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L. Solutions to course work 6

Q1. 30 Marks

a) What is the proper area of a sphere centered at the origin. 11 Marks

Solution:The proper area of a sphere is

S =
∫ ∫

dlθdlφ, (L.1)

where dlθ and dlφ should be expressed in terms of properly specified ds. Working with the metric in χ-form, we have

dlθ =
√
−ds2|dt=dχ=dφ=0 =

R sinAχ

A
dθ, (L.2)

where θ runs from 0 to π,and

dlφ =
√
−ds2|dt=dχ=dθ=0 =

R sinAχ

A
sin θdφ, (L.3)

where φ runs from 0 to 2π. Hence

S =
∫ π

0

∫ 2π

0

(
R sinAχ

A

)2

sin θdθdφ =

(
R sinAχ

A

)2

· 2π(− cos θ)|π0 =
4πR2 sin2 Aχ

A2
. (L.4)

b) Express your result, first, in terms of χ and then in terms of σ. 8 Marks

Solution:If we want to find the area of a sphere of a given lagrangian radius χs or σs we also should use the FLRW
metric. Working with the metric in σ-form, we have

dlθ =
√
−ds2|dt=dσ=dφ=0 = σRdθ, (L.5)

and correspondingly

dlφ =
√
−ds2|dt=dχ=dθ=0 = σR sin θdφ, (L.6)

hence

S = 4πσ2R2, (L.7)

which is the same as before if one expresses σ in terms of χ.
c) For a closed Universe, one can scale radial coordinate r so that A=1. Show that the total volume of such a Universe is

V = 2π2R3
0.

small11 Marks

Solution:The proper volume of a sphere is

V =
∫ ∫ ∫

dlθdlφdlχ, (L.8)

where

dlχ =
√
−ds2|dt=dθ=dφ=0 = Rdχ. (L.9)
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If A = 1 (i.e. k = 1) χ runs from 0 (the first zero of sinχ)to π (the second zero of sinχ). Thus, putting R = R0 we
obtain the total volume of the Universe at the present moment

V = 4πR3
0

∫ π

0

dχ sin2 χ =

= 4πR3
0

∫ π

0

dχ
1− cos 2χ

2
= 2πR3

0(π −
1
2
(sin 2χ)|π0 = 2π2R3

0. (L.10)

Q2. small20 Marks

a) In a zero-pressure Ω0 = 1 Friedman model, show that the current physical distance to an object with redshift z is

r(z) = rH [1− (1 + z)−1/2],

where rH is the current particle horizon size.

Solution:For Ω0 = 1 the curvature parameter k = 0 and we have

ds2 = c2dt2 −R2(t)[dχ2 + χ2(dθ2 + sin2 θdφ2)]. (L.11)

For light we always put ds = 0. For radially propagating light we should put dθ = 0 and dφ = 0. Hence

cdt = −Rdχ, (L.12)

the sign − corresponds to light propagating from outside toward the origin of coordinates where an observer is located.
Then

c

∫ t0

te

dt

R(t)
= −χ|χ=0

χ=χe
, (L.13)

where o corresponds to observer and e corresponds to emitter. Thus

χe = c

∫ t0

te

dt

R(t)
. (L.14)

To calculate physical or proper distance from the emitter to the observer we should multiply this by present scale
factor. Thus,

r = R0χe = R0c

∫ to

te

dt

R(t)
= R0c[

∫ t0

0

dt

R(t)
−

∫ te

0

dt

R(t)
]. (L.15)

Then taking into account that for dust (pressure is equal to zero)

R(t) = R0

(
t

to

)2/3

, (L.16)

we have

r = ct
2/3
0

(∫ to

0

t−2/3dt−
∫ te

0

t−2/3dt

)
= 3ct

2/3
0

(
t1/3
o dt− t1/3

e dt
)

= 3cto

[
1−

(
te
to

)1/3
]

. (L.17)

Then taking into account the definition of redshift

1 + z =
R0

R
=

(
t

to

)−2/3

, (L.18)

we have (
te
to

)1/3

= (1 + ze)−1/2. (L.19)
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To calculate the cosmological horizon rH we should just put in these expressions te = 0, thus

rH = 3cto. (L.20)

Finally,

r(z) = rH [1− (1 + z)−1/2]. (L.21)

b) Deduce that objects at the particle horizon have an infinite redshift. 5 Marks

Solution:Taking into account that

1 + z ∝ t−2/3, (L.22)

we can say that light emitted at the beginning of the expansion of the Universe, i.e. at t = 0, indeed has infinite
redshift.

Q3. 25 Marks

a) The energy flux received per unit area from a source of bolometric luminosity P at redshift z was shown in the lectures to be
P
d2

L
, where dL is the ”luminosity distance”. Show that

dL = (1 + z)R0
sin Aχ

A
.

8 Marks

Solution:The expansion of the Universe results the following two very important and relevant to this section effects:
i) The energy of each arriving photon, hν, drops by a factor 1 + z. Indeed

hνo =
h

To
=

ch

λo
=

ch

λe(1 + z)
=

hνe

1 + z
. (L.23)

ii) The rate of photon arrival which is inverse proportional to time interval between arrivals of two subsequent photons
also drops by another factor 1 + z. Thus we can expect that the flux, i.e. the energy per unit area and per unit time,
measured from the source located at a point with lagrangian coordinate χ should be inverse proportional to (1 + z)2
and equal to

F =
L

(1 + z)2S(χe)
, (L.24)

where L is the luminosity of the source, i.e. the energy emitted by the source per unit time, and S(χ) is a sphere
with the center in location of the emitter and passing through the observer with location corresponding to lagrangian
coordinate χ:

S(χ) = 4πR2
0

sin2 Aχ

A2
. (L.25)

If the Universe were stationary and spatially flat the flux would be equal to

F =
L

4πd2
=

P

d2
. (L.26)

We can use eq. (L.26) as a definition of a distance called the Luminosity Distance dL. From (L.24) and (??) we obtain

dL = (1 + z)

√
S(χ)
4π

= R0(1 + z)
sinAχ

A
. (L.27)

b) Show that

R0
sin Aχ

A
=

2c

H0Ω2
0(1 + z)

[
Ω0z + (Ω0 − 2)(

√
Ω0z + 1− 1)

]
.

17 Marks
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Solution:From ds = 0 we have

χ = c

∫ t0

te

dt

R(t)
, (L.28)

from the Friedmann equation we have

dr

dt
=

√
8πGρR2

3
−A2c2. (L.29)

Taking into account that

k = A2, (L.30)

we have

dt =
dR√

8πGρR2

3 −A2c2

. (L.31)

Then taking into account the definition of redshift

1 + z =
R0

R
, (L.32)

we obtain

R =
R0

1 + z
, dR = − R0dz

(1 + z)2
. (L.33)

For ρ we have

ρ = ρ0
R3

0

R3
= ρcrΩ0(1 + z)3 =

3H2
0

8πG
Ω0(1 + z)3. (L.34)

From the Friedman equation written at the present moment we have

H2
0 = H2

0Ω0 −
A2c2

R2
0

, (L.35)

hence

A =
H0R0

c

√
Ω0 − 1. (L.36)

Integrating over z and properly changing limits of integration in expression for χ (t0 → z = 0 and te → z, we obtain

χ = −
∫ 0

z

cR0dz

(1 + z)2R
√

8πG
3 Ω0

3H2
0

8πG
R3

0
R −A2c2

=

=
∫ z

0

cR0dz

(1 + z)2 R0
1+z

√
Ω0H2

0R3
0

1+z
R0
− H2

0 (Ω0−1)R2
0

c2

=

=
c

H0R0

∫ z

0

dz

(1 + z)
√

Ω0(1 + z)− (Ω0 − 1)
=

c

H0R0

∫ z

0

dz

(1 + z)
√

Ω0z + 1)
. (L.37)
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Thus

Aχ =
H0R0

c

√
Ω0 − 1

c

H0R0

∫ z

0

dz

(1 + z)
√

Ω0z + 1
=

√
Ω0 − 1

∫ z

0

dz

(1 + z)
√

Ω0z + 1
. (L.38)

Natural substitution of variable in this case is

Ω0z + 1 = x2, Ω0dz = 2xdx, z =
x2 − 1

Ω0
, (L.39)

after that

Aχ =
√

Ω0 − 1
Ω0

∫ √
Ω0z+1

1

2xdx

(x2−1
Ω0

+ 1)x
= 2

√
Ω0 − 1

∫ √
Ω0z+1

1

dx

x2 + (Ω0 − 1)
. (L.40)

Final substitution of variable:

x =
√

Ω0 − 1ξ (L.41)

and we have

Aχ =
2
√

Ω0 − 1
√

Ω0 − 1
Ω0 − 1

∫ √
Ω0z+1
Ω0−1√
1

Ω0−1

dξ

ξ2 + 1
= 2(a− b), (L.42)

where

tan a =
√

Ω0z + 1
Ω0 − 1

, tan b =
1√

Ω0 − 1
. (L.43)

Thus

sinAχ = sin(2a− 2b) = sin 2a cos 2b− cos 2a sin 2b =

=
2 tan a

1 + tan2 a

1− tan2 b

1 + tan2 b
− 2 tan b

1 + tan2 b

1− tan2 a

1 + tan2 a
, (L.44)

then

1 + tan2 a = 1 +
Ω0z + 1
Ω0 − 1

=
Ω0 − 1 + Ω0z + 1

Ω0 − 1
=

Ω0(1 + z)
Ω0 − 1

, (L.45)

1− tan2 a = 1− Ω0z + 1
Ω0 − 1

=
Ω0 − 1− Ω0z − 1

Ω0 − 1
=

Ω0 − 2− Ω0z

Ω0 − 1
, (L.46)

1 + tan2 b = 1 +
1

Ω0 − 1
=

Ω0 − 1 + 1
Ω0 − 1

=
Ω0

Ω0 − 1
. (L.47)

1− tan2 b = 1− 1
Ω0 − 1

=
Ω0 − 1− 1

Ω0 − 1
=

Ω0 − 2
Ω0 − 1

. (L.48)

Finally

R0 sinAχ

A
=

R0c

R0H0

√
Ω0 − 1

2
√

Ω0 − 1
(Ω0 − 2)(

√
Ω0z + 1− 1) + Ω0z

Ω2
0(1 + z)

=

=
2c

H0Ω2
0(1 + z)

[
Ω0z + (Ω0 − 2)(

√
Ω0z + 1− 1)

]
. (L.49)
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Q4. 25 Marks

a) The apparent angular size of an object with linear diameter D at redshift z was shown in the lectures to be

θ =
D(1 + z)

R0

A

sin Aχ
,

where χ is the co-moving radial coordinate. Using the Friedman equation show that for Ω0 = 1

θ(z) =
DH0(1 + z)3/2

2c(
√

1 + z − 1)
.

12 Marks

Solution:Using the previous results we obtain for Ω0 = 1:

R0
sinAχ

A
=

2c

H0(1 + z)
[
z − (

√
z + 1− 1)

]
, (L.50)

hence

θ(z) =
D(1 + z)

R0

A

sinAχ
=

DH0(1 + z)3/2

2c(
√

1 + z − 1)
. (L.51)

b) Prove that θ(z) is non-monotonic function and find z corresponding to the minimum of θ(z). 13 Marks

Solution:The simplest way to see that θ(z) is non-monotonic function of z is to take derivative dθ
dz and solve equation

dθ
dz = 0:

θ ∝ x3

x− 1
, (L.52)

where

x =
√

1 + z,
dx

dz
=

1
2
√

1 + z
6= 0, (L.53)

0 =
dθ

dz
=

dθ

dx

dx

dz
∝ 3x2(x− 1)− x3

(x− 1)2
∝ (3x− 3− x) = 2x− 3, (L.54)

hence

x =
3
2
, 1 + z =

9
4
, z =

5
4

= 1.25. (L.55)

This extremum is obviously minimum because when

z → 0, θ(z)→ z−1, z →∞, θ(z)→ z. (L.56)
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