
Multivariable Calculus
The world is not one-dimensional, and calculus doesn’t stop with a single independent variable. The
ideas of partial derivatives and multiple integrals are not too different from their single-variable coun-
terparts, but some of the details about manipulating them are not so obvious. Some are downright
tricky.

8.1 Partial Derivatives
The basic idea of derivatives and of integrals in two, three, or more dimensions follows the same pattern
as for one dimension. They’re just more complicated.

The derivative of a function of one variable is defined as

df(x)
dx

= lim
∆x→0

f(x+ ∆x)− f(x)
∆x

(8.1)

You would think that the definition of a derivative of a function of x and y would then be defined as

∂f (x, y)
∂x

= lim
∆x→0

f(x+ ∆x, y)− f(x, y)
∆x

(8.2)

and more-or-less it is. The ∂ notation instead of d is a reminder that there are other coordinates floating
around that are temporarily being treated as constants.

In order to see why I used the phrase “more-or-less,” take a very simple example: f(x, y) = y.
Use the preceding definition, and because y is being held constant, the derivative ∂f/∂x = 0. What
could be easier?

I don’t like these variables so I’ll switch to a different set of coordinates, x′ and y′:

y′ = x+ y and x′ = x

What is ∂f/∂x′ now?
f(x, y) = y = y′ − x = y′ − x′

Now the derivative of f with respect to x′ is −1, because I’m keeping the other coordinate fixed. Or is
the derivative still zero because x′ = x and I’m taking ∂f/∂x and why should that change just because
I’m using a different coordinate system?

The problem is that the notation is ambiguous. When you see ∂f/∂x it doesn’t tell you what
to hold constant. Is it to be y or y′ or yet something else? In some contexts the answer is clear and
you won’t have any difficulty deciding, but you’ve already encountered cases for which the distinction
is crucial. In thermodynamics, when you add heat to a gas to raise its temperature does this happen at
constant pressure or at constant volume or with some other constraint? The specific heat at constant
pressure is not the same as the specific heat at constant volume; it is necessarily bigger because during
an expansion some of the energy has to go into the work of changing the volume. This sort of derivative
depends on type of process that you’re using, and for a classical ideal gas the difference between the
two molar specific heats obeys the equation

cp − cv = R

If the gas isn’t ideal, this equation is replaced by a more complicated and general one, but the same
observation applies, that the two derivatives dQ/dT aren’t the same.

James Nearing, University of Miami 1
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In thermodynamics there are so many variables in use that there is a standard notation for a
partial derivative, indicating exactly which other variables are to be held constant.(

∂U
∂V

)
T

and

(
∂U
∂V

)
P

represent the change in the internal energy of an object per change in volume during processes in which
respectively the temperature and the pressure are held constant. In the previous example with the
function f = y, this says (

∂f
∂x

)
y

= 0 and

(
∂f
∂x

)
y′

= −1

This notation is a way to specify the direction in the x-y plane along which you’re taking the derivative.

8.2 Chain Rule
For functions of one variable, the chain rule allows you to differentiate with respect to still another
variable: y a function of x and x a function of t allows

dy
dt

=
dy
dx
dx
dt

(8.3)

You can derive this simply from the definition of a derivative.

∆y
∆t

=
y
(
x(t+ ∆t)

)
− y
(
x(t)

)
∆t

=
y
(
x(t+ ∆t)

)
− y
(
x(t)

)
x(t+ ∆t)− x(t)

. x(t+ ∆t)− x(t)
∆t

=
∆y
∆x

. ∆x
∆t

Take the limit of this product as ∆t → 0. Necessarily then you have that ∆x → 0 too (unless the
derivative doesn’t exist anyway). The second factor is then the definition of the derivative dx/dt, and
the first factor is the definition of dy/dx. The Leibnitz notation as written in Eq. (8.3) leads you to
the required proof.

What happens with more variables? Roughly the same thing but with more manipulation, the
same sort of manipulation that you use to derive the rule for differentiating more complicated functions
of one variable (as in section 1.5).

Compute
d
dt
f
(
x(t), y(t)

)
Back to the ∆’s. The manipulation is much like the preceding except that you have to add and subtract
a term in the second line.

∆f
∆t

=
f
(
x(t+ ∆t), y(t+ ∆t)

)
− f

(
x(t), y(t)

)
∆t

=
f
(
x(t+ ∆t), y(t+ ∆t)

)
− f

(
x(t), y(t+ ∆t)

)
+ f

(
x(t), y(t+ ∆t)

)
− f

(
x(t), y(t)

)
∆t

=
f
(
x(t+ ∆t), y(t+ ∆t)

)
− f

(
x(t), y(t+ ∆t)

)
x(t+ ∆t)− x(t)

. x(t+ ∆t)− x(t)
∆t

+
f
(
x(t), y(t+ ∆t)

)
− f

(
x(t), y(t)

)
y(t+ ∆t)− y(t)

. y(t+ ∆t)− y(t)
∆t

=
∆f
∆x

. ∆x
∆t

+
∆f
∆y

. ∆y
∆t
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In the first factor of the first term, ∆f/∆x, the variable x is changed but y is not. In the first factor
of the second term, the reverse holds true. The limit of this expression is then

lim
∆t→0

∆f
∆t

=
df
dt

=
(
∂f
∂x

)
y

dx
dt

+
(
∂f
∂y

)
x

dy
dt

(8.4)

If these manipulations look familiar, it’s probably because they mimic the procedures of section 1.5.
That case is like this one, with the special values x ≡ y ≡ t.

Example: (When you want to check out an equation, you should construct an example so that
it reveals a lot of structure without requiring a lot of calculation.)

f(x, y) = Axy2, and x(t) = Ct3, y(t) = Dt2

First do it using the chain rule.

df
dt

=
(
∂f
∂x

)
y

dx
dt

+
(
∂f
∂y

)
x

dy
dt

=
(
Ay2

)(
3Ct2

)
+
(
2Axy

)(
2Dt

)
=
(
A(Dt2)2

)(
3Ct2

)
+
(
2A(Ct3)(Dt2)

)(
2Dt

)
= 7ACD2t6

Now repeat the calculation by first substituting the values of x and y and then differentiating.

df
dt

=
d
dt

[
A(Ct3)(Dt2)2

]
=
d
dt

[
ACD2t7

]
= 7ACD2t6

What if f also has an explicit t in it: f
(
t, x(t), y(t)

)
? That simply adds another term. Remem-

ber, dt/dt = 1.
df
dt

=
(
∂f
∂t

)
x,y

+
(
∂f
∂x

)
y,t

dx
dt

+
(
∂f
∂y

)
x,t

dy
dt

(8.5)

Sometimes you see the chain rule written in a slightly different form. You can change coordinates
from (x, y) to (r, φ), switching from rectangular to polar. You can switch from (x, y) to a system such
as (x′, y′) = (x+ y, x− y). The function can be expressed in the new coordinates explicitly. Solve for
x, y in terms of r, φ or x′, y′ and then differentiate with respect to the new coordinate. OR you can
use the chain rule to differentiate with respect to the new variable.(

∂f
∂x′

)
y′

=
(
∂f
∂x

)
y

(
∂x
∂x′

)
y′

+
(
∂f
∂y

)
x

(
∂y
∂x′

)
y′ (8.6)

This is actually not a different equation from Eq. (8.4). It only looks different because in addition to t
there’s another variable that you have to keep constant: t→ x′, and y′ is constant.

Example: When you switch from rectangular to plane polar coordinates what is ∂f/∂φ in terms
of the x and y derivatives?

x = r cosφ, y = r sinφ, so(
∂f
∂φ

)
r

=
(
∂f
∂x

)
y

(
∂x
∂φ

)
r

+
(
∂f
∂y

)
x

(
∂y
∂φ

)
r

=
(
∂f
∂x

)
y

(−r sinφ) +
(
∂f
∂y

)
x

(r cosφ)
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If f(x, y) = x2 +y2 this better be zero, because I’m finding how f changes when r is held fixed. Check
it out; it is. The equation (8.6) presents the form that is most important in many applications.

Example: What is the derivative of y with respect to φ at constant x?(
∂y
∂φ

)
x

=
(
∂y
∂r

)
φ

(
∂r
∂φ

)
x

+
(
∂y
∂φ

)
r

(
∂φ
∂φ

)
x

= [sinφ] .
[
r

sinφ
cosφ

]
+ [r cosφ] . 1 = r

1
cosφ

(8.7)

φ

∆φ

r∆φ ∆y

You see a graphical interpretation of the calculation in this diagram: φ changes by ∆φ, so the
coordinate moves up by ∆y (x is constant). The angle between the lines ∆y and r∆φ is φ itself. This
means that ∆y ÷ r∆φ = 1/ cosφ, and that is precisely the preceding equation for

(
∂y/∂φ

)
x.

In doing the calculation leading to Eq. (8.7), do you see how to do the calculation for
(
∂r/∂φ

)
x?

Differentiate the equation x = r cosφ with respect to φ.

x = r cosφ →
(
∂x
∂φ

)
x

= 0 =
(
∂r
∂φ

)
x

cosφ+ r

(
∂ cosφ
∂φ

)
x

=
(
∂r
∂φ

)
x

cosφ− r sinφ

Solve for the unknown derivative and you have the result.
Another example: f(x, y) = x2 − 2xy. The transformation between rectangular and polar

coordinates is x = r cosφ, y = r sinφ. What is
(
∂f/∂x

)
r?(

∂f
∂x

)
r

=
(
∂f
∂x

)
y

(
∂x
∂x

)
r

+
(
∂f
∂y

)
x

(
∂y
∂x

)
r

= (2x− 2y) + (−2x)
(
∂y
∂x

)
r(

∂y
∂x

)
r

=

(
∂y/∂φ

)
r(

∂x/∂φ
)
r

=
r cosφ
−r sinφ

= − cotφ (8.8)

(Remember problem 1.49?) Put these together and(
∂f
∂x

)
r

= (2x− 2y) + (−2x)(− cotφ) = 2x− 2y + 2x cotφ (8.9)

The brute-force way to do this is to express the function f explicitly in terms of the variables x and r,
eliminating y and φ.

y = r sinφ =
√
r2 − x2, then(

∂f
∂x

)
r

=
∂
∂x

[
x2 − 2x

√
r2 − x2

]
r

= 2x− 2
√
r2 − x2 − 2x

1√
r2 − x2

(−x) = 2x+
−2
(
r2 − x2

)
+ 2x2

√
r2 − x2

(8.10)

You can see that this is the same as the the equation (8.9) if you look at the next-to-last form of
equation (8.10).

x√
r2 − x2

=
r cosφ√

r2 − r2 cos2 φ
= cotφ
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∆x

∆yIs this result reasonable? Look at what happens to y when you change x by
a little bit. Constant r is a circle, and if φ puts the position over near the right
side (ten or twenty degrees), a little change in x causes a big change in y as shown
by the rectangle. As drawn, ∆y/∆x is big and negative, sort of like the (negative)
cotangent of φ as in Eq. (8.8).

8.3 Differentials
For a function of a single variable you can write

df =
df
dx
dx (8.11)

and read (sort of) that the infinitesimal change in the function f is the slope times the infinitesimal
change in x. Does this really make any sense? What is an infinitesimal change? Is it zero? Is dx a
number or isn’t it? What’s going on?

It is possible to translate this intuitive idea into something fairly simple and that makes perfectly
good sense. Once you understand what it really means you’ll be able to use the intuitive idea and its
notation with more security.

Let g be a function of two variables, x and h.

g(x, h) =
df(x)
dx

h has the property that
1
h

∣∣f(x+ h)− f(x)− g(x, h)
∣∣ −→ 0 as h→ 0

That is, the function g(x, h) approximates very well the change in f as you go from x to x+ h. The
difference between g and ∆f = f(x+h)− f(x) goes to zero so fast that even after you’ve divided by
h the difference goes to zero.

The usual notation is to use the symbol dx instead of h and to call the function df instead* of
g.

df(x, dx) = f ′(x) dx has the property that

1
dx

∣∣f(x+ dx)− f(x)− df(x, dx)
∣∣ −→ 0 as dx→ 0

(8.12)

In this language dx is just another variable that can go from −∞ to +∞ and df is just a specified
function of two variables. The point is that this function is useful because when the variable dx is small
df provides a very good approximation to the increment ∆f in f .

What is the volume of the peel on an orange? The volume of a sphere is V = 4πr3/3, so its
differential is dV = 4πr2 dr. If the radius of the orange is 3 cm and the thickness of the peel is 2 mm,
the volume of the peel is

dV = 4πr2 dr = 4π(3 cm)2(0.2 cm) = 23 cm3

The whole volume of the orange is 4
3π(3 cm)3 = 113 cm3, so this peel is about 20% of the volume.

Differentials in Several Variables
The analog of Eq. (8.11) for several variables is

df = df(x, y, dx, dy) =
(
∂f
∂x

)
y
dx+

(
∂f
∂y

)
x
dy (8.13)

* Who says that a variable in algebra must be a single letter? You would never write a computer
program that way. d Fred2

/
d Fred = 2 Fred is perfectly sensible.
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Roughly speaking, near a point in the x-y plane, the value of the function f changes as a linear function
of the coordinates as you move a (little) distance away. This function df describes this change to high
accuracy. It bears the same relation to Eq. (8.4) that (8.11) bears to Eq. (8.3).

For example, take the function f(x, y) = x2 + y2. At the point (x, y) = (1, 2), the differential
is

df(1, 2, dx, dy) = (2x)
∣∣∣∣
(1,2)

dx+ (2y)
∣∣∣∣
(1,2)

dy = 2dx+ 4dy

so that

f(1.01, 1.99) ≈ f(1, 2) + df(1, 2, .01,−.01) = 12 + 22 + 2(.01) + 4(−.01) = 4.98

compared to the exact answer, 4.9802.

The equation analogous to (8.12) is

df(x, y, dx, dy) has the property that
1
dr

∣∣f(x+ dx, y + dy)− f(x, y)− df(x, y, dx, dy)
∣∣ −→ 0 as dr → 0 (8.14)

where dr =
√
dx2 + dy2 is the distance to (x, y). It’s not that you will be able to do a lot more with

this precise definition than you could with the intuitive idea. You will however be able to work with a
better understanding of you’re actions. When you say that “dx is an infinitesimal” you can understand
that this means simply that dx is any number but that the equations using it are useful only for very
small values of that number.

You can’t use this notation for everything as the notation for the derivative demonstrates. The
symbol “df/dx” does not mean to divide a function by a length; it refers to a well-defined limiting
process. This notation is however constructed so that it provides an intuitive guide, and even if you do
think of it as the function df divided by the variable dx, you get the right answer.

Why should such a thing as a differential exist? It’s essentially the first terms after the constant
in the power series representation of the original function: section 2.5. But how to tell if such a series
works anyway? I’ve been notably cavalier about proofs. The answer is that there is a proper theorem
guaranteeing Eq. (8.14) works. It is that if both partial derivatives exist in the neighborhood of the
expansion point and if these derivatives are continuous there, then the differential exists and has the
value that I stated in Eq. (8.13). It has the properties stated in Eq. (8.14). For all this refer to one of
many advanced calculus texts, such as Apostol’s.*

8.4 Geometric Interpretation
For one variable, the picture of the differential is simple. Start with a graph of the function and at a
point (x, y) = (x, f(x)), find the straight line that best approximates the function in the immediate
neighborhood of that point. Now set up a new coordinate system with origin at this (x, y) and call the
new coordinates dx and dy. In this coordinate system the straight line passes through the origin and
the slope is the derivative df(x)/dx. The equation for the straight line is then Eq. (8.11), describing
the differential.

dy =
df(x)
dx

dx

* Mathematical Analysis, Addison-Wesley
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y

x

dy

dx

For two variables, the picture parallels this one. At a point (x, y, z) = (x, y, f (x, y)) find the
plane that best approximates the function in the immediate neighborhood of that point. Set up a
new coordinate system with origin at this (x, y, z) and call the new coordinates dx, dy, and dz. The
equation for a plane that passes through this origin is αdx + β dy + γ dz = 0, and for this best
approximating plane, the equation is nothing more than the equation for the differential, Eq. (8.13).

dz =
(
∂f (x, y)
∂x

)
y
dx+

(
∂f (x, y)
∂y

)
x
dy

dx

dy

dz

The picture is a bit harder to draw, but with a little practice you can do it.

For the case of three independent variables, I’ll leave the sketch to you.

Examples
The temperature on the surface of a heated disk is given to be T (r, φ) = T0 + T1

(
1− r2/a2

)
, where

a is the radius of the disk and T0 and T1 are constants. If you start at position x = c < a, y = 0 and
move parallel to the y-axis at speed v0 what is the rate of change of temperature that you feel?

Use Eq. (8.4), and the relation r =
√
x2 + y2.

dT
dt

=
(
∂T
∂r

)
φ

dr
dt

+
(
∂T
∂φ

)
r

dφ
dt

=
(
∂T
∂r

)
φ

[(
∂r
∂x

)
y

dx
dt

+
(
∂r
∂y

)
x

dy
dt

]

=
(
−2T1

r
a2

)[ y√
x2 + y2

v0

]
= −2T1

√
c2 + v2

0t
2

a2
. v2

0t√
c2 + v2

0t
2

= −2T1
v2

0t
a2

As a check, the dimensions are correct (are they?). At time zero, this vanishes, and that’s what
you should expect because at the beginning of the motion you’re starting to move in the direction
perpendicular to the direction in which the temperature is changing. The farther you go, the more
nearly parallel to the direction of the radius you’re moving. If you are moving exactly parallel to the
radius, this time-derivative is easier to calculate; it’s then almost a problem in a single variable.

dT
dt
≈ dT
dr

dr
dt
≈ −2T1

r
a2
v0 ≈ −2T1

V0t
a2
v0

So the approximate and the exact calculation agree. In fact they agree so well that you should try to
find out if this is a lucky coincidence or if there some special aspect of the problem that you might have
seen from the beginning and that would have made the whole thing much simpler.
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8.5 Gradient
The equation (8.13) for the differential has another geometric interpretation. For a function such as
f(x, y) = x2 + 4y2, the equations representing constant values of f describe curves in the x-y plane.
In this example, they are ellipses. If you start from any fixed point in the plane and start to move away
from it, the rate at which the value of f changes will depend on the direction in which you move. If you
move along the curve defined by f = constant then f won’t change at all. If you move perpendicular
to that direction then f may change a lot.

The gradient of f at a point is the vector pointing in
the direction in which f is increasing most rapidly, and
the component of the gradient along that direction is the
derivative of f with respect to the distance in that direction.

To relate this to the partial derivatives that we’ve been using, and to understand how to compute
and to use the gradient, return to Eq. (8.13) and write it in vector form. Use the common notation for
the basis: x̂ and ŷ. Then let

d~r = dxx̂+ dy ŷ and ~G =
(
∂f
∂x

)
y
x̂+

(
∂f
∂y

)
x
ŷ (8.15)

The equation for the differential is now

df = df(x, y, dx, dy) = ~G . d~r (8.16)

~G

d~r

θ

Because you know the properties of the dot product, you know that this is Gdr cos θ and it is

largest when the directions of d~r and of ~G are the same. It’s zero when they are perpendicular. You
also know that df is zero when d~r is in the direction along the curve where f is constant. The vector
~G is therefore perpendicular to this curve. It is in the direction in which f is changing most rapidly.
Also because df = Gdr cos 0, you see that G is the derivative of f with respect to distance along that

direction. ~G is the gradient.

For the example f(x, y) = x2 +4y2, ~G = 2xx̂+8y ŷ. At each point in the x-y plane it provides
a vector showing the steepness of f at that point and the direction in which f is changing most rapidly.

Notice that the gradient vectors are twice as long where the ellipses are closest together as
they are at the ends where the ellipses are farthest apart. The function changes more rapidly in the
y-direction.
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The U.S.Coast and Geodetic Survey makes a large number of maps, and hikers are particularly
interested in the contour maps. They show curves indicating the lines of constant altitude. When
Apollo 16 went to the Moon in 1972, NASA prepared a similar map for the astronauts, and this is a
small segment of that map. The contour lines represent 10 meter increments in altitude.*

The gravitational potential energy of a mass m near the Earth’s (or Moon’s) surface is mgh.
This divided by m is the gravitational potential, gh. These lines of constant altitude are then lines of
constant potential, equipotentials of the gravitational field. Walk along an equipotential and you are
doing no work against gravity, just walking on the level.

8.6 Electrostatics
The electric field can be described in terms of a gradient. For a single point charge at the origin the
electric field is

~E(x, y, z) =
kq
r2
r̂

where r̂ is the unit vector pointing away from the origin and r is the distance to the origin. This

vector can be written as a gradient. Because this ~E is everywhere pointing away from the origin, it’s
everywhere perpendicular to the sphere centered at the origin.

~E = −grad
kq
r

You can verify this a several ways. The first is to go straight to the definition of a gradient. (There’s
a blizzard of minus signs in this approach, so have a little patience. It will get better.) This function is
increasing most rapidly in the direction moving toward the origin. (1/r) The derivative with respect to
distance in this direction is −d/dr, so
−d/dr(1/r) = +1/r2. The direction of greatest increase is along −r̂, so grad (1/r) = −r̂(1/r2). But
the relation to the electric field has another −1 in it, so

−grad
kq
r

= +r̂
kq
r2

There’s got to be a better way.
Yes, instead of insisting that you move in the direction in which the function is increasing most

rapidly, simply move in the direction in which it is changing most rapidly. The derivative with respect
to distance in that direction is the component in that direction and the plus or minus signs take care of
themselves. The derivative with respect to r of (1/r) is −1/r2. That is the component in the direction
r̂, the direction in which you took the derivative. This says grad (1/r) = −r̂(1/r2). You get the same
result as before but without so much fussing. This also makes it look more like the familiar ordinary
derivative in one dimension.

* history.nasa.gov/alsj/a16/ scan by Robin Wheeler

http://history.nasa.gov/alsj/a16/
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Still another way is from the Stallone-Schwarzenegger brute force school of computing. Put
everything in rectangular coordinates and do the partial derivatives using Eqs. (8.15) and (8.6).(

∂(1/r)
∂x

)
y,z

=
(
∂(1/r)
∂r

)
θ,φ

(
∂r
∂x

)
y,z

= − 1
r2

∂
∂x

√
x2 + y2 + z2 = − 1

r2

x√
x2 + y2 + z2

Repeat this for y and z with similar results and assemble the output.

−grad
kq
r

=
kq
r2

xx̂+ y ŷ + z ẑ√
x2 + y2 + z2

=
kq
r2

~r
r

=
kq
r2
r̂

The symbol ∇ is commonly used for the gradient operator. This vector operator will appear in
several other places, the curl of a vector field will be the one you see most often.

∇ = x̂
∂
∂x

+ ŷ
∂
∂y

+ ẑ
∂
∂z

(8.17)

From Eq. (8.15) you have
grad f = ∇f (8.18)

8.7 Plane Polar Coordinates
When doing integrals in the plane there are many coordinate systems to choose from, but rectangular
and polar coordinates are the most common. You can find the element of area with a simple sketch:
The lines (or curves) of constant coordinate enclose an area that is, for small enough increments in the
coordinates, a rectangle. Then you just multiply the sides. In one case ∆x . ∆y and in the other case
∆r . r∆φ.

x x+ dx

y
y + dy

r r + dr

φ

φ+ dφ

Vibrating Drumhead
A circular drumhead can vibrate in many complicated ways. The simplest and lowest frequency mode
is approximately

z(r, φ, t) = z0

(
1− r2/R2

)
cosωt (8.19)

where R is the radius of the drum and ω is the frequency of oscillation. (The shape is more accurately
described by Eq. (4.22) but this approximation is pretty good for a start.) The kinetic energy density

of the moving drumhead is u = 1
2σ
(
∂z/∂t

)2
. That is, in a small area ∆A, the kinetic energy is

∆K = u∆A and the limit as ∆A → 0 of ∆K/∆A is the area-energy-density. In the same way, σ is
the area mass density, dm/dA.

What is the total kinetic energy because of this oscillation? It is
∫
udA =

∫
ud2r. To evaluate

it, use polar coordinates and integrate over the area of the drumhead. The notation d2r is another
notation for dA just as d3r is used for a piece of volume.
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∫
udA =

∫ R

0
r dr

∫ 2π

0
dφ

σ
2
z2

0

(
(1− r2/R2)ω sinωt

)2
=
σ
2

2πz2
0ω

2 sin2 ωt
∫ R

0
dr r

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1
2

∫ r=R

r=0
d(r2)

(
1− r2/R2

)2
= σπz2

0ω
2 sin2 ωt

1
2
R2 1

3
(
1− r2/R2

)3(−1)
∣∣∣∣r=R
0

=
1
6
σR2πz2

0ω
2 sin2 ωt

(8.20)

See problem 8.10 and following for more on this.*

8.8 Cylindrical, Spherical Coordinates
The three common coordinate systems used in three dimensions are rectangular, cylindrical, and spher-
ical coordinates, and these are the ones you have to master. When you need to use prolate spheroidal
coordinates you can look them up.

x

z

y

φ

r

z

φ

θ r

−∞ < x <∞ 0 < r <∞ 0 < r <∞
−∞ < y <∞ 0 < φ < 2π 0 < θ < π
−∞ < z <∞ −∞ < z <∞ 0 < φ < 2π
The surfaces that have constant values of these coordinates are planes in rectangular coordinates;

planes and cylinders in cylindrical; planes, spheres, and cones in spherical. In every one of these cases
the constant-coordinate surfaces intersect each other at right angles, hence the name “orthogonal
coordinate” systems. In spherical coordinates I used the coordinate θ as the angle from the z-axis and
φ as the angle around the axis. In mathematics books these are typically reversed, so watch out for
the notation. On the globe of the Earth, φ is like the longitude and θ like the latitude except that
longitude goes 0 to 180◦ East and 0 to 180◦ West from the Greenwich meridian instead of zero to 2π.
Latitude is 0 to 90◦ North or South from the equator instead of zero to π from the pole. Except for
the North-South terminology, latitude is 90◦ − θ.

The volume elements for these systems come straight from the drawings, just as the area elements
do in plane coordinates. In every case you can draw six surfaces, bounded by constant coordinates, and
surrounding a small box. Because these are orthogonal coordinates you can compute the volume of the
box easily as the product of its three edges.

In the spherical case, one side is ∆r. Another side is r∆θ. The third side is not r∆φ; it is
r sin θ∆φ. The reason for the factor sin θ is that the arc of the circle made at constant r and constant

* For some animations showing the these oscillations and others, check out
www.physics.miami.edu/nearing/mathmethods/drumhead-animations.html

www.physics.miami.edu/nearing/mathmethods/drumhead-animations.html
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θ is not in a plane passing through the origin. It is in a plane parallel to the x-y plane, so it has a
radius r sin θ.

rectangular cylindrical spherical
volume d3r = dxdy dz r dr dφdz r2 sin θ dr dθ dφ
area d2r = dxdy r dφdz or r dφdr r2 sin θ dθ dφ

Examples of Multiple Integrals
Even in rectangular coordinates integration can be tricky. That’s because you have to pay attention to
the limits of integration far more closely than you do for simple one dimensional integrals. I’ll illustrate
this with two dimensional rectangular coordinates first, and will choose a problem that is easy but still
shows what you have to look for.

An Area
Find the area in the x-y plane between the curves y = x2/a and y = x.

(A)

∫ a

0
dx
∫ x

x2/a
dy 1 and (B)

∫ a

0
dy
∫ √ay
y

dx 1

y

x

y

x

In the first instance I fix x and add the pieces of dy in the strip indicated. The lower limit of the
dy integral comes from the specified equation of the lower curve. The upper limit is the value of y for
the given x at the upper curve. After that the limits on the sum over dx comes from the intersection
of the two curves: y = x = x2/a gives x = a for that limit.

In the second instance I fix y and sum over dx first. The left limit is easy, x = y, and the upper
limit comes from solving y = x2/a for x in terms of y. When that integral is done, the remaining dy
integral starts at zero and goes up to the intersection at y = x = a.

Now do the integrals.

(A)

∫ a

0
dx
[
x− x2/a

]
=
a2

2
− a3

3a
=
a2

6

(B)

∫ a

0
dy
[√
ay − y

]
= a1/2a

3/2

3/2
− a

2

2
=
a2

6

If you would care to try starting this calculation from the beginning, without drawing any pictures, be
my guest.
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b

a

A Moment of Inertia
The moment of inertia about an axis is

∫
r2
⊥ dm. Here, r⊥ is the perpendicular distance to the axis.

What is the moment of inertia of a uniform sheet of mass M in the shape of a right triangle of sides
a and b? Take the moment about the right angled vertex. The area mass density, σ = dm/dA is
2M/ab. The moment of inertia is then∫

(x2 + y2)σ dA =
∫ a

0
dx
∫ b(a−x)/a

0
dy σ(x2 + y2) =

∫ a

0
dxσ

[
x2y + y3/3

]b(a−x)/a

0

=
∫ a

0
dxσ

[
x2 b
a

(a− x) +
1
3

(
b
a

)3

(a− x)3

]

= σ

[
b
a

(
a4

3
− a

4

4

)
+

1
3

(
b3

a3

a4

4

)]
=

1
12
σ
(
ba3 + ab3

)
=
M
6
(
a2 + b2

)
The dimensions are correct. For another check take the case where a = 0, reducing this to Mb2/6. But
wait, this now looks like a thin rod, and I remember that the moment of inertia of a thin rod about its
end is Mb2/3. What went wrong? Nothing. Look again more closely. Show why this limiting answer
ought to be less than Mb2/3.

Volume of a Sphere
What is the volume of a sphere of radius R? The most obvious approach would be to use spherical
coordinates. See problem 8.16 for that. I’ll use cylindrical coordinates instead. The element of volume
is dV = r drdφdz, and the integrals can be done a couple of ways.∫

d3r =
∫ R

0
r dr

∫ 2π

0
dφ
∫ +

√
R2−r2

−
√
R2−r2

dz =
∫ +R

−R
dz
∫ 2π

0
dφ
∫ √R2−z2

0
r dr (8.21)

You can finish these now, see problem 8.17.

A Surface Charge Density
An example that appears in electrostatics: The surface charge density, dq/dA, on a sphere of radius
R is σ(θ, φ) = σ0 sin2 θ cos2 φ. What is the total charge on the sphere?

The element of area is R2 sin θ dθ dφ, so the total charge is
∫
σ dA,

Q =
∫ π

0
sin θ dθR2

∫ 2π

0
dφσ0 sin2 θ cos2 φ = R2

∫ +1

−1
d cos θ σ0

(
1− cos2 θ

) ∫ 2π

0
dφ cos2 φ

The mean value of cos2 is 1/2. so the φ integral gives π. For the rest, it is

σ0πR
2

[
cos θ − 1

3
cos3 θ

]+1

−1

=
4
3
σ0πR

2

Limits of Integration
Sometimes the trickiest part of multiple integrals is determining the limits of integration. Especially
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when you have to change the order of integration, the new limits may not be obvious. Are there any
special techniques or tricks to doing this? Yes, there is one, perhaps obscure, method that you may
not be accustomed to.

Draw Pictures.

If you have an integral such as the first one, you have to draw a picture of the integration domain
to switch limits.∫ 1

0
dy
∫ √2−y2

y
dx f(x, y)

x

y [∫ 1

0
dx
∫ x

0
dy +

∫ √2

1
dx
∫ √2−x2

0
dy

]
f(x, y) (8.22)

Of course, once you’ve drawn the picture you may realize that simply interchanging the order of
integration won’t help, but that polar coordinates may.∫ √2

0
r dr

∫ π/4

0
dφ

8.9 Vectors: Cylindrical, Spherical Bases
When you describe vectors in three dimensions are you restricted to the basis x̂, ŷ, ẑ? In a different
coordinate system you should use basis vectors that are adapted to that system. In rectangular coordi-
nates these vectors have the convenient property that they point along the direction perpendicular to
the plane where the corresponding coordinate is constant. They also point in the direction in which the
other two coordinates are constant. E.g. the unit vector x̂ points perpendicular to the plane of constant
x (the y-z plane); it also point along the line where y and z are constant.

x

z

y
x̂

ẑ

ŷ

φ

r
ẑ

z
r̂

φ̂

φ

θ r

r̂

θ̂

φ̂

Do the same thing for cylindrical coordinates. The unit vector ẑ points perpendicular to the x-y
plane. The unit vector r̂ points perpendicular to the cylinder r = constant. The unit vector φ̂ points
perpendicular to the plane φ = constant and along the direction for which r and z are constant. The

conventional right-hand rule specifies ẑ = r̂ × φ̂.

For spherical coordinates r̂ points perpendicular to the sphere r = constant. The φ̂ vector
is perpendicular to the plane φ = constant and points along the direction where r = constant and

θ = constant and toward increasing coordinate φ. Finally θ̂ is perpendicular to the cone θ = constant

and again, points toward increasing θ. Then φ̂ = r̂ × θ̂, and on the Earth, these vectors r̂, θ̂, and φ̂
are ûp, ˆSouth, and ˆEast.

Solenoid
A standard solenoid is cylindrical coil of wire, so that when the wire carries a current it produces a
magnetic field. To describe this field, it seems that cylindrical coordinates are advised. Until you know
something about the field the most general thing that you can write is

~B(r, φ, z) = r̂Br(r, φ, z) + φ̂Bφ(r, φ, z) + ẑ Bz(r, φ, z)
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In a real solenoid that’s it; all three of these components are present. If you have an ideal, infinitely
long solenoid, with the current going strictly around in the φ̂ direction, (found only in textbooks) the
use of Maxwell’s equations and appropriately applied symmetry arguments will simplify this to ẑ Bz(r).

Gravitational Field
The gravitational field of the Earth is simple, ~g = −r̂GM/r2, pointing straight toward the center of
the Earth. Well no, not really. The Earth has a bulge at the equator; its equatorial diameter is about
43 km larger than its polar diameter. This changes the ~g-field so that it has a noticeable θ̂ component.
At least it’s noticeable if you’re trying to place a satellite in orbit or to send a craft to another planet.

A better approximation to the gravitational field of the Earth is

~g = −r̂GM
r2
−G3Q

r4

[
r̂
(
3 cos2 θ − 1

)
/2 + θ̂ cos θ sin θ

]
(8.23)

The letter Q stands for the quadrupole moment. |Q| � MR2, and it’s a measure of the bulge. By
convention a football (American football) has a positive Q; the Earth’s Q is negative. (What about a
European football?)

Nuclear Magnetic Field
The magnetic field from the nucleus of many atoms (even as simple an atom as hydrogen) is proportional
to

1
r3

[
2 r̂ cos θ + θ̂ sin θ

]
(8.24)

As with the preceding example these are in spherical coordinates, and the component along the φ̂
direction is zero. This field’s effect on the electrons in the atom is small but detectable. The magnetic
properties of the nucleus are central to the subject of nuclear magnetic resonance (NMR), and that has
its applications in magnetic resonance imaging* (MRI).

8.10 Gradient in other Coordinates
The equation for the gradient computed in rectangular coordinates is Eq. (8.15) or (8.18). How do
you compute it in cylindrical or spherical coordinates? You do it the same way that you got Eq. (8.15)
from Eq. (8.13). The coordinates r, φ, and z are just more variables, so Eq. (8.13) is simply

df = df(r, φ, z, dr, dφ, dz) =
(
∂f
∂r

)
φ,z
dr +

(
∂f
∂φ

)
r,z
dφ+

(
∂f
∂z

)
r,φ
dz (8.25)

All that’s left is to write d~r in these coordinates, just as in Eq. (8.15).

d~r = r̂ dr + φ̂r dφ+ ẑ dz (8.26)

The part in the φ̂ direction is the displacement of d~r in that direction. As φ changes by a small amount
the distance moved is not dφ; it is r dφ. The equation

df = df(r, φ, z, dr, dφ, dz) = grad f . d~r

combined with the two equations (8.25) and (8.26) gives grad f as

grad f = r̂
∂f
∂r

+ φ̂
1
r
∂f
∂φ

+ ẑ
∂f
∂z

= ∇f (8.27)

* In medicine MRI was originally called NMR, but someone decided that this would disconcert the
patients.
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Notice that the units work out right too.
In spherical coordinates the procedure is identical. All that you have to do is to identify what d~r

is.
d~r = r̂ dr + θ̂ r dθ + φ̂r sin θ dφ

Again with this case you have to look at the distance moved when the coordinates changes by a small
amount. Just as with cylindrical coordinates this determines the gradient in spherical coordinates.

grad f = r̂
∂f
∂r

+ θ̂
1
r
∂f
∂θ

+ φ̂
1

r sin θ
∂f
∂φ

= ∇f (8.28)

The equations (8.15), (8.27), and (8.28) define the gradient (and correspondingly ∇) in three
coordinate systems.

8.11 Maxima, Minima, Saddles
With one variable you can look for a maximum or a minimum by taking a derivative and setting it to
zero. For several variables you do it several times so that you will get as many equations as you have
unknown coordinates.

Put this in the language of gradients: ∇f = 0. The derivative of f vanishes in every direction
as you move from such a point. As examples,

f(x, y) = x2 + y2, or = −x2 − y2, or = x2 − y2

For all three of these the gradient is zero at (x, y) = (0, 0); the first has a minimum there, the second
a maximum, and the third neither — it is a “saddle point.” Draw a picture to see the reason for the
name. The generic term for all three of these is “critical point.”

An important example of finding a minimum is “least square fitting” of functions. How close are
two functions to each other? The most commonly used, and in every way the simplest, definition of
the distance (squared) between f and g on the interval a < x < b is∫ b

a
dx
∣∣f(x)− g(x)

∣∣2 (8.29)

This means that a large deviation of one function from the other in a small region counts more than
smaller deviations spread over a larger domain. The square sees to that. As a specific example, take a
function f on the interval 0 < x < L and try to fit it to the sum of a couple of trigonometric functions.
The best fit will be the one that minimizes the distance between f and the sum. (Take f to be a
real-valued function for now.)

D2(α, β) =
∫ L

0
dx

(
f(x)− α sin

πx
L
− β sin

2πx
L

)2

(8.30)

D is the distance between the given function and the sines used to fit it. To minimize the distance,
take derivatives with respect to the parameters α and β.

∂D2

∂α
= 2

∫ L

0
dx

(
f(x)− α sin

πx
L
− β sin

2πx
L

)(
− sin

πx
L

)
= 0

∂D2

∂β
= 2

∫ L

0
dx

(
f(x)− α sin

πx
L
− β sin

2πx
L

)(
− sin

2πx
L

)
= 0
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These two equations determine the parameters α and β.

α
∫ L

0
dx sin2 πx

L
=
∫ L

0
dx f(x) sin

πx
L

β
∫ L

0
dx sin2 2πx

L
=
∫ L

0
dx f(x) sin

2πx
L

The other integrals vanish because of the orthogonality of sinπx/L and sin 2πx/L on this interval.
What you get is exactly the coefficients of the Fourier series expansion of f . The Fourier series is the
best fit (in the least square sense) of a sum of orthogonal functions to f . See section 11.6 for more on
this

Is it a minimum? Yes. Look at the coefficients of α2 and β2 in Eq. (8.30). They are positive;
+α2 + β2 has a minimum, not a maximum or saddle point, and there is no cross term in αβ to mess
it up.

The distance function Eq. (8.29) is simply (the square of) the norm in the vector space sense of
the difference of the two vectors f and g. Equations(6.12) and (6.7) here become

‖f − g‖2 =
〈
f − g, f − g

〉
=
∫ b

a
dx
∣∣f(x)− g(x)

∣∣2
~e1

~e2

shortest distance
to the plane

The geometric meaning of Eq. (8.30) is that ~e1 and ~e2 provide a basis for the two dimensional space

α~e1 + β~e2 = α sin
πx
L

+ β sin
2πx
L

The plane is the set of all linear combinations of the two vectors, and for a general vector not in this
plane, the shortest distance to the plane defines the vector in the plane that is the best fit to the given
vector. It’s the one that’s closest. Because the vectors ~e1 and ~e2 are orthogonal it makes it easy to find
the closest vector. You require that the difference, ~v − α~e1 − β~e2 has only an ~e3 component. That is
Fourier series.

Hessian
In this example leading to Fourier components, it’s pretty easy to see that you are dealing with a
minimum and not anything else. In other situations it may not be so easy. You may have a lot of
variables. You may have complicated cross terms. Is x2 + xy + y2 a minimum at the origin? Is
x2 + 3xy + y2? (Yes and No respectively.)

When there’s just one variable there is a simple rule that lets you decide. Check the second
derivative. If it’s positive you have a minimum; if it’s negative you have a maximum. If it’s zero you
have more work to do. Is there a similar method for several variables? Yes, and I’ll show it explicitly for
two variables. Once you see how to do it in two dimensions, the generalization to N is just a matter
of how much work you’re willing to do (or how much computer time you can use).

The Taylor series in two variables, Eq. (2.16), is to second order

f(x+ dx, y + dy) = f(x, y) +
∂f
∂x
dx+

∂f
∂y
dy +

∂2f
∂x2

dx2 + 2
∂2f
∂x∂y

dxdy +
∂2f
∂y2

dy2 + · · ·



8—Multivariable Calculus 18

Write this in a more compact notation in order to emphasize the important parts.

f(~r + d~r )− f(~r ) = ∇f . d~r +
〈
d~r,H d~r

〉
+ · · ·

The part with the gradient is familiar, and to have either a minimum or a maximum, that will have to
be zero. The next term introduces a new idea, the Hessian, constructed from all the second derivative
terms. Write these second order terms as a matrix to see what they are, and in order to avoid a lot of
clumsy notation use subscripts as an abbreviation for the partial derivatives.

〈
d~r,H d~r

〉
= (dx dy )

(
fxx fxy
fyx fyy

)(
dx
dy

)
where d~r = x̂dx+ ŷ dy (8.31)

This matrix is symmetric because of the properties of mixed partials. How do I tell from this
whether the function f has a minimum or a maximum (or neither) at a point where the gradient of f
is zero? Eq. (8.31) describes a function of two variables even after I’ve fixed the values of x and y by
saying that ∇f = 0. It is a quadratic function of dx and dy. Expressed in the language of vectors this
says that f has a minimum if (8.31) is positive no matter what the direction of d~r is — H is positive
definite.

Pull back from the problem a step. This is a 2× 2 symmetric matrix sandwiched inside a scalar
product.

h(x, y) = (x y )
(
a b
b c

)(
x
y

)
(8.32)

Is h positive definite? That is, positive for all x, y? If this matrix is diagonal it’s much easier to see
what is happening, so diagonalize it. Find the eigenvectors and use those for a basis.(

a b
b c

)(
x
y

)
= λ

(
x
y

)
requires det

(
a− λ b
b c− λ

)
= 0

λ2 − λ(a+ c) + ac− b2 = 0 =⇒ λ =
[
(a+ c)±

√
(a− c)2 + b2

]/
2 (8.33)

For the applications here all the a, b, c are the real partial derivatives, so the eigenvalues are real
and the only question is whether the λs are positive or negative, because they will be the (diagonal)
components of the Hessian matrix in the new basis. If this is a double root, the matrix was already
diagonal. You can verify that the eigenvalues are positive if a > 0, c > 0, and 4ac > b2, and that will
indicate a minimum point.

Geometrically the equation z = h(x, y) from Eq. (8.32) defines a surface. If it is positive definite
the surface is a paraboloid opening upward. If negative definite it is a paraboloid opening down. The
mixed case is a hyperboloid — a saddle.

In this 2×2 case you have a quadratic formula to fall back on, and with more variables there are
standard algorithms for determining eigenvalues of matrices, but I’ll leave those to some other book.

8.12 Lagrange Multipliers
This is an incredibly clever method to handle problems of maxima and minima in several variables when
there are constraints.

An example: “What is the largest rectangle?” obviously has no solution, but “What is the largest
rectangle contained in an ellipse?” does.

Another: Particles are to be placed into states of specified energies. You know the total number
of particles; you know the total energy. All else being equal, what is the most probable distribution of
the number of particles in each state?
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I’ll describe this procedure for two variables; it’s the same for more. The problem stated is that
I want to find the maximum (or minimum) of a function f(x, y) given the fact that the coordinates x
and y must lie on the curve φ(x, y) = 0. If you can solve the φ equation for y in terms of x explicitly,
then you can substitute it into f and turn it into a problem in ordinary one variable calculus. What if
you can’t?

Analyze this graphically. The equation φ(x, y) = 0 represents one curve in the plane. The
succession of equations f(x, y) = constant represent many curves in the plane, one for each constant.
Think of equipotentials.

φ = 0

f = 0
1 2 3 4

f = 5
φ = 0

f = 0
1 2 3 4

f = 5

Look at the intersections of the φ-curve and the f -curves. Where they intersect, they will usually
cross each other. Ask if such a crossing could possibly be a point where f is a maximum. Clearly the
answer is no, because as you move along the φ-curve you’re then moving from a point where f has one
value to where it has another.

The one way to have f be a maximum at a point on the φ-curve is for the two curves to touch
and not to cross. When that happens the values of f will increase as you approach the point from one
side and decrease on the other. That makes it a maximum. In this sketch, the values of f decrease
from 4 to 3 to 2 and then back to to 3, 4, and 5. This point where the curve f = 2 touches the φ = 0
curve is then a minimum of f along φ = 0.

To implement this picture so that you can compute with it, look at the gradient of f and the
gradient of φ. The gradient vectors are perpendicular to the curves f =constant and φ =constant
respectively, and at the point where the curves are tangent to each other these gradients are in the
same direction (or opposite, no matter). Either way one vector is a scalar times the other.

∇f = λ∇φ (8.34)

In the second picture, the arrows are the gradient vectors for f and for φ. Break this into components
and you have

∂f
∂x
− λ∂φ

∂x
= 0,

∂f
∂y
− λ∂φ

∂y
= 0, φ(x, y) = 0

There are three equations in three unknowns (x, y, λ), and these are the equations to solve for the
position of the maximum or minimum value of f . You are looking for x and y, so you’ll be tempted to
ignore the third variable λ and to eliminate it. Look again. This parameter, the Lagrange multiplier,
has a habit of being significant.

Examples of Lagrange Multipliers
The first example that I mentioned: What is the largest rectangle that you can inscribe in an ellipse?
Let the ellipse and the rectangle be centered at the origin. The upper right corner of the rectangle is
at (x, y), then the area of the rectangle is

Area = f(x, y) = 4xy,

with constraint φ(x, y) =
x2

a2
+
y2

b2
− 1 = 0
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The equations to solve are now

∇(f − λφ) = 0, and φ = 0, which become

4y − λ2x
a2

= 0, 4x− λ2y
b2

= 0,
x2

a2
+
y2

b2
− 1 = 0 (8.35)

The solutions to these three equations are straight-forward. They are x = a/
√

2, y = b/
√

2, λ = 2ab.
The maximum area is then 4xy = 2ab. The Lagrange multiplier turns out to be the required area.
Does this reduce to the correct result for a circle?

The second example said that you have several different allowed energies, typical of what happens
in quantum mechanics. If the total number of particles and the total energy are given, how are the
particles distributed among the different energies?

If there are N particles and exactly two energy levels, E1 and E2,

N = n1 + n2, and E = n1E1 + n2E2

you have two equations in two unknowns and all you have to do is solve them for the numbers n1 and
n2, the number of particles in each state. If there are three or more possible energies the answer isn’t
uniquely determined by just two equations, and there can be many ways that you can put particles into
different energy states and still have the same number of particles and the same total energy.

If you’re dealing with four particles and three energies, you can perhaps count the possibilities
by hand. How many ways can you put four particles in three states? (400), (310), (301), (220), 211),
etc. There’s only one way to get the (400) configuration: All four particles go into state 1. For (310)
there are four ways to do it; any one of the four particles can be in the second state and the rest in the
first. Keep going. If you have 1020 particles you have to find a better way.

If you have a total of N particles and you place n1 of them in the first state, the number
of ways that you can do that is N for the first particle, (N − 1) for the second particle, etc. =
N(N − 1)(N − 2) · · · (N − n1 + 1) = N !/(N − n1)!. This is over-counting because you don’t care
which one went into the first state first, just that it’s there. There are n1! rearrangements of these n1

particles, so you have to divide by that to get the number of ways that you can get this number of
particles into state 1: N !/n1!(N − n1)! For example, N = 4, n1 = 4 as in the (400) configuration in
the preceding paragraph is 4!/0!4! = 1, or 4!/3!1! = 4 as in the (310) configuration.

Once you’ve got n1 particles into the first state you want to put n2 into the second state (out
of the remaining N − n1). Then on to state 3.

The total number of ways that you can do this is the product of all of these numbers. For three
allowed energies it is

N !
n1!(N − n1)!

. (N − n1)!
n2!(N − n1 − n2)!

. (N − n1 − n2)!
n3!(N − n1 − n2 − n3)!

=
N !

n1!n2!n3!
(8.36)

There’s a lot of cancellation and the final factor in the denominator is one because of the constraint
n1 + n2 + n3 = N .

Lacking any other information about the particles, the most probable configuration is the one for
which Eq. (8.36) is a maximum. This calls for Lagrange multipliers because you want to maximize a
complicated function of several variables subject to constraints on N and on E. Now all you have to
do is to figure out out to differentiate with respect to integers. Answer: If N is large you will be able
to treat these variables as continuous and to use standard calculus to manipulate them.

For large n, recall Stirling’s formula, Eq. (2.20),

n! ∼
√

2πnnne−n or its log: ln(n!) ∼ ln
√

2πn+ n lnn− n (8.37)
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This, I can differentiate. Maximizing (8.36) is the same as maximizing its logarithm, and that’s easier
to work with.

maximize f = ln(N !)− ln(n1!)− ln(n2!)− ln(n3!)
subject to n1 + n2 + n3 = N and n1E1 + n2E2 + n3E3 = E

There are two constraints here, so there are two Lagrange multipliers.

∇
(
f − λ1(n1 + n2 + n3 −N)− λ2(n1E1 + n2E2 + n3E3 −E)

)
= 0

For f , use Stirling’s approximation, but not quite. The term ln
√

2πn is negligible. For n as small as
106, it is about 6× 10−7 of the whole. Logarithms are much smaller than powers. That means that I
can use

∇

(
3∑
`=1

(
− n` ln(n`) + n`

)
− λ1n` − λ2n`E`

)
= 0

This is easier than it looks because each derivative involves only one coordinate.

∂
∂n1

→ − lnn1 − 1 + 1− λ1 − λ2E1 = 0, etc.

This is

n` = e−λ1−λ2E` , ` = 1, 2, 3

There are two unknowns here, λ1 and λ2. There are two equations, for N and E, and the parameter
λ1 simply determines an overall constant, e−λ1 = C.

C
3∑
`=1

e−λ2E` = N, and C
3∑
`=1

E` e
−λ2E` = E

The quantity λ2 is usually denoted β in this type of problem, and it is related to temperature by
β = 1/kT where as usual the Lagrange multiplier is important on its own. It is usual to manipulate
these results by defining the “partition function”

Z(β) =
3∑
`=1

e−βE` (8.38)

In terms of this function Z you have

C = N/Z, and E = −N
Z
dZ
dβ

(8.39)

For a lot more on this subject, you can refer to any one of many books on thermodynamics or statistical
physics. There for example you can find the reason that β is related to the temperature and how the
partition function can form the basis for computing everything there is to compute in thermodynamics.
Especially there you will find that more powerful versions of the same ideas will arise when you allow
the total energy and the total number of particles to be variables too.
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8.13 Solid Angle
The extension of the concept of angle to three dimensions is called “solid angle.” To explain what this
is, I’ll first show a definition of ordinary angle that’s different from what you’re accustomed to. When
you see that, the extension to one more dimension is easy.

Place an object in the plane somewhere not at the origin. You are at the origin and look at it. I
want a definition that describes what fraction of the region around you is spanned by this object. For
this, draw a circle of radius R centered at the origin and draw all the lines from everywhere on the
object to the origin. These lines will intersect the circle on an arc (or even a set of arcs) of length s.
Define the angle subtended by the object to be θ = s/R.

s

R

A

R

Now step up to three dimensions and again place yourself at the origin. This time place a sphere
of radius R around the origin and draw all the lines from the three dimensional object to the origin.
This time the lines intersect the sphere on an area of size A. Define the solid angle subtended by the
object to be Ω = A/R2. (If you want four or more dimensions, see problem 8.52.)

For the circle, the circumference is 2πR, so if you’re surrounded, the angle subtended is 2πR/R =
2π radians. For the sphere, the area is 4πR2, so this time if you’re surrounded, the solid angle subtended
is 4πR2/R2 = 4π sterradians. That is the name for this unit.

All very pretty. Is it useful? Only if you want to describe radiative transfer, nuclear scattering,
illumination, the structure of the atom, or rainbows. Except for illumination, these subjects center
around one idea, that of a “cross section.”

Cross Section, Absorption
Before showing how to use solid angle to describe scattering, I’ll take a simpler example: absorption.
There is a hole in a wall and I propose to measure its area. Instead of taking a ruler to it I blindly fire
bullets at the wall and see how many go in. The bigger the area, the larger the fraction that will go
into the hole of course, but I have to make this quantitative to make it useful.

Define the flux of bullets: f = dN/(dt dA). That is, suppose that I’m firing all the bullets in
the same direction, but not starting from the same place. Pick an area ∆A perpendicular to the stream
of bullets and pick a time interval ∆t. How many bullets pass through this area in this time? ∆N ,
and that’s proportional to both ∆A and ∆t. The limit of this quotient is the flux.

lim
∆t→0
∆A→0

∆N
∆t∆A

= f (8.40)

Having defined the flux as a kind of density, call the (unknown) area of the hole σ. The rate at which
these bullets enter the hole is proportional to the size of the hole and to the flux of bullets, R = fσ,
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where R is the rate of entry and σ is the area of the hole. If I can measure the rate of absorption R
and the flux f , I have measured the area of the hole, σ = R/f . This letter is commonly used for cross
sections.

Why go to this complicated trouble for a hole? I probably shouldn’t, but to measure absorption
of neutrons hitting nuclei this is precisely what you do. I can’t use a ruler on a nucleus, but I can throw
things at it. In this example, neutron absorption by nuclei, the value of the measured absorption cross
section can vary from millibarns to kilobarns, where a barn is 10−24 cm2. The radii of nuclei vary by a
factor of only about six from hydrogen through uranium ( 3

√
238 = 6.2), so the cross section measured

by bombarding the nucleus has little to do with the geometric area πr2. It is instead a measure of
interaction strength

Cross Section, Scattering
There are many types of cross sections besides absorption, and the next simplest is the scattering cross
section, especially the differential scattering cross section.

θ b

b+ db

θ

dΩ

dσ = 2πb db

The same flux of particles that you throw at an object may not be absorbed, but may scatter
instead. You detect the scattering by using a detector. (You were expecting a catcher’s mitt?) The
detector will have an area ∆A facing the particles and be at a distance r from the center of scattering.
The detection rate will be proportional the the area of the detector, but if I double r for the same ∆A,
the detection rate will go down by a factor of four. The detection rate is proportional to ∆A/r2, but
this is just the solid angle of the detector from the center:

∆Ω = ∆A/r2 (8.41)

The detection rate is proportional to the incoming flux and to the solid angle of the detector. The
proportionality is an effective scattering area, ∆σ.

∆R = f∆σ, so
dσ
dΩ

=
dR
fdΩ

(8.42)

This is the differential scattering cross section.
You can compute this if you know something about the interactions involved. The one thing that

you need is the relationship between where the particle comes in and the direction in which it leaves.
That is, the incoming particle is aimed to hit at a distance b (called the impact parameter) from the
center and it scatters at an angle θ, called of course the scattering angle, from its original direction.
Particles that come in at distance between b and b + db from the axis through the center will scatter
into directions between θ and θ + dθ.

The cross section for being sent in a direction between these two angles is the area of the ring:
dσ = 2πb db. Anything that hits in there will scatter into the outgoing angles shown. How much
solid angle is this? Put the z-axis of spherical coordinates to the right, so that θ is the usual spherical
coordinate angle from z. The element of area on the surface of a sphere is dA = r2 sin θdθdφ, so the
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integral over all the azimuthal angles φ around the ring just gives a factor 2π. The element of solid
angle is then

dΩ =
dA
r2

= 2π sin θdθ

As a check on this, do the integral over all theta to get the total solid angle around a point, verifying
that it is 4π.

Divide the effective area for this scattering by the solid angle, and the result is the differential
scattering cross section.

dσ
dΩ

=
2πb db

2π sin θ dθ
=

b
sin θ

db
dθ

If you have θ as a function of b, you can compute this. There are a couple of very minor modifications
that you need in order to complete this development. The first is that the derivative db/dθ can easily
be negative, but both the area and the solid angle are positive. That means that you need an absolute
value here. One other complication is that one value of θ can come from several values of b. It may
sound unlikely, but it happens routinely. It even happens in the example that comes up in the next
section.

dσ
dΩ

=
∑
i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣ (8.43)

The differential cross section often becomes much more involved than this, especially the when
it involves nuclei breaking up in a collision, resulting in a range of possible energies of each part of the
debris. In such collisions particles can even be created, and the probabilities and energy ranges of the
results are described by their own differential cross sections. You will wind up with differential cross
sections that look like dσ/dΩ1 dΩ2 . . . dE1 dE2 . . .. These rapidly become so complex that it takes
some elaborate computer programming to handle the information.

8.14 Rainbow
An interesting, if slightly complicated example is the rainbow. Sunlight scatters from small drops of
water in the air and the detector is your eye. The water drops are small enough that I’ll assume them
to be spheres, where surface tension is enough to hold them in this shape for the ordinary small sizes of
water droplets in the air. The first and simplest model uses geometric optics and Snell’s law to figure
out where the scattered light goes. This model ignores the wave nature of light and it does not take
into account the fraction of the light that is transmitted and reflected at each surface.

b

β

β

β
α

α

α
α

θ

sinβ = n sinα
θ = (β − α) + (π − 2α) + (β − α)
b = R sinβ

(8.44)

The light comes in at the indicated distance b from the axis through the center of the sphere.
It is then refracted, reflected, and refracted. Snell’s law describes the first and third of these, and the
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middle one has equal angles of incidence and reflection. The dashed lines are from the center of the
sphere. The three terms in Eq. (8.44) for the evaluation of θ come from the three places at which the
light changes direction, and they are the amount of deflection at each place. The third equation simply
relates b to the radius of the sphere.

From these three equations, eliminate the two variables α and β to get the single relation between
b and θ that I’m looking for. When you do this, you find that the resulting equations are a bit awkward.
It’s sometimes easier to use one of the two intermediate angles as a parameter, and in this case you will
want to use β. From the picture you know that it varies from zero to π/2. The third equation gives b
in terms of β. The first equation gives α in terms of β. The second equation determines θ in terms of
β and the α that you’ve just found.

The parametrized relation between b and θ is then

b = R sinβ, θ = π + 2β − 4 sin−1

(
1
n

sinβ
)
, (0 < β < π/2) (8.45)

or you can carry it through and eliminate β.

θ = π + 2 sin−1

(
b
R

)
− 4 sin−1

(
1
n
b
R

)
(8.46)

The derivative db/dθ = 1
/

[dθ/db]. Compute this.

dθ
db

=
2√

R2 − b2
− 4√

n2R2 − b2
(8.47)

In the parametrized form this is

db
dθ

=
db/dβ

dθ/dβ
=

R cosβ

2− 4 cosβ/
√
n2 − sin2 β

In analyzing this, it’s convenient to have both forms, as you never know which one will be easier to
interpret. (Have you checked to see if they agree with each other in any special cases?)

0

R

b

0 90 180
θ

n = 1 to 1.5, left to right

0 90 180
θ

dσ/dΩ

These graphs are generated from Eq. (8.45) for eleven values of the index of refraction equally
spaced from 1 to 1.5, and the darker curve corresponds to n = 1.3. The key factor that enters the
cross-section calculation, Eq. (8.43), is db/dθ, because it goes to infinity when the curve has a vertical
tangent. For water, with n = 1.33, the b-θ curve has a vertical slope that occurs for θ a little less than
140◦. That is the rainbow.
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To complete this I should finish with dσ/dΩ. The interesting part of the problem is near the
vertical part of the curve. To see what happens near such a point use a power series expansion near
there. Not b(θ) but θ(b). This has zero derivative here, so near the vertical point

θ(b) = θ0 + γ(b− b0)2

At (b0, θ0), Eq. (8.47) gives zero and Eq. (8.46) tells you θ0. The coefficient γ comes from the second
derivative of Eq. (8.46) at b0. What is the differential scattering cross section in this neighborhood?

b = b0 ±
√

(θ − θ0)/γ, so db/dθ = ± 1
2
√
γ(θ − θ0)

dσ
dΩ

=
∑
i

bi
sin θ

∣∣∣∣dbidθ
∣∣∣∣

=
b0 +

√
(θ − θ0)/γ
sin θ

1
2
√
γ(θ − θ0)

+
b0 −

√
(θ − θ0)/γ
sin θ

1
2
√
γ(θ − θ0)

=
b0

sin θ
√
γ(θ − θ0)

≈ b0

sin θ0

√
γ(θ − θ0)

(8.48)

In the final expression, because this is near θ − θ0 and because I’m doing a power series expansion of
the exact solution anyway, I dropped all the θ-dependence except the dominant factors. This is the
only consistent thing to do because I’ve previously dropped higher order terms in the expansion of θ(b).

Why is this a rainbow? (1) With the sun at your back you see a bright arc of a circle in
the direction for which the scattering cross-section is very large. The angular radius of this circle is
π − θ0 ≈ 42◦. (2) The value of θ0 depends on the index of refraction, n, and that varies slightly with
wavelength. The variation of this angle of peak intensity is

dθ0

dλ
=
dθ0

db0

db0

dn
dn
dλ

(8.49)

When you graph Eq. (8.48) note carefully that it is zero on the left of θ0 (smaller θ) and large on
the right. Large scattering angles correspond to the region of the sky underneath the rainbow, toward
the center of the circular arc. This implies that there is much more light scattered toward your eye
underneath the arc of the rainbow than there is above it. Look at your next rainbow and compare the
area of sky below and above the rainbow.

There’s a final point about this calculation. I didn’t take into account the fact that when light
hits a surface, some is transmitted and some is reflected. The largest effect is at the point of internal
reflection, because typically only about two percent of the light is reflected and the rest goes through.
The cross section should be multiplied by this factor to be complete. The detailed equations for this
are called the Fresnel formulas and they tell you the fraction of the light transmitted and reflected at
a surface as a function of angle and polarization.

This is far from the whole story about rainbows. Light is a wave, and the geometric optics
approximation that I’ve used doesn’t account for everything. In fact Eq. (8.43) doesn’t apply to waves,
so the whole development has to be redone. To get an idea of some of the other phenomena associated
with the rainbow, see for example
www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter 8.html
www.philiplaven.com/links.html

http://www.usna.edu/Users/oceano/raylee/RainbowBridge/Chapter_8.html
http://www.philiplaven.com/links.html
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Exercises

1 For the functions f(x, y) = Axy2 sin(xy), x(t) = Ct3, y(t) = Dt2, compute df/dt two ways.
First use the chain rule, then do explicit substitution and compute it directly.

2 Compute
(
∂f/∂x

)
y and

(
∂f/∂y

)
x for

(a) f(x, y) = x2 − 2xy + y2, (b) f(x, y) = ln(y/x), (c) f(x, y) = (y + x)/(y − x)

3 Compute df/dx using the chain rule for

(a) f(x, y) = ln(y/x), y = x2, (b) f(x, y) = (y + x)/(y − x), y = αx,

(c) f(x, y) = sin(xy), y = 1/x

Also calculate the results by substituting y explicitly and then differentiating, comparing the results.

4 Let f(x, y) = x2 − 2xy, and the polar coordinates are x = r cosφ, y = r sinφ. Compute(
∂f
∂x

)
y
,

(
∂f
∂y

)
x
,

(
∂f
∂x

)
r
,

(
∂f
∂y

)
r
,

(
∂f
∂x

)
φ
,

(
∂f
∂y

)
φ

5 Let f(x, y) = x2 − 2xy, and the polar coordinates are x = r cosφ, y = r sinφ. Compute(
∂f
∂r

)
φ
,

(
∂f
∂φ

)
r
,

(
∂f
∂r

)
x
,

(
∂f
∂φ

)
x
,

(
∂f
∂r

)
y
,

(
∂f
∂φ

)
y

6 For the function f(u, v) = u3 − v3, what is the value at (u, v) = (2, 1)? Approximately what is its
value at (u, v) = (2.01, 1.01)? Approximately what is its value at (u, v) = (2.01, 0.99)?

7 Assume the Earth’s atmosphere is uniform density and 10 km high, what is its volume? What is the
ratio of this volume to the Earth’s volume?

8 For a cube 1 m on a side, what volume of paint will you need in order to paint it to a thickness of
0.2 mm? Don’t forget to paint all the sides.

9 What is grad r2? Do it in both rectangular and polar coordinates. Two dimensions will do. Are your
results really the same?

10 What is grad
(
αx2 + βy2

)
. Do this in both rectangular and polar coordinates. For the polar form,

put x and y in terms of r and φ, then refer to Eq. (8.27) for the polar form of the gradient. Finally,
compare the two results.

11 The Moon has a radius about 1740 km and its distance from Earth averages about 384 000 km from
Earth. What solid angle does the Moon subtend from Earth? What solid angle does Earth (radius
6400 km) subtend from the Moon?

12 Express the cylindrical unit vectors r̂, φ̂, ẑ in terms of the rectangular ones. And vice versa.

13 Evaluate the volume of a sphere by integration in spherical coordinates.
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Problems

8.1 Let r =
√
x2 + y2, x = A sinωt, y = B cosωt. Use the chain rule to compute the derivative

with respect to t of ekr. Notice the various checks you can do on the result, verifying (or disproving)
your result.

8.2 Sketch these functions* in plane polar coordinates:
(a) r = a cosφ (b) r = a secφ (c) r = aφ (d) r = a/φ (e) r2 = a2 sin 2φ

8.3 The two coordinates x and y are related by f(x, y) = 0. What is the derivative of y with respect
to x under these conditions? [What is df along this curve? And have you drawn a sketch?] Make
up a test function (with enough structure to be a test but still simple enough to verify your answer
independently) and see if your answer is correct. Ans: −(∂f/∂x)

/
(∂f/∂y)

8.4 If x = u+ v and y = u− v, show that(
∂y
∂x

)
u

= −
(
∂y
∂x

)
v

Do this by application of the chain rule, Eq. (8.6). Then as a check do the calculation by explicit
elimination of the respective variables v and u.

8.5 If x = r cosφ and y = r sinφ, compute(
∂x
∂r

)
φ

and

(
∂x
∂r

)
y

8.6 What is the differential of f(x, y, z) = ln(xyz).

8.7 If f(x, y) = x3 + y3 and you switch to plane polar coordinates, use the chain rule to evaluate(
∂f
∂r

)
φ
,

(
∂f
∂φ

)
r
,

(
∂2f
∂r2

)
φ
,

(
∂2f
∂φ2

)
r
,

(
∂2f
∂r∂φ

)
Check one or more of these by substituting r and φ explicitly and doing the derivatives.

8.8 When current I flows through a resistance R the heat produced is I2R. Two terminals are
connected in parallel by two resistors having resistance R1 and R2. Given that the total current is
divided as I = I1 + I2, show that the condition that the total heat generated is a minimum leads to
the relation I1R1 = I2R2. You don’t need Lagrange multipliers to solve this problem, but try them
anyway.

8.9 Sketch the magnetic field represented by Eq. (8.24). I suggest that you start by fixing r and

drawing the ~B-vectors at various values of θ. It will probably help your sketch if you first compute
the magnitude of B to see how it varies around the circle. Recall, this field is expressed in spherical
coordinates, though you can take advantage of its symmetry about the z-axis to make the drawing

* See www-groups.dcs.st-and.ac.uk/˜history/Curves/Curves.html for more.

http://www-groups.dcs.st-and.ac.uk/~history/Curves/Curves.html
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simpler. Don’t stop with just the field at fixed r as I suggested you begin. The field fills space, so try
to describe it.

8.10 A drumhead can vibrate in more complex modes. One such mode that vibrates at a frequency
higher than that of Eq. (8.19) looks approximately like

z(r, φ, t) = Ar
(
1− r2/R2

)
sinφ cosω2t

(a) Find the total kinetic energy of this oscillating drumhead.
(b) Sketch the shape of the drumhead at t = 0. Compare it to the shape of Eq. (8.19).
At the instant that the total kinetic energy is a maximum, what is the shape of the drumhead?
Ans: π

48σA
2ω2

2R
4 sin2 ω2t

8.11 Just at there is kinetic energy in a vibrating drumhead, there is potential energy, and as the
drumhead moves its total potential energy will change because of the slight stretching of the material.
The potential energy density (dP.E./dA) in a drumhead is

up =
1
2
T
(
∇z
)2

T is the tension in the drumhead. It has units of Newtons/meter and it is the force per length you
would need if you cut a small slit in the surface and had to hold the two sides of the slit together. This
potential energy arises from the slight stretching of the drumhead as it moves away from the plane of
equilibrium.
(a) For the motion described by Eq. (8.19) compute the total potential energy. (Naturally, you will
have checked the dimensions first to see if the claimed expression for up is sensible.)
(b) Energy is conserved, so the sum of the total potential energy and the total kinetic energy from
Eq. (8.20) must be a constant. What must the frequency ω be for this to hold? Is this a plausible result?

A more accurate result, from solving a differential equation, is 2.405
√
T/σR2. Ans:

√
6T/σR2 =

2.45
√
T/σR2

8.12 Repeat the preceding problem for the drumhead mode of problem 8.10. The exact result, calcu-
lated in terms of roots of Bessel functions is 3.832

√
T/σR2. Ans: 4

√
T/σR2

8.13 Sketch the gravitational field of the Earth from Eq. (8.23). Is the direction of the field plausible?
Draw lots of arrows.

8.14 Prove that the unit vectors in polar coordinates are related to those in rectangular coordinates by

r̂ = x̂ cosφ+ ŷ sinφ, φ̂ = −x̂ sinφ+ ŷ cosφ

What are x̂ and ŷ in terms of r̂ and φ̂?

8.15 Prove that the unit vectors in spherical coordinates are related to those in rectangular coordinates
by

r̂ = x̂ sin θ cosφ+ ŷ sin θ sinφ+ ẑ cos θ

θ̂ = x̂ cos θ cosφ+ ŷ cos θ sinφ− ẑ sin θ

φ̂ = −x̂ sinφ+ ŷ cosφ
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8.16 Compute the volume of a sphere using spherical coordinates. Also do it using rectangular coor-
dinates. Also do it in cylindrical coordinates.

8.17 Finish both integrals Eq. (8.21). Draw sketches to demonstrate that the limits stated there are
correct.

8.18 Find the volume under the plane 2x + 2y + z = 8a and over the triangle bounded by the lines
x = 0, y = 2a, and x = y in the x-y plane. Ans: 8a3

8.19 Find the volume enclosed by the doughnut-shaped surface (spherical coordinates) r = a sin θ.
Ans: π2a3/4

8.20 In plane polar coordinates, compute ∂r̂/∂φ, also ∂φ̂/∂φ. This means that r is fixed and you’re
finding the change in these vectors as you move around a circle. In both cases express the answer in
terms of the r̂-φ̂ vectors. Draw pictures that will demonstrate that your answers are at least in the

right direction. Ans: ∂φ̂/∂φ = −r̂

8.21 Compute the gradient of the distance from the origin (in three dimensions) in three coordinate
systems and verify that they agree.

8.22 Taylor’s power series expansion of a function of several variables was discussed in section 2.5.
The Taylor series in one variable was expressed in terms of an exponential in problem 2.30. Show that
the series in three variables can be written as

e
~h .∇f(x, y, z)

8.23 The wave equation is (a) below. Change variables to z = x− vt and w = x+ vt and show that
in these coordinates this equation is (b) (except for a constant factor). Did you explicitly note which
variables are kept fixed at each stage of the calculation? See also problem 8.53.

(a)
∂2u
∂x2
− 1
v2

∂2u
∂t2

= 0 (b)
∂2u
∂z∂w

= 0

8.24 The equation (8.23) comes from taking the gradient of the Earth’s gravitational potential in an
expansion to terms in 1/r3.

V = −GM
r
− GQ

r3
P2(cos θ)

where P2(cos θ) = 3
2 cos2 θ − 1

2 is the second order Legendre polynomial. Compute ~g = −∇V .

8.25 In problem 2.25 you computed the electric potential at large distances from a pair of charges, −q
at the origin and +q at z = a (r � a). The result was

V =
kqa
r2

P1(cos θ)

where P1(cos θ) = cos θ is the first order Legendre polynomial. Compute the electric field from this

potential, ~E = −∇V . And sketch it of course.
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8.26 In problem 2.26 you computed the electric potential at large distances from a set of three charges,
−2q at the origin and +q at z = ±a (r � a). The result was

V =
kqa2

r3
P2(cos θ)

where P2(cos θ) is the second order Legendre polynomial. Compute the electric field from this potential,
~E = −∇V . And sketch it of course.

8.27 Compute the area of an ellipse having semi-major and semi-minor axes a and b. Compare your
result to that of Eq. (8.35). Ans: πab

8.28 Two equal point charges q are placed at z = ±a. The origin is a point of equilibrium; ~E = 0
there. (a) Compute the potential near the origin, writing V in terms of powers of x, y, and z near
there, carrying the powers high enough to describe the nature of the equilibrium point. Is V maximum,
minimum, or saddle point there? It will be easier if you carry the calculation as far as possible using
vector notation, such as |~r − aẑ| =

√
(~r − aẑ)2, and r � a.

(b) Write your result for V near the origin in spherical coordinates also.

Ans: 2q
4πε0a

[
1 + r2

a2

(
3
2 cos2 θ − 1

2

)]
8.29 When current I flows through a resistance R the heat produced is I2R. Two terminals are
connected in parallel by three resistors having resistance R1, R2, and R3. Given that the total current
is divided as I = I1 + I2 + I3, show that the condition that the total heat generated is a minimum
leads to the relation I1R1 = I2R2 = I3R3. You can easily do problem 8.8 by eliminating a coordinate
then doing a derivative. Here it’s starting to get sufficiently complex that you should use Lagrange
multipliers. Does λ have any significance this time?

8.30 Given a right circular cylinder of volume V , what radius and height will provide the minimum
total area for the cylinder. Ans: r = (V/2π)1/3, h = 2r

8.31 Sometimes the derivative isn’t zero at a maximum or a minimum. Also, there are two types
of maxima and minima; local and global. The former is one that is max or min in the immediate
neighborhood of a point and the latter is biggest or smallest over the entire domain of the function.
Examine these functions for maxima and minima both inside the domains and on the boundary.

|x|, (−1 ≤ x ≤ +2)
T0

(
x2 − y2

)
/a2, (−a ≤ x ≤ a, −a ≤ y ≤ a)

V0(r2/R2)P2(cos θ), (r ≤ R, 3 dimensions)

8.32 In Eq. (8.39) it is more common to specify N and β = 1/kT , the Lagrange multiplier, than
it is to specify N and E, the total energy. Pick three energies, E`, to be 1, 2, and 3 electron volts.
(a) What is the average energy, E/N , as β →∞ (T → 0)?
(b) What is the average energy as β → 0?
(c) What are n1, n2, and n3 in these two cases?

8.33 (a) Find the gradient of V , where V = V0(x2 + y2 + z2)a−2e−
√
x2+y2+z2 /a. (b) Find the

gradient of V , where V = V0(x+ y + z)a−1e−(x+y+z)/a.

8.34 A billiard ball of radius R is suspended in space and is held rigidly in position. Very small pellets
are thrown at it and the scattering from the surface is completely elastic, with no friction. Compute
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the relation between the impact parameter b and the scattering angle θ. Then compute the differential
scattering cross section dσ/dΩ.
Finally compute the total scattering cross section, the integral of this over dΩ.

8.35 Modify the preceding problem so that the incoming object is a ball of radius R1 and the fixed
billiard ball has radius R2.

8.36 Find the differential scattering cross section from a spherical drop of water, but instead of Snell’s
law, use a pre-Snell law: β = nα, without the sines. Is there a rainbow in this case? Sketch dσ/dΩ
versus θ.
Ans: R2 sin 2β

/[
4 sin θ|1− 2/n|

]
, where θ = π + 2(1− 2/n)β

8.37 From the equation (8.43), assuming just a single b for a given θ, what is the integral over all dΩ
of dσ/dΩ? Ans: πb2

max

8.38 Solve Eq. (8.47) for b when dθ/db = 0. For n = 1.33 what value of θ does this give?

8.39 If the scattering angle θ = π
2 sin(πb/R) for 0 < b < R, what is the resulting differential scattering

cross section (with graph). What is the total scattering cross section? Start by sketching a graph of θ
versus b. Ans: 2R2

/[
π2 sin θ

√
1− (2θ/π)2

]
8.40 Find the signs of all the factors in Eq. (8.49), and determine from that whether red or blue is on
the outside of the rainbow. Ans: Look

8.41 If it suddenly starts to rain small, spherical diamonds instead of water, what happens to the
rainbow? n = 2.4 for diamond.

8.42 What would the rainbow look like for n = 2? You’ll have to look closely at the expansions in this
case. For small b, where does the ray hit the inside surface of the drop?

8.43 (a) The secondary rainbow occurs because there can be two internal reflections before the light
leave the drop. What is the analog of Eqs. (8.44) for this case? (b) Repeat problems 8.38 and 8.40
for this case.

8.44 What is the shortest distance from the origin to the plane defined by ~A .(~r − ~r0) = 0? Do this
using Lagrange multipliers, and then explain why of course the answer is correct.

8.45 The U.S. Post Office has decided to use a norm like Eq. (6.11)(2) to measure boxes. The size is
defined to be the sum of the height and the circumference of the box, and the circumference is around
the thickest part of the package: “length plus girth.” What is the maximum volume you can ship if
this size is constrained to be less than 130 inches? For this purpose, assume the box is rectangular, not
cylindrical, though you may expect the cylinder to improve the result. Assume that the box’s dimensions
are a, a, b, with volume a2b.
(a) Show that if you assume that the girth is 4a, then you will conclude that b > a and that you didn’t
measure the girth at the thickest part of the package.
(b) Do it again with the opposite assumption, that you assume b is big so that the girth is 2b + 2a.
Again show that it is a contradiction.
(c) You have two inequalities that you must satisfy: girth plus length measured one way is less than
L = 130 inches and girth plus length measured the other way is too. That is, 4a + b < L and
3a + 2b < L. Plot these regions in the a-b plane, showing the allowed region in a-b space. Also plot
some curves of constant volume, V = a2b. Show that the point of maximum volume subject to these
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constraints is on the edge of this allowed region, and that it is at the corner of intersection of the two
inequalities. This is the beginning of the subject called “linear programming.”
Ans: a cube

8.46 Plot θ versus b in equation (8.45) or (8.46).

8.47 A disk of radius R is at a distance c above the x-y plane and parallel to that plane. What is the
solid angle that this disk subtends from the origin? Ans: 2π

[
1− c/

√
c2 +R2

]
8.48 Within a sphere of radius R, what is the volume contained between the planes defined by z = a
and z = b? Ans: π(b− a)

(
R2 − 1

3(b2 + ab+ a2)
)

8.49 Find the mean-square distance, 1
V

∫
r2 dV , from a point on the surface of a sphere to points

inside the sphere. Note: Plan ahead and try to make this problem as easy as possible. Ans: 8R2/5

8.50 Find the mean distance, 1
V

∫
r dV , from a point on the surface of a sphere to points inside the

sphere. Unlike the preceding problem, this requires some brute force. Ans: 6R/5

8.51 A volume mass density is specified in spherical coordinates to be

ρ(r, θ, φ) = ρ0

(
1 + r2/R2

)[
1 + 1

2 cos θ sin2 φ+ 1
4 cos2 θ sin3 φ

]
Compute the total mass in the volume 0 < r < R. Ans: 32πρ0R3/15

8.52 The circumference of a circle is some constant times its radius (C1r). For the two-dimensional
surface that is a sphere in three dimensions the area is of the form C2r2. Start from the fact that you
know the integral

∫∞
−∞ dx e

−x2
= π1/2 and write out the following two dimensional integral twice. It

is over the entire plane.∫
dAe−r

2
using dA = dxdy and using dA = C1r dr

From this, evaluate C1. Repeat this for dV and C2r2 in three dimensions, evaluating C2.
Now repeat this in arbitrary dimensions to evaluate Cn. Do you need to reread chapter one? In
particular, what is C3? It tells you about the three dimensional hypersphere in four dimensions. From
this, what is the total “hypersolid angle” in four dimensions (like 4π in three)? Ans: 2π2

8.53 Do the reverse of problem 8.23. Start with the second equation there and change variables to see
that it reverts to a constant times the first equation.

8.54 Carry out the interchange of limits in Eq. (8.22). Does the drawing really represent the integral?

8.55 Is x2 + xy + y2 a minimum or maximum or something else at (0, 0)? Do the same question for
x2 + 2xy + y2 and for x2 + 3xy + y2. Sketch the surface z = f(x, y) in each case.

8.56 Derive the conditions stated after Eq. (8.33), expressing the circumstances under which the
Hessian matrix is positive definite.

8.57 In the spirit of problems 8.10 et seq. what happens if you have a rectangular drumhead instead
of a circular one? Let 0 < x < a and 0 < y < b. The drumhead is tied down at its edges, so an
appropriate function that satisfies these conditions is

z(x, y) = A sin(nπx/a) sin(mπy/b) cosωt
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Compute the total kinetic and the total potential energy for this oscillation, a function of time. For
energy to be conserved the total energy must be a constant, so compute the frequency ω for which
this is true. As compared to the previous problems about a circular drumhead, this turns out to give
the exact results instead of only approximate ones. Ans: ω2 = π2 µ

T

[
n2

a2 + m2

b2
]

8.58 Repeat problem 8.45 by another method. Instead of assuming that the box has a square end,
allow it to be any rectangular box, so that its volume is V = abc. Now you have three independent
variables to use, maximizing the volume subject to the post office’s constraint on length plus girth.
This looks like it will have to be harder. Instead, it’s much easier. Draw pictures! Ans: still a cube

b

8.59 An asteroid is headed in the general direction of Earth, and its speed when
far away is v0 relative to the Earth. What is the total cross section for it’s hitting
Earth? It is not necessary to compute the complete orbit; all you have to do is
use a couple of conservation laws. Express the result in terms of the escape speed
from Earth.
Ans: σ = πR2

(
1 + (vesc/v0)2

)
8.60 In three dimensions the differential scattering cross section appeared in Eqs. (8.42) and (8.43).
If the world were two dimensional this area would be a length instead. What are the two corresponding
equations in that case, giving you an expression for d`/dθ. Apply this to the light scattering from a
(two dimensional) drop of water and describe the scattering results. For simplicity this time, assume
the pre-Snell law as in problem 8.36.

8.61 As in the preceding problem, but use the regular Snell law instead.

t′

t′′
t

8.62 This double integral is over the isosceles right triangle in the figure. The
function to be integrated is f(t′) = αt′3, BUT FIRST, set it up for an arbitrary
f(t′) and then set it up again but with the order of integration reversed. In one
of the two cases you should be able to do one integral without knowing f . Having
done this, apply your two results to this particular f as a test case that your work
was correct. In the figure, t′ and t′′ are the two coordinates and t is the coordinate
of the top of the triangle.
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