J. Solutions to course work 5

CW5

Q1. 30 Marks
a) Derive the Friedman-Lemetre-Robertson-Walker metric for spatially flat Universe. 15 Marks

Solution:By considering the geometry of isotropic three-dimensional space as the geometry on a isotropic hypersurface in a fictitious four-dimensional space. Such a space is a hypersphere

$$
\begin{equation*}
x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=a^{2}, \tag{J.1}
\end{equation*}
$$

and the element of length on it is

$$
\begin{equation*}
d l^{2}=d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}+d x_{4}^{2} \tag{J.2}
\end{equation*}
$$

Using spherical coordinates

$$
\begin{equation*}
x_{1}=r \sin \theta \cos \phi, \quad x_{2}=r \sin \theta \sin \phi, \quad x_{3}=r \cos \theta \tag{J.3}
\end{equation*}
$$

we can easily eliminate the fictitious coordinate x_{4} :

$$
\begin{equation*}
r^{2}+x_{4}^{2}=a^{2} \tag{J.4}
\end{equation*}
$$

then differentiating we obtain

$$
\begin{equation*}
2 r d r+2 x_{4} d x_{4}=0 \tag{J.5}
\end{equation*}
$$

and

$$
\begin{equation*}
d x_{4}=-\frac{r d r}{x_{4}}=-\frac{r d r}{\sqrt{a^{2}-r^{2}}} \tag{J.6}
\end{equation*}
$$

Hence

$$
\begin{align*}
d l^{2} & =d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)+\frac{r^{2} d r^{2}}{a^{2}-r^{2}}=d r^{2}\left(1+\frac{r^{2}}{a^{2}-r^{2}}\right)+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)= \\
& =d r^{2}\left(\frac{a^{2}-r^{2}+r^{2}}{a^{2}-r^{2}}\right)+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)=\frac{d r^{2}}{1-\frac{r^{2}}{a^{2}}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{J.7}
\end{align*}
$$

For spatially flat Universe

$$
\begin{equation*}
a \rightarrow \infty \tag{J.8}
\end{equation*}
$$

and we have

$$
\begin{equation*}
d l^{2}=d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{J.9}
\end{equation*}
$$

Then introducing lagrangian coordinate χ defined by

$$
\begin{equation*}
r=R(t) \chi \tag{J.10}
\end{equation*}
$$

and taking into account that

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-d l^{2} \tag{J.11}
\end{equation*}
$$

we finally obtain

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-R^{2}(t)\left[d \chi^{2}+\chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{J.12}
\end{equation*}
$$

b) Derive the Friedman-Lemetre-Robertson-Walker metric in the case of constant negative curvature of the three-dimensional space. 15 Marks
Solution:In the case of constant negative curvature of the three-dimensional space a should be replaced by $i a$ and we obtain (see Solution 1a)

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-d l^{2}=c^{2} d t^{2}-\frac{d r^{2}}{1-\frac{r^{2}}{(i a)^{2}}}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)=c^{2} d t^{2}-\frac{d r^{2}}{1+\frac{r^{2}}{a^{2}}}-r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \tag{J.13}
\end{equation*}
$$

Then introducing lagrangian coordinate χ defined by

$$
\begin{equation*}
r=a(t) \sinh \chi \tag{J.14}
\end{equation*}
$$

we finally obtain
$d s^{2}=c^{2} d t^{2}-a^{2}(t)\left[\frac{d(\sinh \chi)^{2}}{1+\sinh ^{2} \chi}+\sinh ^{2} \chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]=c^{2} d t^{2}-a^{2}(t)\left[\frac{\cosh ^{2} \chi d \chi^{2}}{\cosh ^{2} \chi}+\sinh ^{2} \chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]=$

$$
\begin{equation*}
=c^{2} d t^{2}-a^{2}(t)\left[d \chi^{2}+\sinh ^{2} \chi^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{J.15}
\end{equation*}
$$

Q2. 30 Marks
a) Show that a positive Λ - term corresponds to a repulsive force whose strength is proportional to distance. Show that when Λ - term dominates

$$
R \sim \exp \left[(\Lambda / 3)^{1 / 2} t\right]
$$

20 Marks
Solution:The Λ - term is additional term in the following version of the EFES.

$$
\begin{equation*}
R_{k}^{i}-\frac{1}{2} \delta_{k}^{i} R-\Lambda \delta_{k}^{i}=\frac{8 \pi G}{c^{4}} T_{k}^{i} \tag{J.16}
\end{equation*}
$$

where T_{k}^{i} is the Stress-Energy tensor and Λ is a constant introduced by Einstein. Let us first show that in this case the acceleration equation for scale factor $a(t)$ can be written as

$$
\begin{equation*}
\ddot{a}=-\frac{4 \pi G}{3}\left(\rho+\frac{3 P}{c^{2}}\right) a+\frac{\Lambda a}{3} \tag{J.17}
\end{equation*}
$$

As we know from Chapter 19

$$
\begin{equation*}
R_{0}^{0}=-\frac{3 \ddot{a}}{a c^{2}} . \tag{J.18}
\end{equation*}
$$

Taking $i=0$ and $k=0$ in Eq. J.16), we obtain

$$
\begin{equation*}
-\frac{3 \ddot{a}}{a c^{2}}-\frac{1}{2} R-\Lambda=\frac{8 \pi G}{c^{4}} T_{0}^{0}=\frac{8 \pi G}{c^{4}} \epsilon, \tag{J.19}
\end{equation*}
$$

On other hand if we produce summation $i=k$ in J.16), we obtain

$$
\begin{equation*}
R-\frac{1}{2} \times 4 R-\Lambda \times 4=\frac{8 \pi G}{c^{4}} T=\frac{8 \pi G}{c^{4}}(\epsilon-3 P)=\frac{8 \pi G}{c^{2}}\left(\rho-\frac{3 P}{c^{2}}\right) \tag{J.20}
\end{equation*}
$$

hence

$$
\begin{equation*}
-R-4 \Lambda=\frac{8 \pi G}{c^{2}}\left(\rho-\frac{3 P}{c^{2}}\right) \tag{J.21}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{3 \ddot{a}}{a c^{2}}-\frac{1}{2}\left[-4 \Lambda-\frac{8 \pi G}{c^{2}}\left(\rho-\frac{3 P}{c^{2}}\right)\right]-\Lambda=\frac{8 \pi G}{c^{2}} \rho \tag{J.22}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\ddot{a}=-\frac{4 \pi G}{3}\left(\rho+\frac{3 P}{c^{2}}\right) a+\frac{\Lambda a}{3} . \tag{J.23}
\end{equation*}
$$

One can see that if $\Lambda>0$ the Λ - term corresponds to a repulsive force whose strength is proportional to distance. When this term dominates we can re-write Eq (J.23) as

$$
\begin{equation*}
\ddot{a}=\frac{\Lambda a}{3} . \tag{J.24}
\end{equation*}
$$

Trying solution

$$
\begin{equation*}
a=C e^{\lambda t} \tag{J.25}
\end{equation*}
$$

corresponds to

$$
\begin{equation*}
\lambda=\sqrt{\frac{\Lambda}{3}} \tag{J.26}
\end{equation*}
$$

b) Verify that the substitution

$$
\sigma=A^{-1} \sin A \chi
$$

turns the metric

$$
d s^{2}=-c^{2} d t^{2}+R(t)^{2}\left[d \chi^{2}+\left(A^{-1} \sin A \chi\right)^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

into the form

$$
d s^{2}=-c^{2} d t^{2}+R(t)^{2}\left[\left(1-A^{2} \sigma^{2}\right)^{-1} d \sigma^{2}+\sigma^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

10 Marks
Solution:Differentiating

$$
\begin{equation*}
\sigma=A^{-1} \sin A \chi \tag{J.27}
\end{equation*}
$$

we have

$$
\begin{equation*}
d \sigma=A^{-1} A \cos A \chi d \chi=\cos A \chi d \chi \tag{J.28}
\end{equation*}
$$

hence

$$
\begin{equation*}
d \chi=\frac{d \sigma}{\cos A \chi} \tag{J.29}
\end{equation*}
$$

Substituting this into the above expression for $d s^{2}$ we obtain

$$
\begin{gather*}
d s^{2}=-c^{2} d t^{2}+R(t)^{2}\left[\frac{d \sigma^{2}}{\cos ^{2} A \chi}+\sigma^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]=-c^{2} d t^{2}+R(t)^{2}\left[\left(1-\sin ^{2} A \chi\right)^{-1} d \sigma^{2}+\sigma^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]= \\
=-c^{2} d t^{2}+R(t)^{2}\left[\left(1-A^{2} \sigma^{2}\right)^{-1} d \sigma^{2}+\sigma^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{J.30}
\end{gather*}
$$

Q3. 40 Marks
a) Starting from the first law of thermodynamics (in cosmological context it means the change of energy is equal to work done by forces of pressure)

$$
d E=-p d V
$$

where E is total energy in some volume V and p is pressure and ρ is mass density, derive the energy conservation equation

$$
\dot{\rho}=-(3 \dot{R} / R)\left(\rho+p / c^{2}\right)
$$

10 Marks

Solution:Taking into account that

$$
\begin{equation*}
E=\rho c^{2} V \tag{J.31}
\end{equation*}
$$

after differentiation we have

$$
\begin{equation*}
d E=d\left(\rho c^{2} V\right)=c^{2} d \rho V+c^{2} \rho d V \tag{J.32}
\end{equation*}
$$

Substituting this into the first law of thermodynamics, we have

$$
\begin{equation*}
d \rho V+\rho d V=-\frac{p}{c^{2}} d V \tag{J.33}
\end{equation*}
$$

hence

$$
\begin{equation*}
d \rho V=-\left(\rho+\frac{p}{c^{2}}\right) d V \tag{J.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\rho}=-(\dot{V} / V)\left(\rho+p / c^{2}\right) \tag{J.35}
\end{equation*}
$$

Taking into account that

$$
\begin{equation*}
V \sim R^{3} \tag{J.36}
\end{equation*}
$$

we finally obtain

$$
\begin{equation*}
\dot{\rho}=-(3 \dot{R} / R)\left(\rho+p / c^{2}\right) \tag{J.37}
\end{equation*}
$$

b) Show that the Einstein equation

$$
(3 \ddot{R} / R)=-4 \pi G\left(\rho+\frac{3 p}{c^{2}}\right)
$$

can be combined with the energy conservation equation and integrated to give the Friedman equation

$$
(\dot{R} / R)^{2}-8 \pi G \rho / 3=-k c^{2} / R^{2}
$$

10 Marks
Solution:From the energy conservation equation we obtain

$$
\begin{equation*}
\frac{p}{c^{2}}=-\rho-\frac{\dot{\rho} R}{3 \dot{R}} \tag{J.38}
\end{equation*}
$$

Putting this expression for p into the acceleration equation, we have

$$
\begin{align*}
\ddot{R}=- & \frac{4 \pi G R}{3}\left(\rho+\frac{3 p}{c^{2}}\right)=-\frac{4 \pi G R}{3}\left(\rho-3 \rho-\frac{\dot{\rho} R}{\dot{R}}\right)= \\
& =\frac{4 \pi G}{3 \dot{R}}\left(2 \rho R \dot{R}+\dot{\rho} R^{2}\right)=\frac{4 \pi G}{3 \dot{R}}\left(\rho R^{2}\right), \tag{J.39}
\end{align*}
$$

then multiplying both sides of this equation by $2 \dot{R}$ and taking into account that

$$
\begin{equation*}
2 \dot{R} \ddot{R}=\left(R^{2}\right)^{\dot{x}} \tag{J.40}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left(\dot{R}^{2}\right)=\frac{8 \pi G}{3}\left(\rho R^{2}\right) \tag{J.41}
\end{equation*}
$$

hence

$$
\begin{equation*}
\dot{R}^{2}=\frac{8 \pi G}{3} \rho R^{2}-k c^{2} \tag{J.42}
\end{equation*}
$$

This is the Friedmann equation in the relativistic Cosmology.
c) Assume that $p=\alpha \rho c^{2}$, where α is equation of state parameter, show that at some times

$$
R \sim t^{2 /[3(1+\alpha)]}
$$

and find the range of time when this equation is valid for different α, which is supposed to be $-1 \leq \alpha \leq 1$. 20 Marks Solution:If we put the equation of state

$$
\begin{equation*}
P=\alpha \rho c^{2} \tag{J.43}
\end{equation*}
$$

into the energy conservation equation we obtain

$$
\begin{equation*}
\frac{\dot{\rho}}{\rho}=-3(1+\alpha) \frac{\dot{R}}{R} \tag{J.44}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
(\ln \rho)^{\cdot}+3(1+\alpha)(\ln R)^{\cdot}=[\ln \rho+3(1+\alpha) \ln R]^{\cdot}=\left\{\ln \left[\rho R^{3(1+\alpha)}\right]\right\}^{\cdot}=0 \tag{J.45}
\end{equation*}
$$

thus

$$
\begin{equation*}
\ln \left[\rho R^{3(1+\alpha)}\right]=C \tag{J.46}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho R^{3(1+\alpha)}=C^{\prime} . \tag{J.47}
\end{equation*}
$$

Finally we obtain that

$$
\begin{equation*}
\rho=\rho_{0}\left(\frac{R_{0}}{R}\right)^{3(1+\alpha)} \tag{J.48}
\end{equation*}
$$

If

$$
\begin{equation*}
\frac{8 \pi G \rho}{3} \gg \frac{|k| c^{2}}{R^{2}} \tag{J.49}
\end{equation*}
$$

the Friedman equation is reduced to

$$
\begin{equation*}
\frac{\dot{R}^{2}}{R^{2}}=\frac{8 \pi G \rho}{3} \tag{J.50}
\end{equation*}
$$

Substituting into this equation the expression for ρ obtained above, we have

$$
\begin{equation*}
\frac{\dot{R}}{R}=\left(\frac{8 \pi G \rho}{3}\right)^{1 / 2}\left(\frac{R_{0}}{R}\right)^{\frac{3(1+\alpha)}{2}} \tag{J.51}
\end{equation*}
$$

we can solve this equation by the separation of variables. For that let introduce

$$
\begin{equation*}
x=\frac{R}{R_{0}} \beta=\frac{3(1+\alpha)}{2} \text { and } A=\left(\frac{8 \pi G \rho}{3}\right)^{1 / 2} \tag{J.52}
\end{equation*}
$$

In terms of x, β and A the above equation can be written as

$$
\begin{equation*}
\dot{x} x^{\beta-1}=A \tag{J.53}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{1}{\beta} d x^{\beta}=A d t \tag{J.54}
\end{equation*}
$$

hence

$$
\begin{equation*}
x^{\beta}=\beta A t+C . \tag{J.55}
\end{equation*}
$$

Taking into account that $x=0$ at $t=0$ we put $C=0$. Thus

$$
\begin{equation*}
x^{\beta} \sim t \tag{J.56}
\end{equation*}
$$

and

$$
\begin{equation*}
R \sim x \sim t^{\frac{1}{\beta}}=t^{\frac{2}{3(1+\alpha)}} \tag{J.57}
\end{equation*}
$$

This solution is valid if

$$
\begin{equation*}
\frac{8 \pi G \rho}{3} \gg \frac{|k| c^{2}}{R^{2}} \tag{J.58}
\end{equation*}
$$

If $k=0$ this solution is valid for all t. If $k= \pm 1$ the LHS goes like $R^{-3(1+\alpha)}$ while the RHS goes like R^{-2}. Hence if $-3(1+\alpha)>-2$ or $\alpha<-1 / 3$ our solution is valid for small R and correspondingly small t, if $\alpha>-1 / 3$ our solution is valid for large R and correspondingly large t.

