к. Course work 6

CW6: due to 25.03.09:

Q1. 30 Marks

a) What is the proper area of a sphere centered at the origin.

b) Express your result, first, in terms of χ and then in terms of σ .

c) For a closed Universe, one can scale radial coordinate r so that A=1. Show that the total volume of such a Universe is

$$V = 2\pi^2 R_0^3.$$

Q2. 20 Marks

a) In a zero-pressure $\Omega_0 = 1$ Friedman model, show that the current physical distance to an object with redshift z is

$$r(z) = r_H [1 - (1+z)^{-1/2}],$$

where r_H is the current particle horizon size.

b) Deduce that objects at the particle horizon have an infinite redshift.

Q3. small25 Marks

a) The energy flux received per unit area from a source of bolometric luminosity P at redshift z was shown in the lectures to be $\frac{P}{d_z^2}$, where d_L is the "luminosity distance". Show that

$$d_L = (1+z)R_0 \frac{\sin A\chi}{A}.$$

b) Show that

$$R_0 \frac{\sin A\chi}{A} = \frac{2c}{H_0 \Omega_0^2 (1+z)} \left[\Omega_0 z + (\Omega_0 - 2)(\sqrt{\Omega_0 z + 1} - 1) \right].$$

Q4. 25 Marks

a) The apparent angular size of an object with linear diameter D at redshift z was shown in the lectures to be

$$\theta = \frac{D(1+z)}{R_0} \frac{A}{\sin A\chi},$$

where χ is the co-moving radial coordinate. Using the Friedman equation show that for $\Omega_0 = 1$

$$\theta(z) = \frac{DH_0(1+z)^{3/2}}{2c(\sqrt{1+z}-1)}.$$

b) Prove that $\theta(z)$ is non-monotonic function and find z corresponding to the minimum of $\theta(z)$.