I. Course work 5

CW5: due to 18.03.10:

Q1. 30 Marks
a) Derive the Friedman-Lemetre-Robertson-Walker metric for spatially flat Universe.
b) Derive the Friedman-Lemetre-Robertson-Walker metric in the case of constant negative curvature of the three-dimensional space.

Q2. 30 Marks
a) Show that a positive Λ - term corresponds to a repulsive force whose strength is proportional to distance. Show that when Λ - term dominates

$$
R \sim \exp \left[(\Lambda / 3)^{1 / 2} t\right] .
$$

b) Verify that the substitution

$$
\sigma=A^{-1} \sin A \chi
$$

turns the metric

$$
d s^{2}=-c^{2} d t^{2}+R(t)^{2}\left[d \chi^{2}+\left(A^{-1} \sin A \chi\right)^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right]
$$

into the form

$$
d s^{2}=-c^{2} d t^{2}+R(t)^{2}\left[\left(1-A^{2} \sigma^{2}\right)^{-1} d \sigma^{2}+\sigma^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] .
$$

Q3. 40 Marks
a) Starting from the first law of thermodynamics (in cosmological context it means the change of energy is equal to work done by forces of pressure)

$$
d E=-p d V
$$

where E is total energy in some volume V and p is pressure and ρ is mass density, derive the energy conservation equation

$$
\dot{\rho}=-(3 \dot{R} / R)\left(\rho+p / c^{2}\right) .
$$

b) Show that the Einstein equation

$$
(3 \ddot{R} / R)=-4 \pi G\left(\rho+\frac{3 p}{c^{2}}\right)
$$

can be combined with the energy conservation equation and integrated to give the Friedman equation

$$
(\dot{R} / R)^{2}-8 \pi G \rho / 3=-k c^{2} / R^{2}
$$

c) Assume that $p=\alpha \rho c^{2}$, where α is equation of state parameter, show that at some times

$$
R \sim t^{2 /[3(1+\alpha)]}
$$

and find the range of time when this equation is valid for different α, which is supposed to be $-1 \leq \alpha \leq 1$.

