L. Solutions to course work 6

Q1. 30 Marks
a) What is the proper area of a sphere centered at the origin. 11 Marks

Solution:The proper area of a sphere is

$$
\begin{equation*}
S=\iint d l_{\theta} d l_{\phi} \tag{L.1}
\end{equation*}
$$

where $d l_{\theta}$ and $d l_{\phi}$ should be expressed in terms of properly specified $d s$. Working with the metric in χ-form, we have

$$
\begin{equation*}
d l_{\theta}=\sqrt{-\left.d s^{2}\right|_{d t=d \chi=d \phi=0}}=\frac{R \sin A \chi}{A} d \theta \tag{L.2}
\end{equation*}
$$

where θ runs from 0 to π, and

$$
\begin{equation*}
d l_{\phi}=\sqrt{-\left.d s^{2}\right|_{d t=d \chi=d \theta=0}}=\frac{R \sin A \chi}{A} \sin \theta d \phi \tag{L.3}
\end{equation*}
$$

where ϕ runs from 0 to 2π. Hence

$$
\begin{gather*}
S=\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{R \sin A \chi}{A}\right)^{2} \sin \theta d \theta d \phi= \\
\left.\left(\frac{R \sin A \chi}{A}\right)^{2} \cdot 2 \pi(-\cos \theta)\right|_{0} ^{\pi}=\frac{4 \pi R^{2} \sin ^{2} A \chi}{A^{2}} . \tag{L.4}
\end{gather*}
$$

b) Express your result, first, in terms of χ and then in terms of $\sigma .8$ Marks

Solution:If we want to find the area of a sphere of a given lagrangian radius χ_{s} or σ_{s} we also should use the FLRW metric. Working with the metric in σ-form, we have

$$
\begin{equation*}
d l_{\theta}=\sqrt{-\left.d s^{2}\right|_{d t=d \sigma=d \phi=0}}=\sigma R d \theta \tag{L.5}
\end{equation*}
$$

and correspondingly

$$
\begin{equation*}
d l_{\phi}=\sqrt{-\left.d s^{2}\right|_{d t=d \chi=d \theta=0}}=\sigma R \sin \theta d \phi, \tag{L.6}
\end{equation*}
$$

hence

$$
\begin{equation*}
S=4 \pi \sigma^{2} R^{2} \tag{L.7}
\end{equation*}
$$

which is the same as before if one expresses σ in terms of χ.
c) For a closed Universe, one can scale radial coordinate r so that $A=1$. Show that the total volume of such a Universe is

$$
V=2 \pi^{2} R_{0}^{3} .
$$

small11 Marks
Solution:The proper volume of a sphere is

$$
\begin{equation*}
V=\iiint d l_{\theta} d l_{\phi} d l_{\chi} \tag{L.8}
\end{equation*}
$$

where

$$
\begin{equation*}
d l_{\chi}=\sqrt{-\left.d s^{2}\right|_{d t=d \theta=d \phi=0}}=R d \chi \tag{L.9}
\end{equation*}
$$

If $A=1$ (i.e. $k=1$) χ runs from 0 (the first zero of $\sin \chi$) to π (the second zero of $\sin \chi$). Thus, putting $R=R_{0}$ we obtain the total volume of the Universe at the present moment

$$
\begin{gather*}
V=4 \pi R_{0}^{3} \int_{0}^{\pi} d \chi \sin ^{2} \chi= \\
=4 \pi R_{0}^{3} \int_{0}^{\pi} d \chi \frac{1-\cos 2 \chi}{2}=2 \pi R_{0}^{3}\left(\pi-\left.\frac{1}{2}(\sin 2 \chi)\right|_{0} ^{\pi}=2 \pi^{2} R_{0}^{3}\right. \tag{L.10}
\end{gather*}
$$

Q2. small20 Marks
a) In a zero-pressure $\Omega_{0}=1$ Friedman model, show that the current physical distance to an object with redshift z is

$$
r(z)=r_{H}\left[1-(1+z)^{-1 / 2}\right],
$$

where r_{H} is the current particle horizon size.
Solution:For $\Omega_{0}=1$ the curvature parameter $k=0$ and we have

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-R^{2}(t)\left[d \chi^{2}+\chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{L.11}
\end{equation*}
$$

For light we always put $d s=0$. For radially propagating light we should put $d \theta=0$ and $d \phi=0$. Hence

$$
\begin{equation*}
c d t=-R d \chi \tag{L.12}
\end{equation*}
$$

the sign - corresponds to light propagating from outside toward the origin of coordinates where an observer is located. Then

$$
\begin{equation*}
c \int_{t_{e}}^{t_{0}} \frac{d t}{R(t)}=-\left.\chi\right|_{\chi=\chi_{e}} ^{\chi=0} \tag{L.13}
\end{equation*}
$$

where o corresponds to observer and e corresponds to emitter. Thus

$$
\begin{equation*}
\chi_{e}=c \int_{t_{e}}^{t_{0}} \frac{d t}{R(t)} \tag{L.14}
\end{equation*}
$$

To calculate physical or proper distance from the emitter to the observer we should multiply this by present scale factor. Thus,

$$
\begin{equation*}
r=R_{0} \chi_{e}=R_{0} c \int_{t_{e}}^{t_{o}} \frac{d t}{R(t)}=R_{0} c\left[\int_{0}^{t_{0}} \frac{d t}{R(t)}-\int_{0}^{t_{e}} \frac{d t}{R(t)}\right] \tag{L.15}
\end{equation*}
$$

Then taking into account that for dust (pressure is equal to zero)

$$
\begin{equation*}
R(t)=R_{0}\left(\frac{t}{t o}\right)^{2 / 3} \tag{L.16}
\end{equation*}
$$

we have

$$
\begin{equation*}
r=c t_{0}^{2 / 3}\left(\int_{0}^{t_{o}} t^{-2 / 3} d t-\int_{0}^{t_{e}} t^{-2 / 3} d t\right)=3 c t_{0}^{2 / 3}\left(t_{o}^{1 / 3} d t-t_{e}^{1 / 3} d t\right)=3 c t_{o}\left[1-\left(\frac{t_{e}}{t_{o}}\right)^{1 / 3}\right] \tag{L.17}
\end{equation*}
$$

Then taking into account the definition of redshift

$$
\begin{equation*}
1+z=\frac{R_{0}}{R}=\left(\frac{t}{t o}\right)^{-2 / 3} \tag{L.18}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left(\frac{t_{e}}{t_{o}}\right)^{1 / 3}=\left(1+z_{e}\right)^{-1 / 2} \tag{L.19}
\end{equation*}
$$

To calculate the cosmological horizon r_{H} we should just put in these expressions $t_{e}=0$, thus

$$
\begin{equation*}
r_{H}=3 c t_{o} . \tag{L.20}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
r(z)=r_{H}\left[1-(1+z)^{-1 / 2}\right] . \tag{L.21}
\end{equation*}
$$

b) Deduce that objects at the particle horizon have an infinite redshift. 5 Marks

Solution:Taking into account that

$$
\begin{equation*}
1+z \propto t^{-2 / 3} \tag{L.22}
\end{equation*}
$$

we can say that light emitted at the beginning of the expansion of the Universe, i.e. at $t=0$, indeed has infinite redshift.
Q3. 25 Marks
a) The energy flux received per unit area from a source of bolometric luminosity P at redshift z was shown in the lectures to be $\frac{P}{d_{L}^{2}}$, where d_{L} is the "luminosity distance". Show that

$$
d_{L}=(1+z) R_{0} \frac{\sin A \chi}{A}
$$

8 Marks

Solution:The expansion of the Universe results the following two very important and relevant to this section effects:
i) The energy of each arriving photon, $h \nu$, drops by a factor $1+z$. Indeed

$$
\begin{equation*}
h \nu_{o}=\frac{h}{T_{o}}=\frac{c h}{\lambda_{o}}=\frac{c h}{\lambda_{e}(1+z)}=\frac{h \nu_{e}}{1+z} . \tag{L.23}
\end{equation*}
$$

ii) The rate of photon arrival which is inverse proportional to time interval between arrivals of two subsequent photons also drops by another factor $1+z$. Thus we can expect that the flux, i.e. the energy per unit area and per unit time, measured from the source located at a point with lagrangian coordinate χ should be inverse proportional to $(1+z)^{2}$ and equal to

$$
\begin{equation*}
F=\frac{L}{(1+z)^{2} S\left(\chi_{e}\right)}, \tag{L.24}
\end{equation*}
$$

where L is the luminosity of the source, i.e. the energy emitted by the source per unit time, and $S(\chi)$ is a sphere with the center in location of the emitter and passing through the observer with location corresponding to lagrangian coordinate χ :

$$
\begin{equation*}
S(\chi)=4 \pi R_{0}^{2} \frac{\sin ^{2} A \chi}{A^{2}} \tag{L.25}
\end{equation*}
$$

If the Universe were stationary and spatially flat the flux would be equal to

$$
\begin{equation*}
F=\frac{L}{4 \pi d^{2}}=\frac{P}{d^{2}} \tag{L.26}
\end{equation*}
$$

We can use eq. (L.26) as a definition of a distance called the Luminosity Distance d_{L}. From (L.24) and (??) we obtain

$$
\begin{equation*}
d_{L}=(1+z) \sqrt{\frac{S(\chi)}{4 \pi}}=R_{0}(1+z) \frac{\sin A \chi}{A} \tag{L.27}
\end{equation*}
$$

b) Show that

$$
R_{0} \frac{\sin A \chi}{A}=\frac{2 c}{H_{0} \Omega_{0}^{2}(1+z)}\left[\Omega_{0} z+\left(\Omega_{0}-2\right)\left(\sqrt{\Omega_{0} z+1}-1\right)\right]
$$

17 Marks

Solution:From $d s=0$ we have

$$
\begin{equation*}
\chi=c \int_{t_{e}}^{t_{0}} \frac{d t}{R(t)} \tag{L.28}
\end{equation*}
$$

from the Friedmann equation we have

$$
\begin{equation*}
\frac{d r}{d t}=\sqrt{\frac{8 \pi G \rho R^{2}}{3}-A^{2} c^{2}} \tag{L.29}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
k=A^{2} \tag{L.30}
\end{equation*}
$$

we have

$$
\begin{equation*}
d t=\frac{d R}{\sqrt{\frac{8 \pi G \rho R^{2}}{3}-A^{2} c^{2}}} \tag{L.31}
\end{equation*}
$$

Then taking into account the definition of redshift

$$
\begin{equation*}
1+z=\frac{R_{0}}{R} \tag{L.32}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
R=\frac{R_{0}}{1+z}, \quad d R=-\frac{R_{0} d z}{(1+z)^{2}} \tag{L.33}
\end{equation*}
$$

For ρ we have

$$
\begin{equation*}
\rho=\rho_{0} \frac{R_{0}^{3}}{R^{3}}=\rho_{c r} \Omega_{0}(1+z)^{3}=\frac{3 H_{0}^{2}}{8 \pi G} \Omega_{0}(1+z)^{3} \tag{L.34}
\end{equation*}
$$

From the Friedman equation written at the present moment we have

$$
\begin{equation*}
H_{0}^{2}=H_{0}^{2} \Omega_{0}-\frac{A^{2} c^{2}}{R_{0}^{2}} \tag{L.35}
\end{equation*}
$$

hence

$$
\begin{equation*}
A=\frac{H_{0} R_{0}}{c} \sqrt{\Omega_{0}-1} \tag{L.36}
\end{equation*}
$$

Integrating over z and properly changing limits of integration in expression for $\chi\left(t_{0} \rightarrow z=0\right.$ and $t_{e} \rightarrow z$, we obtain

$$
\begin{gather*}
\chi=-\int_{z}^{0} \frac{c R_{0} d z}{(1+z)^{2} R \sqrt{\frac{8 \pi G}{3} \Omega_{0} \frac{3 H_{0}^{2}}{8 \pi G} \frac{R_{0}^{3}}{R}-A^{2} c^{2}}}= \\
=\int_{0}^{z} \frac{c R_{0} d z}{(1+z)^{2} \frac{R_{0}}{1+z} \sqrt{\Omega_{0} H_{0}^{2} R_{0}^{3} \frac{1+z}{R_{0}}-\frac{H_{0}^{2}\left(\Omega_{0}-1\right) R_{0}^{2}}{c^{2}}}}= \\
=\frac{c}{H_{0} R_{0}} \int_{0}^{z} \frac{d z}{(1+z) \sqrt{\Omega_{0}(1+z)-\left(\Omega_{0}-1\right)}}=\frac{c}{H_{0} R_{0}} \int_{0}^{z} \frac{d z}{(1+z) \sqrt{\left.\Omega_{0} z+1\right)}} . \tag{L.37}
\end{gather*}
$$

Thus

$$
\begin{equation*}
A \chi=\frac{H_{0} R_{0}}{c} \sqrt{\Omega_{0}-1} \frac{c}{H_{0} R_{0}} \int_{0}^{z} \frac{d z}{(1+z) \sqrt{\Omega_{0} z+1}}=\sqrt{\Omega_{0}-1} \int_{0}^{z} \frac{d z}{(1+z) \sqrt{\Omega_{0} z+1}} . \tag{L.38}
\end{equation*}
$$

Natural substitution of variable in this case is

$$
\begin{equation*}
\Omega_{0} z+1=x^{2}, \quad \Omega_{0} d z=2 x d x, \quad z=\frac{x^{2}-1}{\Omega_{0}} \tag{L.39}
\end{equation*}
$$

after that

$$
\begin{equation*}
A \chi=\frac{\sqrt{\Omega_{0}-1}}{\Omega_{0}} \int_{1}^{\sqrt{\Omega_{0} z+1}} \frac{2 x d x}{\left(\frac{x^{2}-1}{\Omega_{0}}+1\right) x}=2 \sqrt{\Omega_{0}-1} \int_{1}^{\sqrt{\Omega_{0} z+1}} \frac{d x}{x^{2}+\left(\Omega_{0}-1\right)} . \tag{L.40}
\end{equation*}
$$

Final substitution of variable:

$$
\begin{equation*}
x=\sqrt{\Omega_{0}-1} \xi \tag{L.41}
\end{equation*}
$$

and we have

$$
\begin{equation*}
A \chi=\frac{2 \sqrt{\Omega_{0}-1} \sqrt{\Omega_{0}-1}}{\Omega_{0}-1} \int_{\sqrt{\frac{1}{\Omega_{0}-1}}}^{\sqrt{\frac{\Omega_{0} z+1}{\Omega_{0}-1}}} \frac{d \xi}{\xi^{2}+1}=2(a-b) \tag{L.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan a=\sqrt{\frac{\Omega_{0} z+1}{\Omega_{0}-1}}, \quad \tan b=\frac{1}{\sqrt{\Omega_{0}-1}} . \tag{L.43}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \sin A \chi=\sin (2 a-2 b)=\sin 2 a \cos 2 b-\cos 2 a \sin 2 b= \\
& \quad=\frac{2 \tan a}{1+\tan ^{2} a} \frac{1-\tan ^{2} b}{1+\tan ^{2} b}-\frac{2 \tan b}{1+\tan ^{2} b} \frac{1-\tan ^{2} a}{1+\tan ^{2} a}, \tag{L.44}
\end{align*}
$$

then

$$
\begin{gather*}
1+\tan ^{2} a=1+\frac{\Omega_{0} z+1}{\Omega_{0}-1}=\frac{\Omega_{0}-1+\Omega_{0} z+1}{\Omega_{0}-1}=\frac{\Omega_{0}(1+z)}{\Omega_{0}-1}, \tag{L.45}\\
1-\tan ^{2} a=1-\frac{\Omega_{0} z+1}{\Omega_{0}-1}=\frac{\Omega_{0}-1-\Omega_{0} z-1}{\Omega_{0}-1}=\frac{\Omega_{0}-2-\Omega_{0} z}{\Omega_{0}-1}, \tag{L.46}\\
1+\tan ^{2} b=1+\frac{1}{\Omega_{0}-1}=\frac{\Omega_{0}-1+1}{\Omega_{0}-1}=\frac{\Omega_{0}}{\Omega_{0}-1} . \tag{L.47}\\
1-\tan ^{2} b=1-\frac{1}{\Omega_{0}-1}=\frac{\Omega_{0}-1-1}{\Omega_{0}-1}=\frac{\Omega_{0}-2}{\Omega_{0}-1} . \tag{L.48}
\end{gather*}
$$

Finally

$$
\begin{align*}
\frac{R_{0} \sin A \chi}{A} & =\frac{R_{0} c}{R_{0} H_{0} \sqrt{\Omega_{0}-1}} 2 \sqrt{\Omega_{0}-1} \frac{\left(\Omega_{0}-2\right)\left(\sqrt{\Omega_{0} z+1}-1\right)+\Omega_{0} z}{\Omega_{0}^{2}(1+z)}= \\
& =\frac{2 c}{H_{0} \Omega_{0}^{2}(1+z)}\left[\Omega_{0} z+\left(\Omega_{0}-2\right)\left(\sqrt{\Omega_{0} z+1}-1\right)\right] \tag{L.49}
\end{align*}
$$

Q4. 25 Marks
a) The apparent angular size of an object with linear diameter D at redshift z was shown in the lectures to be

$$
\theta=\frac{D(1+z)}{R_{0}} \frac{A}{\sin A \chi}
$$

where χ is the co-moving radial coordinate. Using the Friedman equation show that for $\Omega_{0}=1$

$$
\theta(z)=\frac{D H_{0}(1+z)^{3 / 2}}{2 c(\sqrt{1+z}-1)}
$$

12 Marks
Solution:Using the previous results we obtain for $\Omega_{0}=1$:

$$
\begin{equation*}
R_{0} \frac{\sin A \chi}{A}=\frac{2 c}{H_{0}(1+z)}[z-(\sqrt{z+1}-1)] \tag{L.50}
\end{equation*}
$$

hence

$$
\begin{equation*}
\theta(z)=\frac{D(1+z)}{R_{0}} \frac{A}{\sin A \chi}=\frac{D H_{0}(1+z)^{3 / 2}}{2 c(\sqrt{1+z}-1)} \tag{L.51}
\end{equation*}
$$

b) Prove that $\theta(z)$ is non-monotonic function and find z corresponding to the minimum of $\theta(z)$. 13 Marks

Solution: The simplest way to see that $\theta(z)$ is non-monotonic function of z is to take derivative $\frac{d \theta}{d z}$ and solve equation $\frac{d \theta}{d z}=0$.

$$
\begin{equation*}
\theta \propto \frac{x^{3}}{x-1} \tag{L.52}
\end{equation*}
$$

where

$$
\begin{gather*}
x=\sqrt{1+z}, \frac{d x}{d z}=\frac{1}{2 \sqrt{1+z}} \neq 0 \tag{L.53}\\
0=\frac{d \theta}{d z}=\frac{d \theta}{d x} \frac{d x}{d z} \propto \frac{3 x^{2}(x-1)-x^{3}}{(x-1)^{2}} \propto(3 x-3-x)=2 x-3, \tag{L.54}
\end{gather*}
$$

hence

$$
\begin{equation*}
x=\frac{3}{2}, \quad 1+z=\frac{9}{4}, \quad z=\frac{5}{4}=1.25 \tag{L.55}
\end{equation*}
$$

This extremum is obviously minimum because when

$$
\begin{equation*}
z \rightarrow 0, \quad \theta(z) \rightarrow z^{-1}, \quad z \rightarrow \infty, \quad \theta(z) \rightarrow z \tag{L.56}
\end{equation*}
$$

