A. Polnarev. (MTH6128). 2010. Course work 5.

J. Solutions to course work 5

CW5
Q1. 30 Marks

a) Derive the Friedman-Lemetre-Robertson- Walker metric for spatially flat Universe. 15 Marks
Solution:By considering the geometry of isotropic three-dimensional space as the geometry on a isotropic hypersurface
in a fictitious four-dimensional space. Such a space is a hypersphere

o]+ 3 + 23 + 2] = a?, (J.1)
and the element of length on it is
di? = da? + da3 + da? + da?. (J.2)
Using spherical coordinates
x1 =rsinfcos¢p, ro =rsinfsing, x3=rcosb, (J.3)

we can easily eliminate the fictitious coordinate xz4:

r? + J:Z = a2, (J.4)
then differentiating we obtain
2rdr 4+ 2x4dxs =0 (J.5)
and
dzy = —% =— azdi = (1.6)
Hence

2 2 2/ 102 .92 2 r2dr? 2 r? 20 192 .2 2
di* = dr® +r°(d0” + sin” 0d¢°) + —— =dr” (1 + —— | +7°(d0” + sin” 0dp”) =
a—r az—r

— dr? <“2;2T_2:;T2) + 72(d6* + sin® 0dp?) = 1‘"; +72(d6* + sin® 0d¢?). (J.7)
)
For spatially flat Universe
a — 00 (J.8)
and we have
di? = dr? + r2(d6* + sin® 8dp?). (J.9)
Then introducing lagrangian coordinate x defined by
r=R(t)x (J.10)
and taking into account that
ds® = c2dt* — dI? (J.11)
we finally obtain
ds® = c2dt* — R%*(t)[dx* + x*(d6? + sin® 0dp?)]. (J.12)
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b) Derive the Friedman-Lemetre-Robertson-Walker metric in the case of constant negative curvature of the three-dimensional
space. 15 Marks

Solution:In the case of constant negative curvature of the three-dimensional space a should be replaced by ia and
we obtain (see Solution 1a)

dr? dr?
ds? = Adf® — di> = Adt® — — 7 — 2(d6? + sin® 0dg?) = Adt® — ——— — r3(d6® +sin®0dg?).  (J.13)
~ G =
Then introducing lagrangian coordinate x defined by
r = a(t) sinh x (J.14)
we finally obtain
d(sinh x)? h? ydy?
ds? = 2dt? — o (t)[LXQ) +sinh? x2(d6? + sin® 0d¢?)] = 2dt2 — a?(t)[ XX 4 sinh? x2(d6? + sin® 0d¢?)] =
1 + sinh” y cosh” y
= 2dt? — a®(t)[dx* + sinh® x*(d6? + sin? Odp?))]. (J.15)

Q2. 30 Marks

a) Show that a positive A - term corresponds to a repulsive force whose strength is proportional to distance. Show that when A

- term dominates
R ~ exp[(A/3)"2].

20 Marks
Solution:The A - term is additional term in the following version of the EFES.
1 . 81G .,
R}, — 50LR — Ao} = :TT,;, (3.16)

where T,i is the Stress-Energy tensor and A is a constant introduced by Einstein. Let us first show that in this case
the acceleration equation for scale factor a(t) can be written as

AnG 3P Aa
4§ = ———vo _— _— .1
a 3 (p—i— C2>a—|— 3 (J.17)
As we know from Chapter 19
3ad
Ry =——. J.18
0 ac? ( )

Taking ¢ = 0 and k£ = 0 in Eq.(J.16)), we obtain

3a 1 8rG ., 8rG
_E_QR_A:7C4 TO :704 67. (J.lg)
On other hand if we produce summation ¢ = k in (J.16]), we obtain
1 81G G &G 3P
hence
881G 3P
—R—4A = 2 ( —6—2) (J.21)
and
3a 1 TG 3P 8rG
— 24— = = 22
- -2 . (1.22)
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Finally

. AnG 3P Aa

One can see that if A > 0 the A - term corresponds to a repulsive force whose strength is proportional to distance.
When this term dominates we can re-write Eq (J.23) as

Aa
Q= —. J.24
i= (7.24)
Trying solution
a=CeM (J.25)
corresponds to
A
A= 3 (J.26)

b) Verify that the substitution
o=A'sin Ay
turns the metric
ds® = —c2dt* + R(t)’[dx* + (A™ ' sin Ax)?(d6” + sin® 0d¢*))]
into the form
ds® = —c*dt* + R(t)*[(1 — A’c®) " "do® + o*(db” + sin® 0d¢?)).
10 Marks
Solution:Differentiating

o= A"tsin Ay (J.27)
we have
do = A71 A cos Axdx = cos Axdy, (J.28)
hence
do
dx = . J.29
X cos Ax ( )

Substituting this into the above expression for ds? we obtain

do?

2 _ 23,2 21 G0
ds® = —c*dt* + R(t) [COS2AX

+ 02(dh? + sin? 0dp?)] = —c2dt* + R(t)?[(1 — sin® Ax) "'do? + 0%(df? + sin? 0d¢?)] =

= —2dt* + R(t)*[(1 — A%0%) " do? + o?(d6? + sin® 0dp?)]. (J.30)

Q3. 40 Marks

a) Starting from the first law of thermodynamics (in cosmological context it means the change of energy is equal to work done
by forces of pressure)
dE = —pdV,

where E is total energy in some volume V' and p is pressure and p is mass density, derive the energy conservation equation

p=—(BR/R)(p+p/c).
10 Marks
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Solution:Taking into account that

E = pc®V, (J.31)
after differentiation we have
dE = d(pc®V) = 2dpV + ¢*pdV. (J.32)
Substituting this into the first law of thermodynamics, we have
dpV + pdV = f%dv, (3.33)
hence
dpV = —(p + %)dv (3.34)
and
p=—(V/V)(p+p/P). (J.35)
Taking into account that
V ~ R, (J.36)
we finally obtain
p=—(BR/R)(p+p/c). (J.37)

b) Show that the FEinstein equation
.. 3
(BR/R) = —47G(p + C—f)
can be combined with the energy conservation equation and integrated to give the Friedman equation

(R/R)?® — 8nGp/3 = —kc®/R*.

10 Marks
Solution:From the energy conservation equation we obtain
R
O (3.38)
c 3R

Putting this expression for p into the acceleration equation, we have

. 4 4 )
Bo_ TGR <p+3p) _ TGR (p—3p—pR> _

3 2 3 R
4G . 4G .
= —— (2pRR + pR?*) = — (pR?) ", J.39
3R ( p p ) 3R (pR?) (J.39)
then multiplying both sides of this equation by 2R and taking into account that
2RR = (R?), (J.40)
we obtain
5\ 871G ‘
(72) = =5 (oR2) (1.41)
3
hence
R? = ?;)RQ — kc?, (J.42)

This is the Friedmann equation in the relativistic Cosmology.
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c) Assume that p = apc?, where a is equation of state parameter, show that at some times

R~ 12/B0Fa))

and find the range of time when this equation is valid for different o, which is supposed to be —1 < a < 1. 20 Marks
Solution:If we put the equation of state

P = apc?, (J.43)

into the energy conservation equation we obtain

) R
g = -3(1+ )%, (3.44)
we obtain
(Inp) +3(1 +a)(ImR) = [lnp+3(1+a)lnR] = {1n[,oR3<1+a>} } =0, (3.45)
thus
In[pR3+)] = ¢ (J.46)
and
pR3I+) — ¢, (3.47)
Finally we obtain that
3(1+a
p=rm () . (1.48)
If
wGp , 2 v
the Friedman equation is reduced to
%z _ 8773GP. (3.50)
Substituting into this equation the expression for p obtained above, we have
R 3 R ’ ’
we can solve this equation by the separation of variables. For that let introduce
. R% 530 - ) nd A = <87T309> v (J.52)
In terms of z, § and A the above equation can be written as
iaP = A, (J.53)
then
%dmﬁ = Adt, (J.54)
hence
2P = pAt + C. (J.55)
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Taking into account that x =0 at ¢t = 0 we put C = 0. Thus

2P ~t, (1.56)
and
1 _ 2

R~ ~18 =30F0, (J.57)

This solution is valid if

8tGp __ |k|c?

. J.58
3 > 7 (J.58)

If k = 0 this solution is valid for all ¢. If k = +1 the LHS goes like R—3(1*®) while the RHS goes like R—2. Hence if
—3(14 «) > —2 or a < —1/3 our solution is valid for small R and correspondingly small ¢, if &« > —1/3 our solution
is valid for large R and correspondingly large .
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