A. Polnarev. (MTH6128). 2010. Course work 6.

L. Solutions to course work 6
Q1. 30 Marks

a) What is the proper area of a sphere centered at the origin. 11 Marks
Solution:The proper area of a sphere is
S = //dl@dl¢, (L.1)

where dlg and dlg should be expressed in terms of properly specified ds. Working with the metric in x-form, we have

Rsin A
dlp = \/_d52|dt:d><:d¢:0 = TxdG, (L.2)
where 6 runs from 0 to m,and
Rsin Ay .
dly = \/_dSQ‘dt:dX:dQ:O = TX sin 8do, (L3)
where ¢ runs from 0 to 27. Hence
T 27 in A 2
g— / / (Rsmx) sin 0d0dp —
o Jo A
Rsin Ay 2 . AnR? sin? Ay
(A) -2m(—cos )| = — (L.4)

b) Express your result, first, in terms of x and then in terms of o. 8 Marks
Solution:If we want to find the area of a sphere of a given lagrangian radius x; or os; we also should use the FLRW
metric. Working with the metric in o-form, we have

dly = \/~d5?|ar=do—as=0 = o RO, (L.5)
and correspondingly
dly = \/~ds?|ar=ax=do—0 = o Rsin 6do, (L.6)
hence
S = 4n0*R?, (L.7)

which is the same as before if one expresses ¢ in terms of x.

¢) For a closed Universe, one can scale radial coordinate r so that A=1. Show that the total volume of such a Universe is
V = 212R3.

small11 Marks
Solution:The proper volume of a sphere is

V= / / / dlgdlydly, (L.8)

le = \/7d32|dt:d6‘:d¢:0 = RdX (Lg)

where
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If A=1 (i.e. k=1) x runs from 0 (the first zero of sin x)to 7 (the second zero of siny). Thus, putting R = Ry we
obtain the total volume of the Universe at the present moment

V= 47TR3/ dysin?y =
0

™ 1 cos2 1
- 47ng/ dxy = 2mRY(m — 5 (sin2))|f = 2R, (L.10)
0

Q2. small20 Marks
a) In a zero-pressure Qo = 1 Friedman model, show that the current physical distance to an object with redshift z is
r(z) =rall — (14277,

where rg s the current particle horizon size.
Solution:For 0y = 1 the curvature parameter £k = 0 and we have

ds? = 2dt? — R*(t)[dx* + x*(d6? + sin® 0d¢p?))]. (L.11)
For light we always put ds = 0. For radially propagating light we should put df = 0 and d¢ = 0. Hence
cdt = —Rdy, (L.12)

the sign — corresponds to light propagating from outside toward the origin of coordinates where an observer is located.
Then

to gt

—— = X2 L.13
o] = (L.13)
where o corresponds to observer and e corresponds to emitter. Thus
fo gt
Xe = C/ . L.14
. RO 1y

To calculate physical or proper distance from the emitter to the observer we should multiply this by present scale
factor. Thus,

to (gt to te
:R GZR 7:R _— —. L.15
r=FRox / 0 R SO 0 (L.15)

Then taking into account that for dust (pressure is equal to zero)

R(t) = Ry (;0)2/3 , (L.16)

we have

t t 1/3
o e te
r=ct2/? (/ t=2/3dt —/ t_2/3dt> =3ct2/? (ti/3dt - t;/i”dt) = 3ct, [1 - <t> ] . (L.17)
0 0 o

Then taking into account the definition of redshift

Ro L\ 2/
1 = — = — L.1
pe= T (t) , (L18)

we have

(’56)1/3 — (14 2)" V2 (L.19)
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To calculate the cosmological horizon rg we should just put in these expressions t, = 0, thus
T = 3ct,. (L.20)
Finally,
r(z) =rg[l — (14 2)7172). (L.21)

b) Deduce that objects at the particle horizon have an infinite redshift. 5 Marks
Solution:Taking into account that

14z oct™2/3, (L.22)
we can say that light emitted at the beginning of the expansion of the Universe, i.e. at t = 0, indeed has infinite
redshift.

Q3. 25 Marks

a) The energy flux received per unit area from a source of bolometric luminosity P at redshift z was shown in the lectures to be
“z, where dy, is the "luminosity distance”. Show that

L
sin Ay

dr = (1+2)Ro 1

8 Marks
Solution:The expansion of the Universe results the following two very important and relevant to this section effects:
i) The energy of each arriving photon, hv, drops by a factor 1+ z. Indeed

o= o _ch b e
ST, X A(lH2) 142

(L.23)

ii) The rate of photon arrival which is inverse proportional to time interval between arrivals of two subsequent photons
also drops by another factor 1+ z. Thus we can expect that the flux, i.e. the energy per unit area and per unit time,
measured from the source located at a point with lagrangian coordinate y should be inverse proportional to (1 + z)?2
and equal to

L
F= EPLEAL (L.24)

where L is the luminosity of the source, i.e. the energy emitted by the source per unit time, and S(x) is a sphere
with the center in location of the emitter and passing through the observer with location corresponding to lagrangian
coordinate x:

.2
sin® Ax
If the Universe were stationary and spatially flat the flux would be equal to
L P
= = —. L.2
dwd?  d? (L.26)
We can use eq. (L.26]) as a definition of a distance called the Luminosity Distance dr. From (L.24)) and (??) we obtain
S(x) sin Ay
dr =(1 — = 1 —. L.2
L=t 2y 20 = Ry 4 )T (L.27)
b) Show that
sin Ax 2¢ B _
R = iy {Qoz + (D0 - 2)(V 0z + 1 1)] .

17 Marks
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Solution:From ds = 0 we have

from the Friedmann equation we have

Taking into account that

we have

Then taking into account the definition of redshift

Ry
1 = —
+z R
we obtain
RO Rodz
R= dR = — .
142’ (14 2)2
For p we have
Ry 5 3HF 3
p— —_— = CTQ 1 = Q 1 .
P=Popz =P o(l+2) 837G o(l+2)

From the Friedman equation written at the present moment we have
H? = HZQp — —5-

hence

(L.28)

(L.29)

(L.30)

(L.31)

(L.32)

(L.33)

(L.34)

(L.35)

(L.36)

Integrating over z and properly changing limits of integration in expression for x (t9 — z = 0 and ¢, — z, we obtain

_ /0 cRodz
A 5

14 2)°Ry/ 8260 SE 1 _ p2c2

B /Z cRodz
0 (1 + 2)2 Roz \/QOHgRglRiOZ . Hg(ng—l)Rg

1+

c ? dz c #
- HoRo/o (1+2)ylte) (-1 HoRo/o (1+2)

30

(L.37)
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Thus
H()RO c /Z dz /
Ay = Vo —1 Qo — L.38
X c 0 HoRy Jo (14 2)v/Qoz+1 0 (1+2) \/Qoz+ ( )
Natural substitution of variable in this case is
x? -1
Qoz+1=2% Qudz=2zdr, z= o (L.39)
0
after that
Vo —1 /VQOZH 2zdx / Vioz+1 dx
Ay = ——— — =2/ — _ L.40
Ca ko B OV E 1) (L.40)
Final substitution of variable:
=+/Qy — 1& (L.41)
and we have
gt
2\/90 — ]-\/QO —1 \/ Qo—1 df
Ay = ) 7 .1 2(a —b), (L.42)
o1 N @
where
QoZ + ]. 1
t = , tanb = ——. L.43
ana Q1 an =1 ( )
Thus
sin Ay = sin(2a — 2b) = sin 2a cos 2b — cos 2a sin 2b =
_ 2tana l—tanzb_ 2tanb 1—tan’a (L.44)
T 1+4+tan?al+tan?b 1 +tan?b1+tanZa’ ’
then
QQZ+1 Qo—1+902’+1 Qo(1+2)
1+tan®a=1 = = L.45
e = it g1 Qo —1 Q1" (L.45)
Q()Z‘f']. Qo—].—Q()Z—]. 90—2—902
1—tan?a=1— = = L4
an-a O — 1 O — 1 Q-1 (L.-46)
1 Qp—1+1 Q0
+tan Tl Q-1 -1 (L.47)
1 Q—1—-1 Qg—2
1 —tan?’b=1— = = ) L.48
an Q-1 Q-1 Q-1 (L.48)
Finally
Ryosin Ay Rgc 9./ 71(9072)(\/Qoz+171)+ﬂoz B
A T ReHp/o -1 V77 Q2(1+2) -
2c
— 2 Qur+ (90— 2)(VQ 14}. L.4
oA (o7 (o= D(V0z +1-1) (L.49)
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Q4. 25 Marks
a) The apparent angular size of an object with linear diameter D at redshift z was shown in the lectures to be

D(1+z2) A

0= Ry  sin Ay’

where x is the co-moving radial coordinate. Using the Friedman equation show that for Qo = 1

_ DHo(1 + 2)%?

&) = eIz 1)

12 Marks
Solution:Using the previous results we obtain for Qg = 1:

R sinAAx _ Ho(iC-F 5 [z— (Vz+1-1)], (L.50)

hence

D(1+z) A  DHy(1+2z)%?

0(z) = - = . L.51
() Ry sinAx  2c(vV1+2-1) (L.51)
b) Prove that 6(z) is non-monotonic function and find z corresponding to the minimum of 0(z). 18 Marks
Solution:The simplest way to see that 6(z) is non-monotonic function of z is to take derivative g—z and solve equation
do _ (.
T =0
3
x
0 L.52
o (L.52)
where
dx 1
=V1l+z, —=—r=#0, L.53
v * dz 214+ 2 7 ( )
df dfdr 32*(x—1)—2?
dz  dvdz > (z—1)2 x (32 z) =2 ( )
hence
3 9 5
==, 1 = - =- =1.25. L.55
w=3 ltz=, 2= (L.55)
This extremum is obviously minimum because when
z2—0, 0(z) =271, z— 00, 0(2) = 2 (L.56)
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