K. Course work 6

CW6: due to 25.03.09:

Q1. 30 Marks
a) What is the proper area of a sphere centered at the origin.
b) Express your result, first, in terms of χ and then in terms of σ.
c) For a closed Universe, one can scale radial coordinate r so that $\mathrm{A}=1$. Show that the total volume of such a Universe is

$$
V=2 \pi^{2} R_{0}^{3} .
$$

Q2. 20 Marks
a) In a zero-pressure $\Omega_{0}=1$ Friedman model, show that the current physical distance to an object with redshift z is

$$
r(z)=r_{H}\left[1-(1+z)^{-1 / 2}\right],
$$

where r_{H} is the current particle horizon size.
b) Deduce that objects at the particle horizon have an infinite redshift.

Q3. small25 Marks
a) The energy flux received per unit area from a source of bolometric luminosity P at redshift z was shown in the lectures to be $\frac{P}{d_{L}^{2}}$, where d_{L} is the "luminosity distance". Show that

$$
d_{L}=(1+z) R_{0} \frac{\sin A \chi}{A} .
$$

b) Show that

$$
R_{0} \frac{\sin A \chi}{A}=\frac{2 c}{H_{0} \Omega_{0}^{2}(1+z)}\left[\Omega_{0} z+\left(\Omega_{0}-2\right)\left(\sqrt{\Omega_{0} z+1}-1\right)\right] .
$$

Q4. 25 Marks
a) The apparent angular size of an object with linear diameter D at redshift z was shown in the lectures to be

$$
\theta=\frac{D(1+z)}{R_{0}} \frac{A}{\sin A \chi},
$$

where χ is the co-moving radial coordinate. Using the Friedman equation show that for $\Omega_{0}=1$

$$
\theta(z)=\frac{D H_{0}(1+z)^{3 / 2}}{2 c(\sqrt{1+z}-1)}
$$

b) Prove that $\theta(z)$ is non-monotonic function and find z corresponding to the minimum of $\theta(z)$.

