation
is undershot. Then it turns around scaling much slower than radiation or
matter until it has caught up and settles down to the fraction given in
Eqns. 3.10.

The big advantage of this attractor solutions is that they can start of
on an energy scale at early times which is of the order of the Planck scale
Poi = O(Mf%l) and still reaches the attractor. However the attractor given
here with Q4. = n/A\? can not explain a universe where the dark energy
component dominates. But this is exactly what is required in a flat universe
with Qd&() = 0.7 and Qm70 =0.3.
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3.3 Tracker Solution

We have seen in the previous Section that although while a exponential po-
tential provides an elegant way to avoid the fine tuning of initial conditions,
it unfortunately does not explain why the matter and dark energy density
today roughly coincide. One would want that the energy density in the dark
energy component somehow tracks below the the other components for most
of the evolution of the universe and then suddenly dominates and leads to
an accelerated expansion.

The difference of the tracker solutions to the previously discussed expo-
nential potential is that its energy density is changing steadily with ¢ and
evtl. manages to overtake the background fields. So we can write down the
following two conditions:

(a) As for the self-adjusting exponential potential a wide range of initial
conditions should be drawn towards a common cosmic history; but

(b) these tracking solutions should not “self-adjust to th background
equation of state, but, instead, maintain some finite difference in the
equation-of-state such that the dark energy ultimately dominates and
the universe enters a period of acceleration.

Two potentials which fulfill this are
V(g) = Mg

and
V(@) = MicMnie,

where M is a free parameter which needs to be adjusted in order to obtain
Qa0 = 0.7 today. The tracker solutions fulfils

V" =(9/2) (1 —w?) [(a+1)/a] H? (3.11)

at all times. Sine pg should begin to dominate today we need ¢ to be
O(Mpy) since V" = py/¢? and H? ~ p,/M3,. In order to obtain Q49 = 0.7
or pgo ~ 10747 GeV we obtain with V(¢) ~ p, imposes the constraint
M =~ (p¢7OM§‘1)1/(O‘+4). For low values of a the mass M has to be as small
as 1 meV. However M > 1 GeV - comparable to particle physics scales -
is possible for a > 2. In Fig. 3.4 we show the evolution of the dark energy
density and the equation of state for the exponential tracker. If initially py is
smaller than the tracker solution the field remains frozen until H? decreases
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Figure 3.4: Left: Evolution of energy densities for exponential tracker.
Right: The evolution of the equation of state [Zlatev et al. 1998].

that the tracker equation 3.11 is fulfilled. Then the field rolls down the
potential maintaining Eqn. 3.11. If the energy density py is larger than the
tracker solution, the field starts rolling down the potential immediately and
very fast, so that the kinetic energy dominates and shifts as a=% (w = 1)
until ¢ falls below the tracker and is frozen until it follows it. The equation
of state initially is minutely smaller than radiation (w = 1/3) and then drops
at matter radiation equality below zero and approaches w — —1 when the
dark energy becomes to dominate.

To conclude our discussion about dark energy we mention that there is
now a plethora of valid dark energy models and we show in Fig. 3.5 the
low redshift evolution of the dark energy equation for a sample of models.
One of the biggest challenges in modern cosmology is to test which of these
models fits the data best and to find out more about the nature of dark
energy.
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Chapter 4

Large Scale Structure

So far we have only studied the large scale evolution of the universe governed
by the cosmological principle. However we know that the matter in the
universe is not distributed entirely homogeneous. An excellent example for
this is the recently completed two degree field galaxy redshift survey (2dF)
built by the Anglo-Australian observatory, which measure the redshifts of
more than 220.000 galaxies

2dF Galaxy Redshift Survey °

<
)

12

Figure 4.1: Distribution of galaxies as observed by 2dF (2003).

In order to tackle the problem of the distribution of matter in the uni-
verse we will first attempt to predict the behaviour of small perturbations
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to the smooth background.

4.1 Linear Perturbation Theory

In this Section we will discuss small perturbation to the background fluid.
In order to get a better understanding of the effects we will first consider a
Newtonian fluid before we move on to a full relativistic description.

4.1.1 Non-expanding Newtonian Fluid

As stated in Section 2.1.4 the evolution of a fluid is governed by the Eulerian
equations for a perfect fluid

0
L1V (pu) =0,

ot
ou 1
) Z d —
8t+(u V)u+pr+V 0,

V20 = 47Gp, (4.1)

where ® is the gravitational potential and the last equation is the Poisson
equation. The trivial solution for this system is ug = 0, pp = const. and we
choose the potential zero point that the gravitational force vanishes V&g =
0. If we consider perturbations around this static solution

p = potdp
p = pot+dp
u = ug-+du
O = By+06D. (4.2)

The pressure and density are related by the equation of state p = wp. We
assume for the moment that there is no spatial variation in the equation of
state and define the adiabatic' sound speed

8p>

2 __

ci==— (4.3)
B <ap adiabatic

and since there are no spatial variations

op
2 _
c, = _5p.

!Note that in general the sound speed of a fluid is c2 = dp/dp.
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We then obtain from the Euler equations 4.1

9 (9p) _
5 + poV - (du) =0,

0(6 2
(0u) —i—;—sV(ép)—l—V((S(I)):O,
0

ot

V2 (6®) = 47 (5p) , (4.4)
which can be combined to a single 2nd order differential equation for (dp)
(6p) = €2V (8p) = 4nGpo (3p) -

This is a wave equation with the solution

Ip(x,t) = pod(x,t) = Apg exp [—tk - x + iwt] , (4.5)
with 5
S(x, 1) = 2251 (4.6)
Po

and w and k satisfy the dispersion relation
w? = 2k* — 4nGpy,

with & = |k|. If w is imaginary, there will be exponentially growing (and
decaying) modes, while if w is real the perturbations will oscillate as sound
waves. w is imaginary if k£ is smaller than some critical value

1/2
ky = <47TG”0> : (4.7)

which is called the Jeans wavenumber. For k? < k?,, 0p grows (or decays)
exponentially on the dynamical timescale

Tdyn = (Im u))*l/2 o~ (477Gp0)71/2 .

It is convenient to define the Jeans mass, the total mass contained within a
sphere of radius Ay = w/k;

5/2 3
/ e

6 G3/2p(1]/2

_
3

™

My (/k.)? po =
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Perturbations of mass less than M ; are stable against gravitational collapse,
while those of mass greater than M collapse. The timescale of the gravita-
tional collapse is given by the dynamical timescale 74y, while the timescale
for the response of the pressure is governed by the size of the perturbation
A divided by the sound speed Tpressure ~ A/Cs. If Tpressure > Tdyn there is not
enough time for the pressure to oppose the gravitational collapse and the
perturbation collapses.

4.1.2 Expanding Newtonian Fluid

Our next step in describing small density perturbations in the Universe is
by including the expansion. In this case the unperturbed matter solution is
given by

o= pmoa (1), wp=Tx, Ve = T

a 3

where a(t) is the scale factor as usual. Note that this perturbation analysis
here is still not in a general relativistic context and is only valid for pertur-
bations on scales smaller than the size of the universe |x| < H~!. The first
order perturbation equations are then

M+3§(5p>+§<x~w<ép>+pov<5u)=0v

X,

ot
5 . . 2
O0w) L & 50y + & (x.9) (5u) + 2V (6p) + V (60) = 0,
ot a a 00
V2 (6®) = 47G (6p) . (4.8)
If we introduce the Fourier transform
1 —ik - x
04 =——— | U — | &

and perform this for the quantities ¥ = §, du, §® with 6 = dp/py we obtain

) ik
5k—2—-5uk:0,
a

d(ad
% — ikc25), — koD, = 0,
47TGp0
5@k = — 2 a25k . (4.9)

It is useful to decompose the perturbed velocity field in rotational (u, ) and
irrotational modes (u))

5u:ul+u||, 5uk:uL(k)+uH(k),
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with

V-ul:O, qu”:O,
k-u, (k) =0, k-uy (k) = [kl (k) |, (4.10)
and hence the first order equations become
d k
7[auL( ) =0 = u, xa (t),
dt
a . const
k)= -0+ ——
wy (k) = 700+ =5y
o Q. c2k?
51@""2551@"" ( ;2 —47TGp0> 0 =0. (4.11)

We notice that the rotational modes are not coupled to the density pertur-
bations and decay as a~!. From here on we will hence only be interested in
irrotational modes and drop the index ||. Also we will always work in Fourier
space and drop the index k. Note that from the equation for § we recover
the previous result if we neglect the expansion (@ = 0) and identify |k|/a
with the physical wavenumber and hence k is the comoving wavenumber.
Similar to the previous section the Jeans wavenumber
k:% _ 4G poa’
e
separates gravitationally stable and unstable modes. For short-wavelength
modes, k > kj the perturbations oscillate as a sound wave with approxi-
mately
csk
a(l—mn)’
where we assume a ~ t". In general the exact solution is given by a Bessel
function and the amplitude of the soundwave slowly decreases because of the
expansion of the Universe. For k < k; there are unstable growing modes.
If we assume that the Universe is flat (K = 0) , matter dominated with
a/a = (2/3)t7! and py = (67Gt?)~! we obtain
4 2

R S
+3t 3t2 0,

where we exploited that the pressure gradient is negligible in this limit
(2k? Ja® < 4nGpo). This equation has two independent solutions, a grow-
ing mode, d4 and a decaying mode §_ with time dependence given by

54 (8) = b (1) (3)2/3
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and

where t; is a convenient time chosen for the normalization of the modes.
Here we see the effect of the expansion of the universe. The expansion of
the Universe slows the otherwise exponential growth of the perturbation and
results in a power-law growth for the unstable modes. We note that for the
long term evolution only the growing mode is relevant, which will begin to
dominate any general solution.

In general the Universe consists of multiple components. This will influ-
ence the evolution of the perturbations in the non-relativistic component i
by

2 7.2

.. a - c; ik
0 +2-0i+ | =5 5i—47ertotzj:ej5j =0, (4.12)

with €; = p;/ptot the fraction of mass in species j.

Let us consider a two component fluid consisting of baryons and photons
in the radiation dominated era. In this case a/a = 1/2t. If we look at the
unstable modes (k < k) assume that the photons are smooth (d, = 0) and
€, < 1, we obtain

1.
op + ;55 =0.
The solution in this case is

Op(t) = 0p(t:) [1 + Aln(t/t;)]

and only a perturbation with initial d,(¢;) can grow and if so very slow.
Next consider a perturbation during a curvature dominated epoch. When
the Universe is curvature dominated 47wGpyor = %ptot(t) /perit(t) < t72 and
we obtain 5 5 )
S : Ptot
0+ =0 + —
t 2t2 perit (1)

. 9.
Op == Op + 2(5 =0.
In this case the solution is

S(t)=A+ Bt !

and small perturbations cease to grow and decay. Hence the growth of per-
turbations in a non-relativistic component during the radiation of curvature
dominated epochs is inhibited. The reason for this is simple. In a Uni-
verse which is radiation or curvature dominated the expansion is faster as it
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would be if only matter is present and the growth of perturbations is further
moderated compared to the exponential growth in a non-expanding fluid.

We will now draw our attention to a fluid which consists just out of
baryons and photons. The energy density in photons (radiation)is give by
the Stefan-Boltzmann law with

7T24

p’yzﬁ )

where T is the temperature of the black body. First we consider the Jeans’
mass of the baryons in the radiation era, i.e. before electrons and protons
recombine to neutral hydrogen. In this phase the baryons and photons
are tightly coupled and the pressure provided by the photons leads to the
adiabatic sound speed

and we obtain for the physical Jeans’ wavenumber

LT . 7 S A N
I-phys a(t) c? 5 mpi

which leads to the physical Jeans’ mass in baryons in the pre-recombination
era

4 3

Mp_j = L pp ( il > ~ 5.4 x 10 (Qp oh*) T Mo, .
3 kaphys

Let us assume that the size of the universe (horizon) is dgy = ¢/H ~t. We

obtain then for the baryonic mass inside the horizon

47 3
Mp_1oR = —-ppdy = (

— M _p.
3 W/kaphys):s B

In the radiation dominated era we obtain from the 1st Friedmann equation
t=1 = (320G pyor /3)1/?) and we obtain

T <8>3/2 .
=z mest
k‘prhys 3 °

the baryon Jeans mass can then be written in terms of the baryon mass
within the horizon

MB—J <8>3/2 5
— == mTes)” ~ 26.
Mg_nor 3 (me)
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So during radiation domination the baryonic Jeans mass is larger than the
mass within the horizon and if there are unstable modes they can not be
treated within the Newtonian analysis.

After recombination matter decouples from radiation. The pressure sup-
port is only provided by non-relativistic hydrogen atoms, and the sound

speed is
2918

Cg s

- 3m
where Tg is the temperature of the baryons and m the mass. After decou-
pling from the photons the temperature of the baryons scales as a2 (instead
of a='), and we obtain for the baryon temperature after recombination

Grec 17
Ts = T = .
a Trec

This results in the Jeans mass

3/2
Mp_j ~ 1.3 x 10°(Qp gh?) /2 (ﬁ) 2
with Mg ~ 2 x 103 kg the solar mass. We recognize that now the Jeans’
mass is much smaller than in the radiation dominated era, because of the
enormous decrease in pressure due to the decoupling of photons and baryons.
Hence, before recombination baryons can not form structures and only af-
terwards sub-horizon overdensities begin to grow.

So far we have treated the photon-baryon fluid as perfect fluid. However
during recombination this assumption breaks down. During decoupling the
photon mean free path grows, Ay = (n.or)~!, and the photons can diffuse
out of overdense regions into under-dense regions and hence smoothing the
inhomogeneities of the photon-baryon fluid. An exact treatment requires
the use of the Boltzmann equation and is part of the proper calculation of
cosmic microwave background anisotropies.

4.1.3 Fluctuations in General Relativity

So far our analysis has been Newtonian. For modes well within the horizon
APhys < H —1 this is sufficient. For larger scales the Newtonian expansion
velocity exceeds ¢ and the analysis is not valid.

To obtain a simple geometric picture we analyse perturbations of a flat

(K =0) FRW model
871G
H? = Tpm
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with pg = ptot = perit- If we now consider a model with the same expansion
rate H but a density p1 > po
IrG K
H?>= "), — = ,
3 P1 22
with K > 0. Note that if the Hubble expansion is these models is equal we
obtain )
s=PL=pro _ K/a
Po 8rGpo/3

The evolution of § is hence related to the evolution of the curvature K/a?

(4.13)

relative to the density po. In a matter dominated universe py oc a2 and in
a radiation dominated universe py < a~* and hence
-9 2 .. . .
a a® radiation domination
0 ox — o (4.14)
00 ¢ matter domination

If we use a o t2/3 for a matter dominated universe and a o /2 in a radiation
dominated universe we get

5= 5i{ t/t; radiation domination (4.15)

(t/t;)?/3 matter domination

We will now start our relativistic analysis by introducing the perturbed

FRW metric
Guv = 92u + Py

where h,, is a small perturbation to the metric. We choose the synchronous
gauge hgg = hyg = 0, ie. the perturbations are only in the spatial part,
which is achieved by choosing appropriate equal time slices. This does by
no means exhaust all of the gauge freedom. If we are only interested in
large scales; micro-physical perturbations to the stress energy tensor can be
ignored and the perturbations is simply described by p = po+4dp, p = po+dp
and v = ufj + dut. In this instance we will again assume that the equation
of state is constant everywhere. We than must solve the perturbed Einstein
equation

SR — %5[9;”3] — 87 GOT,

or equivalent
dR,, = 8nG6T,, — 4nGolguwT],

with 7 the trace of the energy-momentum tensor

T =p—3p=(po—3po) + (0p — 30p).
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For solving the perturbed Einstein equations we first have to calculate
the Christoffel connection 6I'4, to first order in hyw. For the unperturbed

FRW metric we have F?j = —(1/2)0g;;0t and hence

1 0h;
o — -4,
oL 2 0t

We further have to calculate 6 R, to first order in h,,, and obtain for example
1. &.
SRoo = =h + i,
2 a

where we defined 5

h
= ph — pk — N kR
he b= =300
k=1
as the trace of the metric perturbation. For the unperturbed FRW met-
ric one obtains Rgp = —3(d/a)goo. If we calculate the energy-momentum

perturbation to first order we obtain

6T, = —5p92,, + (0p + dp)uoutior — pohuw + (po + Po) (wouduy, + duy o)

and
819 T) = gy, (5p — 36p) + hyuw (po — 3po) -

We then obtain three equations, one for the (00), one for the (ij) and one
for the (0i) component. The (00) component is then

h+ 2Hh = 87G (3p + 36p) . (4.16)

As when analysing solutions for the FRW models it is useful to exploit
the energy-momentum conservation 0, 7" = 0 instead of one of the field
equations. To 1st order this equation is

. h
0p +3H(3p +6p) + (po +po) | =5 +V -bu| =0.

The metric tensor can always be decomposed in its trace, a transverse trace-
less and a vectorial piece and the spatial (and only non-vanishing part in
synchronous gauge) of the perturbed metric can be written as

_ I 1 T
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where we decomposed the vectorial part further into a transverse (rota-

tional), hfj, and longitudinal (irrotational) part, h'JJ

We will concentrate in this lecture on the scalar perturbations but note
that the traceless tensor part corresponds to a perturbation like a gravita-
tional wave and the vectorial perturbations couples to the rotational part of
the matter velocity du and decays like in the Newtonian approach. For the

remaining scalar perturbations we obtain in Fourier space
h+2Hh—3H*(1+3c%)5=0,
6+ (14 po/po) (60— 1/2) + 3H (e = po/po)d = 0.
0+ (2—3c2)HO — i5: 0 (4.17)
’ a*(1+ po/po) 7

with
0 =V -du=—ikéu (4.18)

and as usual § = dp/p. If we assume the perturbation is adiabatic with
po/po = ¢ = dp/dp, define p = 0/H and use y = Ina as the time variable
we obtain

1
h”—l—§(1—3c§)h’—3(1+3c§)6:0,
§F+(1+)(e—h/2)=0,
1
¢ =5 (9 —1) =0, (4.19)

where the prime denotes d/dy = H~'d/dt. Note that we have neglected the
last term in Eqn. 4.17 because we want to focus on super horizon modes
in this section. This set of equations is equivalent to a single 4th order
equation and we expect four independent solutions. Note that there are
only two physical modes like in the Newtonian analysis and the other two
correspond to the remaining gauge freedom in the synchronous gauge.

In order to solve Eqns. 4.19 we use the ansatz

[5, w, h, h'] x Xit’\i ,
where x; is a 4-dimensional vector. We then can easily find the solutions
A =0, =—1, A3 = (2+6¢2)/(3+3c2) and \y = (9¢2 —1)/(3 + 3¢%) with
the Xi

X1 = [0707170] )
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X2 = [(1—|—C§)/2,0,1,—3(1 +C§)/2]7
X3 = [(1—|—C§)/2,0,1,(1 +3C§)/2],
xe = [(1+e)(9e2 — 1), (3¢ +1/2)(1 = ) (9¢; — 1),

2(1 4 3c2) (1 +¢2), (1 +3¢2)(1 + c2)(9¢2 — 1)]. (4.20)

The first two modes are pure gauge modes and we obtain for the growing
and decaying modes in the matter dominated era (¢ = 0)

O (t) = 0x(ta)(t/t)*°, 6-(t) = 6-(t:)(t/t:)

and for a radiation dominated universe (c2 = 1/3)

O (t) =S4 (t)(t/t:), - (t) =0 (t)(t/t:)"/*

Note that the growing mode solutions are the same as for the expanding
Newtonian fluid.

To illustrate the gauge modes we look at a solution with § = ¢ = 0 and
define h;; in terms of derivatives of a vector field £(x) with

hij(x, t) = a2(t) [8]51 + 8153] . (4.21)

Consider now a coordinate transformation z# — z/* = z# — e#(x). For small
e’ the new metric is

86)\ T ae)‘ xT
(@) = g () + gxu(x)ﬁ + m(aﬁ%
Oguw ()
+ r € (z) +
= g;u/(x) + 8yﬁu + 8u€u . (4.22)

Hence the solution in Eqn. 4.21 merely represents a coordinate transforma-
tion. The gauge modes discussed above correspond in a similar, but more
complicated way, to a coordinate transformation.

4.2 The Power Spectrum - Statistics of Density
Fluctuations

We developed now the tools to calculate the evolution density perturbations

in different cosmological models. However to compare with observations we

are often interested in the statistics of this density field. The first non-trivial
quantity is the second moment of the density field given by

o6



£(r) = (0(x)d(x + 1)), (4.23)

which is called the correlation function. The angular brackets refer to aver-
aging over the volume V. Since the density perturbation is real we can then

Figure 4.2: Density correlation measurement.

use the Fourier transform of the density field to obtain

52 <(2V)3 /dkg/dk/?)(;k(sii/ei(kl_k)'xe_ik.r>
™

and we obtain

14 —ik-r
£(r) = W/me ke (4.24)

and we define the power spectrum

P(k) = (|6)  (4.25)

We can now go ahead and define the isotropic power spectrum with <
|0k|?(k) >= [0]?(k). We further define polar coordinates along the k-
axis for the integration in Eqn. 4.24. Since ¢ is real it is sufficient to use
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e~ T _ cos(krcos ) and we obtain

dkk?

(2m)3 kr

Sometimes it is convenient to express the variance per logarithmic k interval

(A2(k) =d < 62> /dInk « k3P[k]):

V 2 o sin kr
A?(k) = Pk:—k:3/ *dr .
(k) = Gt PO = =4 [ e S rar
(4.26)
This is easier to interpret, since A%(k) = 1 means that there are order

unity density fluctuations from modes around the logarithmic bin around
wavenumber k.

From inflationary models one can motivate he expectation of a featureless
power spectrum with

{|6k|*) o< k™, (4.27)

where n the spectral index governs the power between large and small-scale
power. If we measure the power inside a box of comoving length = we obtain

1/z
(6%) / kdmk? di oc z~ (M)
0

3

and in terms of mass M o z° we can write

<52> x Mf(n+3)/6

5rms =

Similarly a power law spectrum implies a power-law correlation function. If
-
r
n=(2)
o

A2() = %(kro)vr(z — ~)sin @ = Bkro)

with v = n + 3 we obtain

which is only valid for n < 0. The general limit from asymptotic homogene-
ity requires n > —3. Furthermore, according to Zel’dovich, the discreteness

o8

2 in k
dgf)/ (cos0)P(k) cos(kr cosf) = v /P(kz)sm L

Ank2dk .



of matter requires n < 4. n = 0 is know as white noise because the power is
the same on all scales.
A very important scale factor is n = 1, ie. A o k*. From Eqn. 4.9 we
have 5
k

and hence from A2 kgéz we obtain
A% o 6Dk = const

and hence for n = 1 the potential perturbations §®; which govern the metric
are scale-tnvariant.

A common way to normalize the power spectrum is normalize it to the
observed fluctuations on an 8h~! Mpc scale?. It is quite common to define
the scale by a spherical top-hat window function with a real-space represen-

tation of
v

= Gy

which is in Fourier space

W (kRr) =

(kRp)? [sin(kR7) — (kRr) cos(kRt)] . (4.28)

The normalization parameter is then

dk
02 =4 / ?kz?’P(k)W?(k:Sh_l Mpc), (4.29)

which is the filtered variance on 8h~! Mpc. The measured og is currently
between 0.75 — 1.1 dependent on the measurement. There are two notes
of caution required when comparing the normalization here with observa-
tions. First the measured powerspectrum is usually obtained from discrete,
collapsed object where linear perturbation theory (§ < 1) clearly breaks
down. Furthermore one is usually observing (apart from lensing observa-
tions) the distribution of light, which does not necessarily have to follow the
distribution of mass, particularly in the cold dark matter model. This might

introduce a bias which is commonly parametrised with the bias parameter
b.

2Remember that k in the power spectrum is the comoving wavenumber and this is why
the factor h~! appears in the scale.
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4.2.1 Redshift Space Effects

So far we have discussed the power spectrum in 3-dimensional space. Usually
one has information about the angular pattern and the redshift. However
the redshift is modified by peculiar velocities (see ) with 1 +
z — (14 2)(1 4+ du/c). Since the peculiar velocities are related to the
clustering (dp) the clustering in redshift space , if redshift is assumed to
be from the Hubble expansion, differs systematically from realspace. In
the large distance approximation we can assume that an objects subtends
a small angle and the radial distortions are along a Cartesian axis. From
Eqn. 4.11 we obtain

- (5klA{ ;

sup - _1H fég)

with s
a
Q)= —-——.
FQ) == 5
Note that f2) is called the velocity suppression factor, with f(Qm ) ~ ngo.

In real space the velocity perturbation and the displacement are related by
dou=Hf(Q)x.
In redshift space the apparent distance
Tapparent = T + (F-u/H)F =r + (pu/H)r,

with g = 1 - k. If we assume now a plane-wave disturbance running at
some angle to the line of sight, producing a displacement fieldx parallel to
k, the apparent displacement is x + f(2)uzt. For determining the apparent
amplitude along the wavevector we need z + f(Q)u?z. We then obtain

(5m,z = 5m,r [1 + f(Q)H2] ) (430)

where 4y, , is the perturbation in real space and 6, in redshift space. If we
assume that there is a linear constant bias between the distribution of light
emitting mass Jjey, and mass we obtain

Som = b0 = 6 + (b — 1)6n -

The trivial rearrangement emphasises that the observed density fluctuation
must be a combination of the dynamically generated density contrast plus
the additional term due to bias, which might be different in different regions
of space. Hence we realize that the first term is associated with peculiar
velocities, but the second is not. We then obtain
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Pye(k) [(n~? Mpe)?]

5lem,z = 5m,r [1 + f(Q)M2] + (b - 1)5111,1” = 5lem,r |:1 +

. (4.31)

When we define

B=0"/b

(4.32)

we can write for the ratio of power spectra

P,

2 (1)

Note that this approximation does not hold on small scales, where non-linear

effects become important.

We can now finally discuss the power spectrum as measured from the

2dF galaxy redshift survey.

""""" BBKS prior used
= Efstathiou et al

- == Wang et al
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Figure 4.3: Galaxy-galaxy powerspectrum as measured from the 2dF survey
(left) and binned data points with models [Tegmark et al. 2002]. Note that

G = 0.5 is assumed.
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4.3 Press-Schechter Formalism

We will now enter the are of non-linear perturbations and a descriptions
and study a theory introduced by Press & Schechter 1974. Indeed in recent
years it has been established that a full numerical simulation reveals only
slight, although important, deviations from this scheme [Jenkins 2001].

Press-Schechter theory assumes that if we smooth the linear
density perturbations on some mass scale M, then the frac-
tion of space in which the smoothed density field exceeds
some critical threshold é. is in collapsed objects of mass
greater than M.

P [\ threshold
/\J M u\ mean
coll

Il
co 5
position

Figure 4.4: Schematic description of the Press-Schechter formalism.

We hence smooth the linear density field with the spherical top-hat in
Eqn. 4.28. If we associate the mass of the cluster, before collapse, with the
matter M and the background density pm o we obtain for the radius R of
this region

M = ?pm,ORga

which we then can use to calculate the rms fluctuation o (M, z)

o?(M,z) = 4n / dk E*P(k)W?(kR).
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In the next chapter we will find that the linear over-density required for
collapse is . ~ 1.69. If we assume that the density field is a Gaussian we
can then write for the probability that a given point in space has the over-
density between § and § + dd, smoothed on the mass scale M is pps(6)do,
with

2
par(8) = ﬁ exp {—%%Mz)} . (4.33)

Then the probability of a point in space forming part of a cluster with radius
larger than R is equal to the probability of the density field, after smoothing

over scale M (R), having an over-density larger than the critical over-density
0c. That is

[ee]
Por = /6 P (8)ds .

To obtain the probability Pr dR of a point in space forming a cluster with
radius between R and R + dR, we differentiate the above expression with
respect to R and take the absolute value

d
PrdR = |-—Psp

dR.
dR &

We can then obtain the number density of such clusters by dividing through
the cluster volume

dR, (4.34)

where we have introduced a correction factor, whose value will ensure that
the final mass function accounts for the entire mass in the universe. The
number of clusters with mass larger than M is then

3f [ dR
Noy =20 [ o8
>M 47r/R R3

To fix the value of the correction factor f we use for the mass density

d
ﬁpx% .

o0
Py = / M(R)n(R) dR
0
and we obtain with Eqns. 4.33 and 4.34 f = 2. If we include this factor into

the probability density we obtain for the probability Psr

Oc
Pop =Py =1—erf , 4.35
= Poss = 1 et | e (4.3
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The power of the Press-Schechter model is that it leads to a mass function
of collapsed (virialized; see next chapter) objects, ie. the number density of
objects of a given mass. To obtain the comoving number density of objects
of mass M, per mass interval dM, at redshift z, we perform, as above, the
following: Differentiate Eqn. 4.35 with respect to the mass. If we multiply
this by the comoving number density p, o we obtain the change in the mass
density above the threshold. If we divide this by the mass M we obtain the
comoving number density and we finally obtain, by applying the chain rule

dn(M, z) 2 pmo  0c do(M,z) 52
—— 2 AM = —y ) =B 5o | AaM
dM m M o2(M,z) dM P\ 202(M,2) ’
(4.36)

which is the Press-Schechter mass function.

Figure 4.5: Left: structure in a N-body simulation. Right: the multiplic-
ity function f(o) = Mdn(M,z)/dIno=1/pm o, with the dashed line for the
Press-Schechter function from a simulation by the Virgo consortium [Jenk-
ins, 2001].
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Chapter 5

Clusters of Galaxies

In this final chapter we will move on to study the properties of truly non-
linear structures on extra-galactic scales, namely clusters of galaxies. In
order to obtain a theoretical description how these clusters might form we
will study the behaviour of a spherical over-density in a flat matter domi-
nated universe.

5.1 Spherical Collapse and Virialization

In Fig. 5.1 we show the set up for the spherical collapse model. The over-
density 0 of radius R is take from a thin shell with density zero in order to
maintain the mean density. The universe inside the spherical over-density
behaves according to Gauss law completely detached from the evolution
of the surrounding universe, which itself is unaffected by the over-density
because of the thin shell of zero density. The universe inside the over-density
behaves like a closed universe with 2, = 1+ J. As we saw in Fig.2.3 such
a universe will re-collapse in a finite time. From the analysis of a closed
matter dominated universe in Sec. 2.1.5, Eqn. 2.24 we obtain

O
a = (1 _COSH)Q(Qm— D
: O

where we have chosen the parametric solution. Expressing this in terms of
the scale factor a,, and time t,, at maximum expansion from Eqn. 2.25 we
obtain

i:%(1—cos9), *

am tm

1
= —(0 —sind) .
7T( sin 6)
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p> pcrit

Figure 5.1: Spherical over-density, with “decoupled” evolution from the
background universe.

To study the linear regime we need an expansion in 6 and obtain

W e b e e
am 4 48° tm  TwN\6 120 )

If we combine these we obtain the linearised scale factor with

2/3 2/3

@in , 1 <67ri> : [1 _ 1 <6wi> / ] . (5.2)
am 4 tm 20 tm

Note that if we ignore the term in square brackets we just obtain the ex-
pansion of the background in a flat matter dominated universe. Including
both terms gives the linear theory expression for the growth of a perturba-
tion. Usually we call the point of maximum expansion turnaround, which is
reached for & = 7. Up to this point the general expansion of the universe
has been dominating over the collapse and the physical size of the region
was still growing. Because we are studying a matter dominated universe the
energy densities are always o< a2. Hence the relation between the linear
over-density and the background density is

a?ﬁ k
1+ diin = =55,
lin

66



T
non-linear

linear «--eeeeeer

25 |- —

0.5 —

vt m e ‘
Figure 5.2: The evolution of the background scale factor, the linear scale
factor and the non-linear, collapsing scale factor.

where apac is given by the lowest order truncation of Eqn. 5.2. We then

obtain (after linearising)
3 £\ 2/3
Olin = — | 6m— .
lin 20 < th>

So, at turnaround, t = t,,, we get

turn __

= %(6@2/3 = 1.06.

This tells us that at the breakdown of linear theory, where ¢, is unity,
structures break away from the background evolution, but gravitationally
bound structures have yet to form. After turnaround the collapse proceeds
symmetrically to the expansion phase and the object collapses at t = 2t,,.
At this time the linear density contrast has become

coll _ 5, = 2—30(127r)2/3 — 1.686. (5.3)

lin

So the linear density contrast of about 1.7 corresponds to the epoch of
complete gravitational collapse of a spherical symmetric perturbation. Note
that this is exactly the critical over-density d. we used for the Press-Schechter
model in the previous Section.
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Ultimately we do not expect the object to collapse to a point but rather
to reach virial equilibrium. This is reached when the radius has shrunk by
a factor of 2 from that of turnaround. Numerical estimation show that 5{}‘;1“
is a good estimate for the epoch of virialization.

The actual nonlinear density contrast at turnaround is

3 2
6
1+ gturn, = “back — % = 5:55.
amaX 4

In the spherical collapse model, the density goes infinite at the collapse
time. However if we assume that the collapsing object virializes at half
the radius'. Since the background scale factor is o t2/3 the density of the
background has fallen in the same time by a factor of 4. In combination the
over-density at virialization is then 5.55 -4 - 8 and hence

146~ 178 (5.4)

nonlin

which is remarkably well verified by simulations. In a low density universe
(5ﬁ%“ is hardly changed but the true density contrast at virialization is in-
creased to 178(21;%6. Finally we obtain from the virial theorem for bound
objects
s  GM

=R,
where M is the mass of the system and R, the radius where the gravitational
energy is —GM?/ R,. The mass within an initial comoving radius Rcom is

47
M = ?pm,ORgom .

The virial theorem tells us (see above) that the cluster collapses at half the
turnaround radius, Rg = Reum/2. We then obtain
1 5 1 1 3

turn 5.55 phys 5.55 (1 + Zturn)3 o

(Y

Because the virialization time is twice the time to the maximum and we
assume matter domination, we have 1+ zyyn = 22/ 3(1+4 zyi;) and hence with

1 1
Rl=——— "R}
I1T8 (1 + zp,)° O

we obtain

'This can be obtained from the virial theorem Uyiy = —2Tyir, with U the potential
energy and T the kinetic energy. At turnaround the kinetic energy of the collapsing
sphere is zero. With Ugurn = Usvir + Tvir we obtain, since U « 1/R, 2Rvir = Rturn.
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v 2 M 2/3
(27 see) —<m> (14 2a) . (5:5)

The scaling of this relation is well established in numerical simulations how-
ever the normalization is different than in this rough analytical analysis.
Note that objects with the same mass have a larger virial velocity because
they are more compact because they formed when the Universe was smaller
and denser. Galaxies have virial velocities of order 100 km sec™!, whereas
clusters have 1,000 km sec™!. If we assume that the cosmological fluid inside
the cluster is in hydrostatic equilibrium, ie. the pressure is only provided
by gravity, we can relate T o v? and hence obtain

ksT M 2/ 14 2m)
0.07keV _ \ 1027 1M, i) -

This gives rise to x-ray emissions of the hot gas.

5.2 X-ray Signatures

The main x-ray signature of a cluster is thought to be thermal bremsstrahlung
of the diffuse hot intra-cluster gas.

5.2.1 Thermal Bremsstrahlung

Let’s assume a region of size R containing charges with non-relativistic mo-
tion v < ¢. We will consider the radiation field at a distance L with L > R.
The electro-magnetic field at (¢,r) depends on the behaviour of a charge at
time ¢’ with ct’ = ¢t — |r — x(¢')| and x(¢) the trajectory of the charge. For
large distances we obtain

L=r—x('))~r—x-n,

where n is the unit vector r/r. Also, in calculating the field at large dis-
tances, we can replace the L~! in the Lienard-Wiechert potential (see for

example Jackson, Electrodynamics ) with »~! and ignore v -n/c

in the denominator to obtain

r X-n

1
A(t:r):;Zini(t,)y tlzt—E-F c
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If T is the characteristic time in which the charge distribution changes, then
the typical wavelength of emitted radiation is A >~ ¢I'. With (x - n)/c) is of
the order of R/c. Hence we can ignore this term if (R/c) < T, or R < .
This is satisfied if v < ¢ with v the typical velocity of the charges. Hence
we can write

Al = = gl - (/o)) = L

cr

where d = ) ¢;x; is the dipole moment of the system and the sum is over
all the charges in the system. This is a dipole radiation field.

The angular distribution of dipole radiation can be obtained as follows:
At large distances from the system of charges, the electromagnetic wave may
be treated as a plane wave. Then, noting that the vector potential depends
on only [t — (r/c)], we can write B =V x A ~ (A xn)/c and E = B x n,
we obtain for the dipole radiation

1 /- 1 /-
B:T(dxn>, E:T<d><n>><n
cr cr

The energy flux (Poynting vector) is given by S = ¢(ExB)/4n = ¢(B%/4/pi)n
and hence the amount of energy propagating into a solid angle df2 in unit

time is |S|r2dSQ, giving

ae
= o3 sin 0, (5.6)

dE 5 cB%r? 1 /- 2
dtdQ SIr = 4t 4wed (d X n)
where the right hand side should be evaluated at the retarded time.

The spectral composition of radiation, e.g. the amount of energy that is
radiated by the system between frequencies w and w + dw, can be obtained
as follows: The Fourier transform of B(t) is B(w) = (¢*r)~![d(w) x n, with
d(w) = —w?d(w). With

+oo “+o0o W [e’¢) W
| Bwa= [ Berg =2 [ Berg

—0o0 —00
and we can write Eqn. 5.6

dE  cr? /+°° cr? [ dw

o= | B B()

dt’

—00 27T 0
which results in

dE cr2\B(w)|2 B (,u4|d(u))\2

.9
dwdQ) 472 4263 sin”6. (5.7)
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This expression give the amount of energy radiated into a solid angle df2
and frequency range dw.

Consider now the situation in which the velocity of a charged particle
changes from vi to vo in a short time 7. In this case very little radiation
will be emitted at frequencies higher than wy ~ 1/7 and we obtain

+o00 . +00
B(w) = B(t)e “'dt ~ B(t)dt

— 00 — 00
for w < 771, With B = (A x n)/c we obtain

+oo |
cB(w) =—nxX Adt = —n x [AQ — Al] s

—0o0

where A7 and A, are the initial and final values of the vector potential.
Then we obtain with Eqn. 5.7

dE cr?|B(w)|? r?

dwdQ — 4x2  4rx’c

[(Ay — A1) x n)?

We obtain the vector potential from the Lienard-Wiechert formula

av av
A= ~
cer[l = (v-m)/e] — er’

where we applied the non-relativistic approximation. We then obtain

dE 'S 2 g’ 2
The total energy emitted over all directions is then obtained by integrating
over df) and we finally get

dE 2 ¢*
== gz—g (Av)? . (5.8)
Note that the energy emitted per unit frequency interval is independent of
w for w <« 771, while there is very little energy emitted for w > 771

In a plasma the electrons are constantly accelerated during their collision
with ions, which leads to the emission of radiation by the plasma called
thermal bremsstrahlung.

We consider now an individual scatter event between an electron and
an ion of charge Ze. The electron has an initial velocity v and the impact
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Figure 5.3: Scattering of an electron at an ion, with impact parameter b.

parameter (point of closest approach of the electron to the ion) is b. The
Coulomb force leads then to an acceleration of the electron of

Ze?
a~—
meb?’

which lasts a typical time ¢ = 2b/v. Hence we obtain a velocity change

Because the scattering lasts for a time ¢ = 2b/v there will be very little
power at frequencies w > wmax >~ v/2b. From Eqn. 5.8 we then obtain

dE 2 & [ Ze? 2\ 8 Z%5 [ 1? (5.9

do  3rmc3 \meb?2 v )  3mm2c3 \wb) '
This is the amount of radiation emitted in a single collision. If the number
density of ions n; and electrons n. are the same n; = n. = n, then the

total amount of energy emitted per unit volume per second that is due to
all collisions with impact parameter in the range (b, b+ db) will be

dE dE dE 162%e5n% 1
—_— = nnv(2rbdb )— =nvdb | — | 20b= ————— db
(dVdet>tota1 ninev(2m )dw " <dw> . 3m2cdv b

Integrating over b in the limits b1 and by we obtain

< dE ) _ 1622%¢5n2 N <b2> _ 16mZ%e%n? 1

)T o /A 913 o 5.10
dV dwdt 3m2cdv b 3\/377%303 ,Ugff(U»w)a ( )
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where we have introduced the Gaunt factor

9rf(v,w) = vy, <b—2> :

T by

The upper limit b, is determined by the fact that most of the radiation
comes from w < v/2b and therefore b < v/w. Note that the lower limit is
determined by the kinetic energy of the electron and quantum effects. gy
is altogether a slowly varying function of velocity and frequency.

We can now move on to average the emission over the velocity distribu-
tion of the electrons. For a plasma in thermal equilibrium the electrons have
a Maxwell distribution of velocities. Since an electron needs to have a min-
imum energy %mevfnin ~ hw to emit a photon of energy hw, the averaging
of 1/v will lead to a factor

1 Me 3/2 oo g 9 mev?
i 24 _
<v> <27rkBT> /vmm T dv exp | mop

2me hw
= —— . 11
whgT 7 ( k:BT> (5.11)

We finally obtain as the specific emissivity

, dE 16722502 [ 2m, \ /2 Fiw
J(w) = p

_ _ 27—1/2
= = - T
dVdido ~ 3v3m2e \7kpT kBT> grs(w) ocn !

(5.12)

with grs(w) the velocity averaged Gaunt factor which can vary between
1 and 5. As discussed in the previous section about spherical infall, it is
thought that the intra-cluster gas is heated during its formation process.

5.2.2 X-ray Observables

Including numerical Gauntfactors a good approximation for the net free-free
luminosity is

J = / dwj(w) ~ 1.42 x 10727T2n? erg em ™3 sec ™,

where we have introduced the energy unit erg which is typically used in x-
ray astronomy and is erg = 1077 Joule. If we assume that the temperature
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across the cluster is uniform (isothermal) and has an electron density

e

n(r) = 14r2/r2

(5.13)
we can calculate the total bremsstrahlung luminosity Lx of the cluster with
Lx = /J r = 1.4 x 10%n(ecm™3)?r (kpe)>Tx (keV) /2 erg sec ™,

where n. is the central electron number density n. measured in units of
cm ™3 and the core radius 7. in kiloparsecs. A typical value for the cluster
x-ray luminosity is

Lx ~1x10%h2 ergsec™?.

For the core radius, density and temperature of the plasma typical values
are

re ~ 200h~! kpc, Tx ~ 4 keV, ne ~ 0.00301/2 electrons/cm3 .

Figure 5.4: On the left the Hydra cluster from an optical observation on La
Palma (B. MacNamara) and on the right the same region observed with the
Chandra X-ray satellite.

Hydra A in Fig. 5.4 is a galaxy cluster that is 840 million light years

from Earth (redshift z = 0.054). Optical observations show a few hundred
galaxies in the cluster. Chandra X-ray observations reveal a large cloud of
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hot gas that extends throughout the cluster. The gas cloud is several million
light years across and has a temperature of about 40 million degrees in the
outer parts decreasing to about 35 million degrees in the inner region.

In general the observed X-ray spectra are generally fit fairly well by
Eqn. 5.12 with gas temperatures of 2 x 107 to 108 K. The equation predicts
the observed rapid fall off of the spectrum at high frequencies. If we relate
the temperature of the gas to the mean kinetic energy of the atoms in the
gas we find

~ JT s
Ky

where 11 is the mean atomic weight and m,, is the proton mass. This inferred
velocity is similar to typical line of sight velocities o, of galaxies in the
cluster. This is because the gas is exposed to the same gravitational potential
as the galaxies.

5.3 Sunyaev-Zel’dovich Effect

Another signature we obtain from clusters of galaxies is the imprint of the
Compton scattering of the CMB photons off the hot electrons of the intra-
cluster medium, i.e.
e+ —e +4.

The spectrum of the CMB radiation is to very high accuracy Planckian as
can be seen in Fig. 5.5. Since Compton scattering conserves the number of
photons, their energy gain is obtained by redistribution in frequency and
hence distortion of the Planckian spectrum.

5.3.1 Kompaneets Equation

We will first discuss how a homogenous, isotropic distribution of photons
is elastically scattered by a homogenous non-relativisitc gas of hot elec-
trons. The net effect of many scatterings by the moving electrons produces
a random walk in the energy of each photon, while conserving the photon
number. As usual in scattering calculation we move between the labora-
tory frame (no subscripts), to the initial restframe of the electron before the
scattering (subscript 1) to the primed quantities after scattering.

If the electron moves along the x-axis with velocity v in the laboratory
frame we obtain with Lorentz transformation

t =~(t1 +vzy), x =y(x1 + vty).
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Figure 5.5: The CMB spectrum as measured by COBE (including errorbars
D.

The same transformation can be applied to the energy and momentum of a
photon of frequency v which moves along an angle 6 to the electron

v=~11(14+vcosh), vcos = yvy(cos b + v) .

The ratio of these two equations results in

cosb; +v

= ———"—-,
€08 1+ vcosb

which is the transformation of the angle #. The derivative of this expression
gives the transformation of the solid angle dQ2 = d(cosf)d¢ of a beam of
photons,

ds)y
v2(1+vcosbp)?’

=1—%

Q) =

where we have used 2

Because of Liouville’s theorem (constant phase space) the photon occu-
pation number A is a Lorentz scalar quantity in the absence of collisions
and hence

Ni(01,v1,t1,21) = N(v =y (1 +vcosby), t = y(t; +vxy)). (5.14)
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Finally we can write for the Boltzmann collision equation the the electron
rest frame,

88_/:/1’1 —i—cos@lg—j;/} =Ry,
where the right hand side is the rate R; of scattering of photons into the
beam, less the rate of scattering out of the beam as seen by an observer in
the electron rest frame. The left hand side is the derivative moving with the

photon beam. From Eqn. 5.14 we obtain further
ONy ON ON ON

8151 - ’YE ’ 6.1‘1 - ’YUE
and we obtain as the collision equation
0.
fya—j;/ (1+wvcosby) =Ry.
If we use the inverse energy transformation v; = yv(1 — vcos ) we obtain
(1 - veos) 1
—vcosf) = ——
7 v(1 4 vcos )
and hence
ON
el (v(I —wvcosO)Ry), - (5.15)

The brackets indicate averaging over the photon direction to get the time
evolution of the occupation number in the laboratory frame.

Now we have to adress the scattering rate, Ri, where we have to take
account of the electron recoil because the order of our calculation is O(v?).
In the initial electron rest frame the electron momentum is zero before scat-
tering and afterwards

mevll = VllA{l — I/if{ll .
The square of this expression gives the final kinetic energy of the electron,
which is the energy lost by the photon. To lowest non-trivial order this is
the Compton shift

2
v — V) =6 = —(1 —cosO),
Me
with © the scattering angle. The rate of change of the number of photons
in a beam of solid angle d€2; and bandwidth v to vy 4+ dvy, measured in the
initial rest frame of the electron is then

do

—1
Qg

d
RyvidydQy = d—tlj\/l(el,ul)u%duldal = /
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where on the right hand side the differential scattering cross section is inte-
grated over the intensity I with

I = [1+Ni(61,00)] [N(01, o) (v )2dvst dQY] d
— [L+ N0, v7)] [Ni(O1, 1) viduidy ] dY (5.16)
with
I/f[ = v +ov
— Mg
= |1+ me(l cosO)| . (5.17)

The second line in Eqn. 5.16 gives the rate of scattering out of the beam.
The second factor in this line in square brackets is the number of photons
in the beam element. In the stimulated emission factor in front of it, the
ocupation number is evaluated at the direction and frequency of the emitted
photon. The frequency of the emitted photon is lowered by the Compton
effect to ;. These photons are scattered into the solid angle d€2}, with cross
section do/d)s at a scattering angle ©. The first line in Eqn. 5.16 is the rate
of scattering into the beam element. Here the Compton effect requires that
the incident photon has the energy v;” = 11 + dv. Here the incident beam
with solid angle d€?] is scattered into the beam with solid angle d€2;. Note
that we are ignoring the energy dependence of the cross section, because we
are performing our analysis in the non-relativistic limit to order v /me..

The next step is to write the occupation numbers in Eqn. 5.16 in the
laboratory frame, with

v 1+ ccos )
vy 14+vcosby

vt =iy (1+vcost)) =v

We can now expand this expression to order O(v?) and O(v/m,) and obtain

vE = v[l1£(v/me)(1l —cos®©) + v(cos B — cosb) + v*(cos? O — cos b} cos b1 )]

= v+ At
and we obtain
NMi(O1,01) =N(v),  Ni(0),vF) = N(v+ AF).

We can now use Eqn. 5.16 to work out the rate R; and include this into
Eqn. 5.15. The only additional ingredient we require is the momentum
volume element

(vi)2dvy = [1 + 421 - cos ©)| v2d, .
m
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We then obtain
%f B dQ) do

i ~(1 —vcos@)ﬂd—gsdﬁl(A—l—B), (5.19)
with 4
A= m—”(1 — cos ON W)L + N (v)]
and

B=[1+NWNW+AT) —[1+ N+ AN(W).

The integration over d2/4m corresponds to the averaging in Eqn. 5.15. We
can now expand B to second order in electron speed v and obtain

_ AN . 1N L
AN 1PN,

If we calculate A + B including the expressions for A* we realize A + B is
of 1st order in v. Hence we only require 1st order terms in all subsequent
approximations. We can then re-express the integration over the solid angle
in Eqn. 5.19 to the relevant order

(I —vcosf)dQ = (1 — 3vcosby)ds; .

Since A + B is of order v we can use the classical Thomson scattering cross
section (o7 = 6.65 x 10~2?° cm?) which is symmetric under 6; — 61 + 7 and
97 — 0} + m, so all odd terms in cos ¢y and cos 6 vanish in the integral. If
we perform the final integration we than obtain

%/ [ dndQY) do
ot 4 dQ,

(1 -3vcosb))(A+ B) =orC,

with

v AN 4dN 1 d*°N
C=—|4ANA+N)+ A +2N)v—| + - ——vv? + - — %%,
me[ I+N)+(1+ )de +3dyyv+3dy2yv
This is the expectation value for scattering by a single electron. For a gas
of electrons with number density n. and mean square velocity < v? > we
obtain the Kompaneets equation
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orne Ot me ov
4,00 ON 1, g PN
+§ <U >V%+§<U >I/ 8V2 . (520)

5.3.2 Sunyaev Zel’dovich effect

We can now move on to discuss the effect of hot intracluster gas in a rich
cluster of galaxies on the CMB photons. The plasma is much hotter than

Figure 5.6: Scattering of CMB photons by hot intracluster gas.

the CMB and hence the terms with the kinetic factor < v? > are dominating
the Kompaneets equation Eqn. 5.20. In this case we have

1 ON _ (v*) [ ,O°N ON

— = — + 44— . 5.21
ornec Ot 322 |V a2 * ary (5.21)

If the electrons have a Maxwell-Boltzmann energy distribution at tempera-

ture T, we have
3kpT,

(v?) = e

Me
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We can rewrite Eqn. 5.21 more compact if we introduce

hv /fBTe <’U2>
xr = @ 5 dy = WUT’/’LBC dt = 370']"?’166 dt

and obtain

ON _ 20PN, 0N

— =" +4x—.

Oy Ox? Ox
As mentioned before the CMB is a nearly perfect black body with

1
N = ehv/ksTy _ 1"

We if we assume that the perurbations to the Planckian distribution are
small we can write as the solution N+ dN and hence

ON 6N
T = 5.22
Wy (5.22)

with

kgT. [*
y= B ;/ ornec dt , (5.23)
Mmec

which is proportional to the pressure in the electron gas nekpT.. This can
also be interpreted as the product between the gas temperature measured
in units of electron mass and the scattering optical depth 7 = [ ornee dt.
We then obtain for Eqn. 5.22

N 2e®(e® +1)  4ae®
N T (e —1)? et —1
-2y atr<l1,
— (5.24)
22y atz > 1.

Hence the perturbed spectrum in the long wavelength limit, x < 1, where
N o T, has the thermal Rayleigh-Jeans form with the effective temperature
lowered by

— = -2y. (5.25)

Sunyaev and Zel’dovich (1972) pointed out that the plasma in a rich cluster
is hot enough to upscatter the photons, increasing the surface brightness at
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Figure 5.7: Spectral distortion due to SZ effect (S. Church). Lower panel,
differential effects (green is the kinematic SZ effect due to the peculiar mo-
tion of the cluster). The bands are the frequency bands of the SuZie instru-
ment.

short wavelength, and lowering the effective temperature at long wavelength.

If we assume an isothermal profile (Eqn. 5.13) with a constant temper-
ature T'x we obtain for the optical depth at a distance R from the cluster

centre
70

T=0 n(r)dl = ————,
T/ ) (1+ R2/r2)"/?
with
70 = 0.0064n,(cm~3)r.(kpc) ,

with 7. ~ 200h~! kpc and n. ~ 0.003h1/2 electroms/cm3 we obtain
70 ~ 0.0037 /2,

For the long wavelength side of the CMB spectrum the temperature as seen
through the centre of the cluster is lowered by

oT: kT
-7 = 27 B);

~ =5 x 1075p71/2
T, MeC
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This temperature decrement should be roughly constant over the core of the
cluster, which extends an angle

2’!”0 2H0’I”c 0.5 .
= ~ ~ — arcmin,,
da(z) cz z

6

where the approximation is for low redshifts z <« 1.
We can now look at some Sunyaev Zel’dovich observations, of which some
have been pioneered by the Astrophysics group at the Cavendish laboratory.

Figure 5.8: The Ryle telescopes at Lord’s bridge Cambridge.

The Ryle telescope array consists of 8 individual parabolic 13m antennas
observing at 15 GHz (2cm). It is common to talk in terms of a flux decrement
instead of a temperature decrement which is given by

S, = 20°ATf(x),

with f(z) = z2e®[x/tanh(x/2) — 4]/(e® — 1)2. Usually the flux in radio
astronomy is given in units of Jansky with 1Jy = 10726J /(sec m? Hz).
Finally we should note that the SZ effect is an excellent probe for clusters
at large redshifts because the dimming of the flux due to redshift is exactly
canceld by the increased CMB photon energy density at larger redshifts.
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Figure 5.9: The cluster A2218 as observed with the Ryle telescope. The
central flux decrement is 500 £ 70 wpJy, corresponding to a temperature
decrement of 0.09 mK (Jones & Grainge 1993).

Figure 5.10: Another observation of Abell 2218, with the BIMA array at
28.5 GHz. The contours are lines of constant flux decrement. The colours
are intensities from X-ray emission of the hot gas as observed by the ROSAT
satellite (Carlstrom et al.).
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