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The potential energy is Eg = − 1
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of volume at position r, dV ′ is an element of volume at position r′ and V is the total
volume of the cloud. But D is the maximum distance between two points. Therefore,
|r− r′| ≤ D. So,
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The maximum magnetic flux density is B0. Therefore B2 ≤ B 2

0 . So the energy in
the magnetic field is

M <

∫
V

B 2
0

2µ0

dV =
B 2

0

2µ0

∫
V

dV =
B 2

0

2µ0

V .

Note that the inequality (< rather than ≤) comes from the fact that B0 is the
maximum value of B and that B < B0 in some places.
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The cloud is at rest, and assuming that there is no internal motion, K = 0. Putting
the limits on Eg and M into the virial theorem equation, we get
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which gives the required result,
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< 0 , condition given in the question, we get
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(note that the physical quantities G, D, B0, µ0 are all positive).

Define the parameter F as F ≡ πD2B0, therefore π2D4B 2
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4
.

Since D is the largest dimension across the cloud, πD2 > largest area in the cloud.



We have magnetic flux = area × flux density at a point. So πD2B0 > Fm, the
maximum magnetic flux through any surface in the cloud (with F and Fm > 0).
But F ≡ πD2B0. Therefore, F > Fm, the required result. So F 2

m < F2 and
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4
, the required result.

For a magnetic field to start to inhibit the collapse, we expect π2D4B 2
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,

instead of the inequality. Therefore, B0 '
√
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' 9 × 10−11 T ' 1µG

using the given parameters.
(Note that the Gauss, G, is an old unit of magnetic flux density. The Gausss is
related to the S.I. unit the Tesla, T, by 1 G ≡ 10−4 T.)

Flux conservation gives πD2
0B0 = πD2

fBf , where D0 = 1016 m is the initial size and
Df = 7× 108 m and Bf are the final size and flux density.
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So, if the cloud did collapse to a size 1R�, the field would be about 2× 104 T.


