Extrasolar Planets and Astrophysical Discs Problem Set 2

January 2010

A binary system contains 2 stars with masses m_{1} and m_{2}, where $m_{2} \ll m_{1}$. They rotate with angular velocity Ω in circular orbit about the centre of mass. In a frame corotating with the orbit, the line of centres lies on the x-axis and the origin is at the centre of mass. Thus

$$
D=x_{1}-x_{2}, \quad x_{1}=\frac{m_{2} D}{m_{1}+m_{2}}, \quad x_{2}=-\frac{m_{1} D}{m_{1}+m_{2}}
$$

where D is the distance between the stars, and x_{1} and x_{2} are their positions on the x-axis.

On the line of centres the gravitational and centrifugal potential is

$$
\Phi=-\frac{G m_{1}}{\left|x-x_{1}\right|}-\frac{G m_{2}}{\left|x-x_{2}\right|}-\frac{1}{2} \Omega^{2} x^{2} \quad \text { with } \quad \Omega^{2}=\frac{G\left(m_{1}+m_{2}\right)}{D^{3}}
$$

At the L_{1} Lagrangian point, $\frac{\partial \Phi}{\partial x}=0$. Show that there (for $x>x_{2}, x<x_{1}$)

$$
\left.-\frac{G m_{1}}{\left(x-\frac{m_{2} D}{m_{1}+m_{2}}\right)^{2}}+\frac{G m_{2}}{\left(x+\frac{m_{1} D}{m_{1}+m_{2}}\right)^{2}}-\frac{G\left(m_{1}+m_{2}\right) x}{D^{3}}\right)=0 .
$$

Set $x=r+x_{2}=r-\frac{m_{1} D}{m_{1}+m_{2}}$. Then show that

$$
-\frac{G m_{1}}{(r-D)^{2}}+\frac{G m_{2}}{r^{2}}-\frac{G\left(m_{1}+m_{2}\right) r}{D^{3}}+\frac{G m_{1}}{D^{2}}=0
$$

and hence that, for small r and m_{2}, approximately

$$
\frac{G m_{2}}{r^{2}}=\frac{3 G m_{1} r}{D^{3}}
$$

and thus

$$
r=D\left(\frac{m_{2}}{3 m_{1}}\right)^{1 / 3}
$$

