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Section A: Each question carries 10 marks.

Question 1 Show that the density parameter Ω0 (see rubric) is dimensionless. Ex-
plain briefly how the value of this parameter can be obtained from direct observations
and why dark matter problem is relevant for the determination of Ω0.

Solution 1 [seen similar]

Taking into account that

Ω0 =
ρ0

ρcrit
=

8πGρ0

3H2
0

,

and
[G] = [M ][L][T ]−2[M ]−2[L]2 = [M ]−1[L]3[T ]−2;

[ρ0] = [M ][L]−3;

[H0] = [L][T ]−1[L]−1 = [T ]−1;

we have

[Ω0] = [M ]−1[L]3[T ]−2[M ][L]−3[T ]2 = [M ]−1+1[L]3−3[T ]−2+2 = [M ]0[L]0[T ]0,

i.e. Ω0 is dimensionless. [4]
The value of Ω0 is determined by ρ0 and H0. Both these two values are cosmological
parameters and are obtained from direct observations:
(i) H0 is obtained from spectroscopic measurements of Hubble velocities and mea-
surements of distances to relevant cosmological objects. The measurements of the
velocities are based on the Doppler effect; the measurements of distances are based
on ”standard candles” in Astronomy. [2]
(ii) The value of ρ0 is determined from measurements of masses and distances within
astronomical objects and counting the number of such objects in a given volume. The
masses are determined from dispersions of random velocities or rotational velocity,
which also obtained with the help of the Doppler effect. [2]
Such measurements show that gravitating masses exceed luminous masses, i.e. indi-
cate that there is dark mass within astronomical objects. [2]
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Question 2 The Hubble radius is determined as

RH =
c

H0
,

where H0 is the Hubble parameter. It is given that according to some cosmological
model with k = −1 the present scale factor, R0, is twice larger than RH . Use the
Friedman equation to find the density parameter corresponding to a such cosmological
model.

Solution 2 [seen similar]

From the Friedman equation with k = −1 taken at the present moment, we have

Ṙ2
0 =

8πGρ0R
2
0

3
+ c2.

[2]
Taking into account that

Ṙ0 = H0R0

and

ρ0 = Ω0ρcrit =
3H2

0

8πG
,

[2]
we obtain

H2
0R2

0(1− Ω0) = c2,

[2]
hence

R0 =
c

H0

√
1− Ω0

=
RH√
1− Ω0

.

[2]
Since R0 = 2RH we obtain that√

1− Ω0 =
1
2

and Ω0 = 1− 1
4

=
3
4
.

[2]
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Question 3 Assume that the contribution of some low massive Jupiter-like dark
objects of mass m to the average density of the Universe is 1% of the critical density.
Estimate the average distance between these objects at the present time,d. You can
assume that the Hubble parameter H0 is equal to 70kms−1Mpc−1 and m = 10−3M�.
What was the distance between such objects at the moment corresponding to the
redshift z = 9?

Solution 3 [unseen]

If there are N objects in a volume V the volume per object v ∼ d3 is

v =
V

N
.

On the other hand the average density of such objects is

ρ =
M

V
=

mN

V
=

m

v
=

m

d3
,

hence

d =
(

m

ρ

)1/3

.

[4]
At the present moment

ρ = 0.01ρcrit = 10−28 kg m−3.

(see rubruc) [1]
Hence

d ≈
(

10−3 × 1.99× 1030 kg

10−28 kg m−3

)
,

Hence

d ≈
(

10−3 × 1.99× 1030 kg

10−28 kg m−3

)
≈
(
2× 1055

)1/3
m ≈ 3× 1018 m ≈ 100 pc.

[2]
Taking into account that the density of massive objects depends on z as

ρ(z) ∝ (1 + z)3,

we can say that
d(z) ∝ ρ−1/3(z) ∝ (1 + z)−1,

hence at the moment corresponding to the redshift z = 9

d(z = 9) ≈ 100 pc
10

= 10 pc.

[3]
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Question 4 A cosmological model describes the early Universe which contains a
perfect fluid with equation of state p = αρc2. Using the energy conservation and
acceleration equations (see rubric) show that

ρ(R)
ρ0

=
(

R

R0

)−3(1+α)

.

Express α in terms of acceleration parameter q.

Solution 4 [unseen]

From conservation of energy we have

d(ρc2R3) = −αρc2d(R3),

hence
dρ(R)

ρ
= −3(1 + α)

dR

R

and
ρ ∝ R−3(1+α).

[2]
The fact that we consider the early Universe means that we can neglect the

curvature term in the Friedman equation. Thus from the Friedman equation we
have

Ṙ =

√
8πGρ

3
R ∝ R1− 3

2
(1+α) = R− 3α+1

2 .

[2]
This means that

dt ∝ R
3α+1

2 dR

and
t ∝ R

3α+1
2

+1 = R
3(1+α)

2 .

Hence
R ∝ t

2
3(1+α)

and

R = R0

(
t

t0

) 2
3(1+α)

.

[2]
Then the deceleration parameter is

q = −R̈R

Ṙ2
= − 2

3(1 + α)

(
2

3(1 + α)
− 1

)(
2

3(1 + α)

)−2

=
3(1 + α)

2
− 1.

[2]
Finally

α =
2
3
(q − 1

2
).

[2]
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Question 5 Consider a spatially flat cosmological model containing dark energy with
equation of state α = −1/2 and radiation with density parameter Ω0(r). Using for-
mula for dependence of density on scale factor from the previous question, show that
the ratio of the total pressure P to the total energy density ρc2 depends on redshift
as

P

ρc2
=

1
3Ω0(r)(1 + z)4 − 1

2(1− Ω0(r))(1 + z)3/2

Ω0(r)(1 + z)4 + (1− Ω0(r))(1 + z)3/2
.

Find Ω0(r) if it is given that according to a such model the Universe started expand
with acceleration at z = 1/4.

Solution 5 [unseen]

The fact that the dark energy and radiation do not interact with each other means
that we can write down the conservation of energy equation for dark energy and
radiation separately. [1]
For radiation we have

ρ(r) ∝ R−4 ∝ (1 + z)4.

Thus
ρ(r) = ρ0(r)(1 + z)4 = Ω0(r)ρcrit(1 + z)4

and

P(r) = α(r)c
2ρ(r) =

Ω0(r)ρcritc
2

3
(1 + z)4.

[2]
For dark energy we have

ρ(de) ∝ R−4 ∝ (1 + z)4.

Thus
ρ(de) = ρ0(de)(1 + z)3/2 = Ω0(de)ρcrit(1 + z)3/2

and

P(de) = α(de)c
2ρ(de) = −

Ω0(de)ρcrit

2
(1 + z)3/2.

[2]
Taking into account that

Ω0 = Ω0(r) + Ω0(de) = 1, ρ = ρ(r) + ρ(de), P = P(r) + P(de),

we finally obtain the required formulae for P/ρc2. [1]
The Universe starts to expand with acceleration at the moment when, ρc2 + 3P ,
changes sign. From the previous eq. we have[
Ω0(r)(1 + z)4 + (1− Ω0(r))(1 + z)3/2 + Ω0(r)(1 + z)4 − 3

2
(1− Ω0(r))(1 + z)3/2

]
= 0.

[2]
Hence

Ω0(r) =
1
2(1 + z)3/2

2(1 + z)4 + 1
2(1 + z)3/2

=
1

1 + 4(1 + z)5/2
=

1
1 + 4(1 + 1

4)5/2
=

1

1 + 25
√

5
8

≈ 0.125.

[2]
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Section B: Each question carries 25 marks.

Question 6 Assume that the Universe with Λ = 0 is open (k = −1) and contains
only dust. The evolution of the scale factor in this case is given in the following
parametric form

R(η) =
a

2
(cosh η − 1), t(η) =

a

2c
(sinh η − η),

where η is a variable which runs from 0 to ∞ and a is some constant.

(a) Using the Friedman equation express a in terms of the Hubble and density
parameters. [17]

Solution 6.a [seen similar]

Let us put this parametric dependence of R on t into the Friedman equation
to find out under what conditions such a dependence is the solution of this
equation. [1]

From the mass conservation equation we have

ρR3 = ρ0R
3
0,

hence
ρR2 = AR−1,

where
A = ρ0R

3
0

is a constant. [2]

Then taking into account that

dR

dt
=

dR
dη
dt
dη

=
a
2 (sinh η

a
2c(cosh η − 1)

= c
sinh η

cosh η − 1
.

[3]

Substituting the above expression for ρR2 and this derivative to the Friedman
equation for k = −1 we obtain

c2 sinh2 η

(cosh η − 1)2
=

16πGA

3a(cosh η − 1)
+ c2.

[3]

Using the well known identity

cosh2 η − sinh2 η = 1, i.e. sinh2 η = cosh2 η − 1 = (cosh η − 1)(cosh η + 1),

[1]
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we obtain
c2
[
(cosh η + 1)
(cosh η − 1)

− 1
]

=
16πGA

3a

1
cosh η − 1

.

We see that the above parametric dependence is indeed a solution of the Fried-
man equation if

16πGA

3a
= c2 [(cosh η + 1)− (cosh η − 1)] = 2c2,

hence

a =
8πGA

3c2
=

8πGρ0R
3
0

3c2
.

[3]

From the Friedman equation with k = −1 taken at the present moment, we
have

H2
0R2

0 =
8πGΩ03H2

0R2
0

8πG× 3
+ c2

or
H2

0R2
0

c2
(1− Ω0) = 1,

hence
R0 =

c

H0

√
1− Ω0

.

[2]

Finally

a = Ω0H
2
0c−2c3H−3

0 (1− Ω0)−3/2 =
cΩ0

H0(1− Ω0)3/2
.

[2]
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(b) At some moment of time t∗ corresponding to η = η∗ the density of the Universe
is equal to ρ∗. Show that the moment of time, tγ, when the density of the
Universe is equal to γρ∗, is

tγ ≈ t∗γ
−1/3.

Estimate the ratio ρ(η = 10)/ρ(η = 20). [Hint: Take into account that for such
values of η one can approximate cosh η and sinh η by eη/2 � η � e−η/2.] [8]

Solution 6.b [unseen]

From the mass conservation equation we have

γ =
ρ(ηγ)
ρ(η∗)

=
(

R(ηγ)
R(η∗)

)−3

=
(

cosh ηγ − 1
cosh η∗ − 1

)−3

≈ e3(η∗−ηγ),

[2]

hence
ln γ = 3(η∗ − ηγ)

and
ηγ = η∗ −

1
3

ln γ.

[2]

Substituting this expression into

t =
a

2c
(sinh η − η),

we have

tγ =
a

2c
(sinh ηγ − ηγ) ≈ a

2c
× eηγ

2
=

a

4c
eη∗− 1

3
ln γ =

a

4c
eη∗γ−1/3 ≈ t∗γ

−1/3.

[2]

Using the same approximation we can see that

ρ(η = 10)/ρ(η = 20) ≈ e3(20−10) = e30 ≈ 1013.

[2]
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Question 7 (a) Give the definition of a covariant tensor of the second rank, Aik,
and a mixed tensor of the fourth rank, Bi

klm. In the local Galilean frame xi
[G] of

reference a mixed tensor of the fourth rank, Bi
klm, has only one non-vanishing

component, B0
000[G] = 1, and all other components are equal to zero. Write

down all components of this mixed tensor in an arbitrary frame of reference,

xi, in terms of the transformation matrices Sl
m[G] = ∂xl

∂xm
[G]

and S̃l
m[G] =

∂xl
[G]

∂xm . [10]

Solution 7.a [seen similar]

The covariant tensor of the second rank is the object containing 42 = 16 com-
ponents Aik which in the course of an arbitrary transformation from one frame
of reference, x′n, to another, xm, are transformed according to the following
transformation law:

Aik = S̃v
i S̃u

k A′
vu,

where

S̃l
m =

∂x′l

∂xm
.

[2]

The mixed tensor of the fourth rank with one contravariant and three covariant
indices is the object containing 44 = 256 components Bi

klm which in the course
of an arbitrary transformation from one frame of reference, x′n, to another,
xm, are transformed according to the following transformation law:

Bi
klm = Si

pS̃
v
k S̃u

l S̃w
mBp

vuw(G),

where

Sl
m =

∂xl

∂x′m

[2]

The law of transformation for the tensor Bi
klm from local Galilean to an arbi-

trary frame of reference is

Bi
klm = Si

p(G)S̃
v
k(G)S̃

u
l(G)S̃

w
m(G)B

p
vuw(G).

[2]

As given
Bp

vuw(G) = δp
0δ

0
vδ

0
uδ0

w,

[2]

hence

Bi
klm = Si

p(G)S̃
v
k(G)S̃

u
l(G)S̃

w
m(G)δ

p
0δ

0
vδ

0
uδ0

w = Si
0(G)S̃

0
k(G)S̃

0
l(G)S̃

0
m(G).

[2]
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(b) Using the EFEs and Bianchi identity (see rubric) show that the stress-energy
tensor satisfies conservation law T i

k:i = 0. [15]

Solution 7.b [seen similar]

After contracting the Bianchi identity

Ri
klm;n + Ri

knl;m + Ri
kmn;l = 0

over indices i and n (taking summation i = n) we obtain

Ri
klm;i + Ri

kil;m + Ri
kmi;l = 0.

[1]

According to the definition of Ricci tensor

Ri
kil = Rkl,

the second term can be rewritten as

Ri
kil;m = Rkl;m.

[2]

Taking into account that the Riemann tensor is antisymmetric with respect
permutations of indices within the same pair

Ri
kmi = −Ri

kim = −Rkm,

the third term can be rewritten as

Ri
kmi;l = −Rkm;l.

The first term can be rewritten as

Ri
klm;i = gipRpklm;i,

then taking mentioned above permutation twice we can rewrite the first term
as

Ri
klm;i = gipRpklm;i = −gipRkplm;i = gipRkpml;i.

After all these manipulations we have

gipRkpml;i + Rkl;m −Rkm;l = 0.

[2]

Then multiplying by gkm and taking into account that all covariant derivatives
of the metric tensor are equal to zero, we have

gkmgipRkpml;i+gkmRkl;m−gkmRkm;l =
(
gkmgipRkpml

)
;i
+
(
gkmRkl

)
;m
−
(
gkmRkm

)
;l

= 0.

[2]
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In the first term the expression in brackets can be simplified as

gkmgipRkpml = gipRpl = Ri
l .

In the second term the expression in brackets can be simplified as

gkmRkl = Rm
l .

[2]

According to the definition of scalar curvature

R = gkmRkm,

the third term can be simplified as(
gkmRkm

)
;l

= R;l = R,l.

[2]

Thus
Ri

l;i + Rm
l;m −R,l = 0,

replacing in the second term index of summation m by i we finally obtain

2Ri
l;i −R,l = 0, or Ri

l;i −
1
2
R,l = 0.

[2]

Using the EFEs in the mixed form

Ri
k −

1
2
δi
kR =

8πG

c4
T i

k,

we obtain

T i
k;i =

c4

8πG

(
Ri

k −
1
2
δi
kR

)
;i

=
c4

8πG

(
Ri

k;i −
1
2
δi
kR,i

)
=

c4

8πG

(
Ri

k;i −
1
2
R,k

)
= 0.

[2]
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Question 8 (a) A spherical galaxy of diameter D has redshift z and apparent
angular diameter ∆θ. Using the Robertson-Walker model with co-moving co-
ordinate χ, find the physical distance to this galaxy and show that

∆θ =
D
√

k(1 + z)
R0 sin(

√
kχ)

,

where R0 is a scale factor at the present moment. [7]

Solution 8.a [seen similar]

From the Robertson-Walker metric the radial distance is

r =
∫ χs

0
ds|dt=0, dθ=0, dφ=0 = R

∫ χs

0
dχ = Rχs.

Then taking into account that

R(z) = R0/(1 + z),

we obtain
r = R0(1 + z)−1χs.

[2]

From the Robertson-Walker metric the circumference is

C =
∫ 2π

0
ds|dt=0, dθ=0, dχ=0 = R

sin(
√

kχ)√
k

∫ 2π

0
dφ = 2πR

sin(
√

kχ)√
k

.

[2]

Taking into account that ∆θ ∝ D we obtain

∆θ = 2π
D

C
=

2πD

2πR sin(
√

kχ√
k

=
D
√

k

R sin(
√

kχ)
=

D
√

k(1 + z)
R0 sin(

√
kχ)

.

[3]
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(b) Consider radially propagating photons to determine an integral relationship
between z and χ. Then assuming that equation of state parameter α = 0 and
k = 0, use the formula for ∆θ from the previous sub-question to find ∆θ as a
function of z only. Show that the function ∆θ(z) is not monotonic even for
spatially flat Universe. Give very brief qualitative explanation of such effect.
Find z at which this function attains its minimum. . [18]

Solution 8.b [50 % seen similar, 50 % unseen]

For radially propagating photons

ds = 0, dθ = 0 and dφ = 0.

From the Robertson-Walker metric we have

(cdt)2 − (Rdχ)2 = 0 or dχ = ±cdt/R.

[2]

Choosing sign ”-” corresponding to photons propagating inward we have

χ = −c

∫ tz

t0
dt/R,

where tz is the moment of emission determined by z. Then

χ = −c

∫ Rz

R0

dR

HR2
= c

∫ R0

Rz

dR

HR2
.

From the Friedman equation we have

H2R2 = H2
0Ω0R

3
0R

−1 − kc2.

[3]

For the present time
H2

0R2
0 = H2

0Ω0R
2
0 − kc2,

hence

HR = H0R0

√
Ω0

R0

R
+ (1− Ω0).

[2]

Then taking into account again that

R(z) = R0/(1 + z)

and
dR/R = −dz/(1 + z),

we have
χ =

c

H0R0

∫ z

0

dx

(1 + x)
√

1 + Ω0x
.

[2]

c© Queen Mary, University of London 2009

14

MTH6123



In the case k = 0 and Ω0 = 1 we have

χ =
c

H0R0

∫ z

0

dx

(1 + x)3/2
=

2c

H0R0

(
1− (1 + z)−1/2

)
,

and

∆θ =
DH0

4πc

(1 + z)3/2

(1 + z)1/2 − 1
.

[3]

When z →∞
∆θ(z) ∝ z and

d∆θ(z)
dz

> 0.

When z → 0
∆θ(z) ∝ z−1 and

d∆θ(z)
dz

< 0.

This means that the function ∆θ(z) is non-monotonic. [2]

This fact is explained in terms of gravitational focussing (lensing) effect of
matter within the light beam. [1]

The minimum of ∆θ(z) corresponds to

d∆θ(z)
dz

= 0,

d∆θ(z)
dz

∝
3
2(1 + z)1/2[(1 + z)1/2 − 1]− (1 + z)3/2 1

2(1 + z)1/2

[(1 + z)1/2 − 1]2
=

=
(1 + z)1/2[(1 + z)1/2 − 3

2 ]
[(1 + z)1/2 − 1]2

= 0,

hence
(1 + z)1/2 =

3
2

1 + z =
9
4

z =
9
4
− 1 =

5
4

= 1.25.

[3]
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Question 9 Consider a dust sphere of average density ρ′ in a background flat Uni-
verse with k = Λ = 0. Consider the amplitude of the small density perturbation

4(z,M) =

√〈
ρ′(z, ~r)− ρ(z)

ρ(z)

〉2

,

where ρ(R) is the average density of the Universe and 〈〉 means the average over
volumes containing mass M. Assume that

4(z,M) = δ(z)F (M),

where F (M) is determined by the power spectrum of primordial fluctuations.

(a) Show that δ(z) as a function of redshift z is the solution of the following equa-
tion:

d2δ

dz2
+

2(1 + z)dδ

dz
− 3δ

2(1 + z)2
= 0.

[Hint: Show first that (R′ −R)/R = −δ/3.] [15]

Solution 9.a [seen similar]

One can find first an equation for δ(R). Starting from

R̈ = −4πGρR

3
,

perturb R and ρ:
R

′
= R(1 + h) and ρ

′
= ρ(1 + δ).

To relate h and δ we use the conservation of energy equation

ρR3 = ρR3(1 + 3h)(1 + δ), or 1 = 1 + 3h + δ, hence h = −δ/3,

[2]

Then
R′ = R(1− δ

3
),

Ṙ′ = Ṙ
dR′

dR
,

R̈′ = R̈
dR′

dR
+ Ṙ2 d2R′

dR2
,

[2]

Putting this in the perturbed equation

R̈′ = −4πGρ
′
R

′

3
,

we have

R̈
d

dR
[R(1− δ

3
)] + Ṙ2 d2

dR2
[R(1− δ

3
)] = −4πGρR

3
(1 + δ)(1− δ

3
).
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[3]

Taking into account unperturbed equation

R̈ = −4πGρR

3

and unperturbed Friedman equation

Ṙ2 =
8πGρR2

3
,

in first order with respect to δ [1]

we obtain

4πGρR

3

{
− d

dR
[R(1− δ

3
)] + 2R

d2

dR2
[R(1− δ

3
)] + 1 + δ − δ

3

}
= 0,

thus

δ −R
dδ

dR
− 2

3
R2 d2δ

dR2
= 0.

Finally
d2δ

dR2
+

3
2R

dδ

dR
− 3

2R2
δ = 0.

[3]

Then taking into account that

1 + z =
R0

R
,

we have
dδ

dR
=

dz

dR

dδ

dz
= −R0

R2

dδ

dz
= −(1 + z)2

R0
dδ
dz

;

d2δ

dR2
= −(1 + z)2

R0
d
dz

(
−(1 + z)2

R0
dδ
dz

)
=

(1 + z)2

R2
0

d

dz

[
(1 + z)2

dδ

dz

]
=

(1 + z)4

R2
0

d2δ

dz2
+

2(1 + z)3

R2
0

dδ

dz
.

Substituting this into equation for δ(R)we obtain

(1 + z)4

R2
0

d2δ

dz2
+

2(1 + z)3

R2
0

dδ

dz
− 3(1 + z)3

2R2
0

dδ

dz
− 3(1 + z)2δ

2R2
0

= 0,

finally
d2δ

dz2
+ 21 + z

dδ

2(1 + z)dz
− 3(1 + z)3δ

2(1 + z)2
= 0.

[4]
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(b) Show that the general solution of this equation can be represented in terms of
two independent modes, one of which is growing, while the other is decaying.
Given that δ(z) = 10−5 at z = 999 and δ(z) = 1 at z = 9, find δ(z) at z = 99. [10]

Solution 9.b [unseen]

Taking trial solution
δ = ARm,

we obtain
m(m− 1) +

3m

2
− 3

2
= 0, 2m2 + m− 3 = 0.

The solutions of this quadratic equation are

m± =
1
2

(
−1

2
±
√

1
6

+ 4

)
=
−1± 5

4
,

thus m+ = 1 and m− = −3
2 ( growing and decaying modes). [3]

So we have

δ = Ag(R/R0) + Ad(R/R0)−3/2 = Ag(1 + z)−1 + Ad(1 + z)3/2.

[3]

Then to find Ag and Ad one should solve the coupling equations

10−5 = Ag10−3 + Ad109/2

1 = Ag10−1 + Ad103/2

Ad = 10−2−10
1015/2−105/2 ≈ −3× 10−7

Ag = 10−Ad105/2 ≈ 10

Hence
δ ≈ 10(1 + z)−1 − 3× 10−7(1 + z)3/2 ≈ 0.1.

[4]
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