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1. Show that the quantity inverse to the Hubble constant, H−1
0 , has the dimensions of

time and calculate its value, expressing the result in years. Using the Hubble law show
that this quantity in order of magnitude is equal to the age of the Universe. Show that

the quantity
3H2

0

8πG
has the dimensions of density and calculate its value, expressing the

results in kg m−3. Explain briefly why this quantity corresponds to the critical density
required for the Universe to recollapse.

Solution A1[seen similar]

[H0] = km s−1 Mpc−1has units LT−1L−1 = T−1.

[1/10]

H0 = 100h km s−1 Mpc−1 =
(105h m s−1)

3.1× 1016 × 106 m)
= 3.2× 10−18h s−1,

hence
H−1

0 = 3.1× 1017h−1 s ≈ 1010h−1 years.

[1/10]

Then taking into account that
h = 0, 7,

we obtain finally
H−1

0 ≈ 1.4× 1010 years.

[2/10]

H2
0

G
has units T−2(M−1L3T−2)−1 = ML−3,which is dimensions of density.

[1/10]

Then

ρcr =
3H2

0

8πG
=

3× (3.2× 10−18h)2

8× 3.1× 6.9× 10−11
≈ 2× 10−26h2 kg m−3.

[3/10]

Then taking into account that
h = 0.7,

we obtain finally
ρcr ≈ 5× 10−27 kg m−3.

[1/10]

This density is called critical because the future destiny of the Universe depends cru-
cially on its present density, ρ0: if ρ0 ≤ ρcrit the Universe will expand for ever,

if ρ0 > ρcrit the Universe at some moment in future will star to contract and will
end in the Big Crunch.

[1/10]
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2. Use the Friedmann equation for a spatially curved Universe to find the present value
of the scale factor R0 in terms of the present Hubble constant, H0, and the density
parameter, Ω0. Show that in the case of the spatially flat Universe, R0 is arbitrary.

Solution A2[seen similar]

From the Friedmann equation we have

Ṙ2

R2
=

8πGρ

3
− kc2

R2
,

hence

H2 =
8πG

3
ρcritΩ−

kc2

R2
=

8πG

3

3H2

8πG
Ω− kc2

R2
= H2Ω− kc2

R2
,

then
kc2

R2
−H2(Ω− 1),

and
kc2 = R2H2(Ω− 1).

[4/10]

Thus if Ω 6= 1

R =
c

H

√
k

Ω− 1
.

[2/10]

Taking into account that

Ω0 > 1, if k = 1,
Ω0 < 1, if k = −1,
Ω0 = 1, if k = 0,

[1/10]

we have
R0 = c

H0
√

Ω0−1
, if k = 1,

[1/10]

R0 = c
H0
√

1−Ω0
, if k = −1.

[1/10]

If k = 0 and Ω0 = 1 the equation

kc2 = R2H2(Ω− 1)

3 [This question continues overleaf . . . ]



is trivial like
0 = 0,

valid for an arbitrary R0.

[1/10]
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3. Assume that a small fraction of the dark matter density corresponding to the density
parameter Ωx � 1 in a spatially flat Universe can be explained by hypothetical primor-
dial black holes of mass M = 50M�. Assuming that the average distance between these
objects at the present time is 10kpc, estimate Ωx. Given that the density parameter of
dark energy in the form of the Λ-term at the present moment is ΩΛ ≈ 0.7, find the
redshift corresponding to the moment of time when the density of the primordial black
holes was equal to the density of dark energy.

Solution A3[unseen]

The number density of the objects at the present moment is

n =
Ωxρcr

M
,

[1/10]

the average distance between these objects is determined from

d3n ≈ 1,

hence
n = d−3,

[1/10]

hence

Ωx =
M

ρcrd3
=

50× 2.0× 1030kg

5× 10−27 kg m−3
× 103 × 109 × 33 × 1048m3 ≈ 0.7×10−2+2+30+27−3−9−48 ≈ 7×10−4.

[3/10]

The density of non-relativistic objects depends on z as

ρ(z) = Ωxρcr(1 + z)3,

[1/10]

while the density of dark energy, ρDE, in the form of the Λ-term does not depend on z

ρDE = ΩΛρcr,

[1/10]

hence the moment when
ρ(z) = ρDE
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corresponds to the redshift

z + 1 ≈
(

0.7

0.7× 10−3

)1/3

≈ 10,

hence
z = 9.

[3/10]
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4. Consider a spatially flat Universe containing dark energy with equation of state α = −1
and dust with dimensionless density Ωd. Show that the deceleration parameter q depends
on redshift z as follows

q =
(1 + z)3 − γ

2(1 + z)3 + γ
,

where
γ = 2

(
Ω−1

d − 1
)
.

Assuming that Ωd ≈ 0.25, estimate z when the Universe started to expand with accel-
eration.

Solution A4[unseen]

For spatially flat Universe

Ωdark energy + Ωd = 1, Ωdark energy = 1− Ωd.

[1/10]

According to Friedmann equation for spatially flat universe

H2 =
8πGρ

3
.

[1/10]

From the acceleration equation we obtain the following expression for deceleration
parameter

q = −RR̈

Ṙ2
=

4πG

3H2

(
ρ +

3p

c2

)
=

1

2

(
1 +

3P

ρc2

)
,

[1/10]

where pressure
p = αΩdeρcr = −(1− Ωd)ρcr,

[1/10]

and

ρ = Ωdρcr

(
R0

R

)3

+ (1− Ωd).

[1/10]

Taking into account that
R0

R
= 1 + z,

[1/10]
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we have

q =
1

2

(
1− 3(1− Ωd)

1− Ωd + Ωd(1 + z)3

)
=

(1 + z)3 − γ

2(1 + z)3 + γ
.

[2/10]

The Universe started to expand with acceleration when q = 0, i.e.

z = γ1/3 − 1 =
[
2((0.25)−1 − 1)

]1/3
− 1 = 61/3 − 1 ≈ 0.82.

[2/10]
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5. According to some cosmological model of the early Universe the scale factor evolves as

R ∝ tβ,

where β is a constant. The equation of state at that epoch is p = αρc2. Express β in
terms of α and find the range of α corresponding to the expansion with acceleration.

Solution A5[seen similar]

For equation of state p = αρc2 from energy conservation we have

d(c2ρR3)

dt
= −αρc2d(R3)

dt
, ρ̇R3 + 3ρR2Ṙ = −3αρR2Ṙ,

hence
ρ̇

ρ
= −3(1 + α)

Ṙ

R
,

and
ρ ∝ R−3(1+α).

[2/10]

From the Friedmann equation(
Ṙ

R

)2

=
8πG

3
ρ ∝ R−3(1+α),

or
Ṙ ∝ R1− 3(1+α)

2 , R
3(1+α)

2
−1dR ∝ dt, R

3(1+α)
2 ∝ t, R ∝ t

2
3(1+α) .

[3/10]

Finally

β =
2

3(1 + α)
, 1 + α =

2

3β
, α =

2

3β
− 1.

[2/10]

By definition

q = −R̈R

Ṙ2
,

then
R ∝ tβ, Ṙ ∝ βtβ−1, R̈ ∝ β(β − 1)tβ−2,

hence

q = −β(β − 1)tβ−2tβ

β2t2(β−1)
= −(β − 1)

β
.

[2/10]

If β > 1 we have q < 0, hence R̈ > 0, which corresponds to the expansion with
acceleration. Thus from β > 1 we have α < −1/3.

[1/10]
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SECTION B

1. Assume that the Universe with Λ = 0 is closed (k = 1) and contains only dust. The
evolution of the scale factor in this case is given in the following parametric form

R(η) =
β

2
(1− cos η), t(η) =

β

2c
(η − sin η),

where η is a variable which runs from 0 to 2π and β is some constant.

(a) []

Using the Friedman equation and the acceleration equation, show that

β =
2cq0

H0(2q0 − 1)3/2
,

where q0 is the deceleration parameter at the present moment.

Solution B1a[seen similar]

The energy conservation equation in the case α = 0, which means p = αρc2 = 0,
gives dρR3 = 0, hence ρ = ρ0(R0/R)3.

[1/10]

Substituting this result to the Friedman equation we have Ṙ2 = c2 (γ/R− 1),
where γ = 8πρ0R

3
0/3c

2.

[1/10]

Then we calculate Ṙ2, using the parametric solution:

Ṙ2 =

 d
[

β
2
(1− cos η)

]
d
[

β
2c

(η − sin η)
]
2

= c2 sin2 η

(1− cos η)2
= c2 1 + cos η

1− cos η
.

[2/10]

Putting this into the Friedman equation we have

c2 1 + cos η

1− cos η
= c2

(
2γ

β(1− cos η)
− 1

)
, 1 + cos η =

2γ

β
− 1 + cos η,

[2/10]

so we see that this parametric solution does satisfies the Friedman equation, if
β = γ = 8πGρ0R

3
0/3c

2.

[1/10]

From the Friedman equation, taken at the moment t0 we have

H2
0R

2
0 = H2

0R
2
0Ω0 − c2,
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[1/10]

so we can express R0 in terms of H0 and Ω0 as

R0 =
c

H0

√
Ω0 − 1

.

[2/10]

Then substituting this to the formula for β we have

β =
cΩ0

H0(Ω0 − 1)3/2
.

[2/10]

From the acceleration equation

q0 = −R0R̈0

(Ṙ0)2
=

4πGρ0

3H2
0

=
Ω0

2
,

[2/10]

then substituting
Ω0 = 2q0

[1/10]

into expression for βwe, finally, obtain

β =
2cq0

H0(2q0 − 1)3/2
.

[2/10]

(b) [8Marks]

Present time dependence of the Hubble constant in parametric form, using the
above expression for β.

Solution B1b[unseen]

H =
Ṙ

R
=

β
2

sin η
β
2c

(1− cos η)β
2
(1− cos η)

=
2c

β

sin η

(1− cos η)2
=

(2q0 − 1)3/2 sin η

q0(1− cos η)2
.

[4/10]

Finally, time dependence H(t) has the following parametric form:

H(η) =
(2q0 − 1)3/2

q0

sin η

(1− cos η)2
,

[2/10]

t(η) =
q0

H0(2q0 − 1)3/2
(η − sin η).

[2/10]
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2. (a) [15 Marks] Show that all covariant derivatives of metric tensor are equal to zero.
Assuming that the Cristoffel symbols are symmetric with respect to low indices,
i.e. Γn

ik = Γn
ki, show that

Γn
ik =

1

2
gnm (gmi,k + gmk,i − gik,m) .

SOLUTION B2a

DAi = gikDAk

[1/10]

DAi = D(gikA
k) = gikDAk + AkDgik,

[1/10]

hence
gikDAk = gikDAk + AkDgik,

[1/10]

which obviously means that

AkDgik = 0.

[1/10]

Taking into account that Ak is arbitrary vector, we conclude that

Dgik = 0.

[1/10]

Then taking into account that

Dgik = gik;mdxm = 0

[1/10]

for arbitrary infinitesimally small vector dxm we have

gik;m = 0.

[1/10]

Introducing useful notation

Γk, il = gkmΓm
il ,

12 [This question continues overleaf . . . ]



we have

gik; l =
∂gik

∂xl
− gmkΓ

m
il − gimΓm

kl =
∂gik

∂xl
− Γk, il − Γi, kl = 0.

[2/10]

Permuting the indices i, k and l twice as

i → k, k → l, l → i,

[1/10]

we have

∂gik

∂xl
= Γk, il + Γi, kl,

∂gli

∂xk
= Γi, kl + Γl, ik and − ∂gkl

∂xi
= −Γl, ki − Γk, li.

[2/10]Taking
into account that

Γk, il = Γk, li,

[1/10]

after summation of these three equation we have

gik,l + gli,k − gkl,i = 2Γi, kl,

[1/10]

and finally

Γi
kl =

1

2
gim

(
∂gmk

∂xl
+

∂gml

∂xk
− ∂gkl

∂xm

)
.

[1/10]

(b) [10 Marks] Using the Bianchi identity show that

Rk
i;k −

1

2
δk
i R,k = 0.

Explain briefly why this pure geometrical identity is so important for physics.

Solution B2b[Seen similar]

Contracting the Bianchi identity on the pairs of indices ik and ln we have

gik(Rl
ikl;m + Rl

imk;l + Rl
ilm;k) = gikglp(Rpikl;m + Rpimk;l + Rpilm;k) =

[1/10]

gikglp(−Ripkl;m −Ripmk;l −Riplm;k) =
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[1/10]

By symmetry properties of the Riemann tensor

gikglp(Rpikl;m + Rpimk;l + Rpilm;k) =

[1/10]

gikglp(−Rklip;m −Rmkip;l −Rlmip;k) = gikglp(−Rklip;m + Rkmip;l −Rlmip;k) = 0

[2/10]

By the definition of the Ricci tensor

−glp(Rlp;m −Rmp;l + gikRmi;k) = −R,m + Rl
m;l + Rk

m;k = −R,m + 2Rl
m;l = 0,

[1/10]

thus

Rl
m;l =

1

2
R,m.

[1/10]

Taking into account the EFEs, From

Rl
m;l −

1

2
R,m = 0

follows that
T l

m:l = 0,

which is the local law for conservation of energy.

[2/10]
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3. Consider a sphere in a Robertson-Walker model with comoving coordinate χ = χs.

(a) [8 Marks] Verify that the substitution

σ = A−1 sin Aχ

turns the metric

ds2 = −c2dt2 + R(t)2[dχ2 + (A−1 sin Aχ)2(dθ2 + sin2 θdφ2)]

into the form

ds2 = −c2dt2 + R(t)2[(1− A2σ2)−1dσ2 + σ2(dθ2 + sin2 θdφ2)].

Solution B3a[seen similar]

Differentiating
σ = A−1 sin Aχ

we have
dσ = A−1 cos Aχ · A · dχ = cos Aχdχ,

[2/10]

hence

dχ =
dσ

cos Aχ
=

dσ√
1− sin2 Aχ

=
dσ√

1− σ2A2
.

[2/10]

Substituting dχ into the metric in the χ-form, we obtain the metric in σ-form:

ds2 = −c2dt2 + R(t)2[(1− A2σ2)−1dσ2 + σ2(dθ2 + sin2 θdφ2)].

[4/10]

(b) [17 Marks] What is the proper area and volume of a sphere centred at the origin.
Express your result, first, in terms of χ and then in terms of σ. For a closed
Universe, one can scale radial coordinate r so that A=1. Show that the total
volume of such a Universe is

V = 2π2R3
0.

Solution B3b

The proper area of a sphere is

S =
∫ ∫

dlθdlφ.
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[1/10]

Working with the metric in χ-form, we have

dlθ = ds|dt=dχ=dφ=0 =
R sin Aχ

A
dθ,

where θ runs from 0 to π,

[1/10]

and

dlφ = ds|dt=dχ=dθ=0 =
R sin Aχ

A
sin θdφ,

where φ runs from 0 to 2π.

[1/10]

Hence

S =
∫ π

0

∫ 2π

0

(
R sin Aχ

A

)2

sin θdθdφ =
(

R sin Aχ

A

)2

·2π(− cos θ)|π0 =
4πR2 sin2 Aχ

A2
.

[3/10]Working
with the metric in σ-form, we have

dlθ = ds|dt=dσ=dφ=0 = σRdθ,

[1/10]

and correspondingly

dlφ = ds|dt=dχ=dθ=0 = σR sin θdφ,

[1/10]

hence
S = 4πσ2R2,

[2/10]

which is the same as before if on expresses σ in terms of χ.

[1/10]

The proper volume of a sphere is

V =
∫ ∫ ∫

dlθdlφdlχ,

[1/10]

where
dlχ = ds|dt=dθ=dφ=0 = Rdχ,

[1/10]
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for A = 1 χ runs from 0 (the first zero of sin χ)to π (the second zero of sin χ).
Thus, putting R = R0

V = 4πR3
0

∫ π

0
dχ sin2 χ =

= 4πR3
0

∫ π

0
dχ

1− cos 2χ

2
= 2πR3

0(π −
1

2
(sin 2χ)|π0 = 2π2R3

0.

[4/10]
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4. (a) 15 Marks]

Derive the equation for the evolution of small density perturbations, δ = (ρ
′−ρ)/ρ

after decoupling to show that

δ̈ + (4/3t)δ̇ − (2/3t2)δ = 0.

(Hint: Take into account that ρ′R
′3 = ρR3.) Solve this equation using the trial so-

lution δ ∝ tm to obtain the two modes of perturbations: δ = A(t/t0)
m1 +B(t/t0)

m2 .

B4a. Solution[seen similar]

Starting from

R̈ = −4πGρR

3
,

perturb R and ρ: R
′
= R(1 + h), and ρ

′
= ρ(1 + δ).

[1/10]

Putting this in the perturbed equation

R̈′ = −4πGρ
′
R

′

3
,

[1/10]

we obtain

R̈(1 + h) + 2Ṙḣ + Rḧ = −4πGρ(1 + δ)R(1 + h

3
.

[1/10]

Using unperturbed equation, we obtain linearized equation

R̈h + 2Ṙḣ + Rḧ = −4πGρR(δ + h)

3
.

[1/10]

To relate h and δ we use the conservation of energy equation ρR3 = ρR3(1 +
3h)(1 + δ),

[1/10]

or 1 = 1 + 3h + δ, so h = −δ/3.

[1/10]

Thus we have

−R̈
δ

3
− 2

3
Ṙ−R

δ̈

3
= −4πGρ

3
R

2

3
δ,

[1/10]

then

δ̈ + 2
Ṙ

R
+

R̈

R
δ =

8πGρ

3
δ.
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[1/10]

For the dust-like Universe R ∼ t2/3, so

Ṙ

R
=

2

3t
,

R̈

R
=

2

3
(
2

3
− 1)t−2 = − 2

9t2
.

[1/10]

From the unperturbed equation

8πGρ

3
= −2R̈

R
=

4

9t2
.

[1/10]

Then

δ̈ + 2
2

3t
+ (−2

9
− 4

9
)
δ

t2
= 0,

[1/10]

and finally

δ̈ +
4

3t
− 2

3t2
δ = 0.

[1/10]

Taking trial solution δ = Atm, we obtain

m(m− 1) +
4m

3
− 2

3
= 0, 3m2 + m− 2 = 0.

[1/10]

Solutions of this quadratic equation are

m =
−1±

√
1 + 24

6
=
−1± 5

6
,

[1/10]

thus m+ = 2/3 and m− = −1 ( growing and decaying modes). So we have

δ = A+(t/t0)
2/3 + A−(t/t0)

−1.

[1/10]

(b) [10 Marks]

According to the COBE observations of the Microwave Background anisotropy,
the amplitude of the density perturbations at the moment of decoupling is about
10−5 (Take redshift at this moment z = 999). Assuming that the first objects were
formed at a redshift z = 9, estimate the two arbitrary constants in your solution
for the density perturbations.
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B4b. Solution[unseen]

Taking into account that

R = R0(t/t0)
2/3 = R0(1 + z)−1,

[1/10]

we have
t/t0 = (1 + z)−3/2,

[1/10]

hence
δ = A+(1 + z)−1 + A−(1 + z)3/2.

[2/10]

So we have the system of equations for A+ and A− For z = 9

1 = A+10−1 + A−103/2,

[1/10]

and for z = 999
10−5 = A+10−3 + A−109/2,

[1/10]

So

A+ =
109/2 − 103/2−5

109/2−1 − 103/2−3
≈ 109/2−9/2+1 = 10,

[2/10]

A− = − 10

1015/2
= 10−13/2.

[2/10]
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