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A. Course work 1

Q1
a) Formulate the equivalence principle and explain what is the difference in interpretation of this principle in Newtonian
theory and in General relativity.

b) Explain the similarity between an ”actual” gravitational field and a non-inertial reference system. Give the
definition of a locally Galilean coordinate system.

¢) Explain why an ”actual” gravitational field cannot be eliminated by any transformation of coordinates over all
space-time.

d) Show that in a uniformly rotating system of coordinates :L',, y/, z/, such that

’

=21 cost — y/ sinQt, y= z sin Qt + y, cosQt, z=12z2, (A1)
the interval ds has the following form:

ds* = gdaidz® = g;kdx,idaclk =
=[?— Q@2+ y?)dt> —dz'® — dy? — d2"® + 2Qy da’dt — 20 dy dt. (A.2)

Q2

a) Formulate the covariance principle and explain the relationship between this principle and the principle of equiva-
lence.

b) Give the definition of a contravariant vector in terms of the transformation of curvilinear coordinates.

¢) Give the definition of a covariant vector in terms of the transformation of curvilinear coordinates.

d) What is the mixed tensor of the second rank in terms of the transformation of curvilinear coordinates (you can
assume that a mixed tensor of the second rank is transformed as a product of covariant and contrvariant vectors).

e) Explain why the principle of covariance implies that all physical equations should contain only tensors.

Q3
a) Prove that the metric tensor is symmetric. Give a rigorous proof that the interval is a scalar.
b) Give the definition of the reciprocal tensors of the second rank. What is the contravariant metric tensor g**.

¢) Show that in an arbitrary non-inertial frame
ik i ok i ok i ok i gk
9% = S50 ~ S50 ~ S22 ~ 03503 (A.3)
where Sfo) . is the transformation matrix from locally inertial frame of reference (galilean frame) to this non-inertial

frame.

d) Demonstrate how using the reciprocal contravariant metric tensor g** and the covariant metric tensor g;z you can
form contravariant tensor from covariant tensors and vice versa.

Q4

a) In the local Galilean frame ;UfG] of reference a mixed tensor of the second rank, C,i has the only one non-vanishing
component, Cg[c] =1, and all other components are equal to zero. Write down all components of this mixed tensor
in arbitrary frame of reference. Express your result in terms of transformation matrix.

b). In the non-rotating system of Cartesian coordinates (z, y, z) the only non-vanishing component of some tensor
At is A} = 1 and all other components vanish. Using coordinate transformation from Cartesian to the uniformly
rotating cylindrical coordinates (r, 6, ¢)

x=rcos(d +Qt), y=rsin(0+Qt), z=2, (A4)

show that in the latter coordinates

Ay = g;ﬁ sin2(0 + Q). (A.5)
C
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B. Course work 2

Q1
a) Motivate the necessity to introduce parallel translation for proper differentiation of tensors and
explain the geometrical and physical meaning of the Christoffel symbols.

b) List all physical and geometrical arguments, you know, to demonstrate that the Christoffel symbols
do not form a tensor.

Q2
a) Write down the covariant derivative of the mixed tensor of the second rank in terms of Christoffel
symbols.

b) Explain why for the derivation of physical equations in the presence of a gravitational field one
can simply replace partial derivatives by covariant derivatives. Take any physical equation by your
own choice and write down it in the presence of gravitational field.

Q3
Show by straightforward calculations that

; 1 dg 8ln\/—g‘ (B.1)

KT 9g0zk T Oab

You can use here without proof that the differential of g can be expressed as

dg = gg™dgix = —ggadg™. (B.2)

Q4
The four-velocity and the four-momentum of a particle of mass m in a gravitational field are defined
as
. dxt . )
u'=—, p'=mecu’. B.3
T D (B.3)
a) Show that u;u’ = 1 and p;p' = m2c>.
b) Show that in a static gravitational field with metric interval ds? = goo(dz®)? + gapdr®dz”, the
energy of the particle, E = mc?uq, is given by
2
mc
p =" vin (B.4)

02

c2

where

— adrB
Y c\/ —Yapdxdz . (B.5)
V/Goodx®
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c. Course work 3

Q1
Using the locally-inertial coordinate system prove that the Riemann tensor has the following sym-
metry properties:

a) Rikim = — Riitm = — Rigmi-
b) Ritim = Rimik-
¢) Rigim + Rimki + Ritmk = 0.
Q2
a) Show that
R = szz I iy L — DT,

b) Using a locally-inertial coordinate system prove the Bianchi identity:

zkl m + Rzmkl + Rzlm kT =0.

¢) Using the Bianchi identity, prove that the Ricci tensor and the scalar curvature R = g% Ry, satisfy
the following identity:

1
R, = 2Rm.

m;l

Q3

a) Using the Einstein equations in the form
, _ 8nG
R =" (T“——& )
ct

where G is the gravitational constant, prove that the energy-momentum tensor of matter 7} satisfies
the conservation law T} ik =0.

b) In the limiting case of a weak gravitational field described by a Newtonian potential ¢ we can
write

2
Joo = 14 C_;zs’ Joo = 0 and Gap = _5aﬁ7
where «, 8 = 1,2,3. Consider the (0,0) - component of EFEs to show that in this case
AN¢ = 4AnGpu,

where p is the density of matter. [ Hint: in the non-relativistic case TF = pc*uu®, u® = 0 and

u’ = ug = 1.]
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D. Course work 4

Q1
Prove that the determinant of the metric tensor, g = |g|, is negative in all frames of reference.
Q2
Prove the following identity:

dlny/—g = %gikdgik = _%gikdgik-
Q3
Let ¢ is an arbitrary scalar field. Prove that

1

ik - — ik )
g gb;k‘;z \/_—g<\/_gg ¢,k)7l~

Q4
Let A;; is a symmetric tensor. Prove that
Ay = L (V=94}) , — 1gkl A"
ik \/_—g i)k 9 K .
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E. Course work 5

Q1

a) A spherically symmetric gravitational field in vacuum is given by the Schwarzschild metric. Using
this metric show that

-1
PO——FI_TQ _T_Q
10 — 11_22 )
T r

and
r r
rio— o ( . —9> .
00" 9p2 r
b) Show that the time component of the geodesic equation has the following form:
I} =0,
dr? + r2 dr dr

where 7 is proper time (ds = cdr). Solve this equation for a particle which is falling radially towards
a black hole. Show that

dt Tq

—(1-=)=1

dr ( r )

c¢) Show that when the particle in b) has zero velocity at infinity, then

dr\? B c*ry
dr) — r
Find 7 and t as functions of r and sketch them on the same graph. Explain why ¢t — oo when

7‘—>7”g.

Q2
A rotating black hole is described by the Kerr metric.

d*t 7“9(1 rg>1ﬁ@
r

2 2
ds? = (1 %) e /)Z & — 2d6° — (1 + a® + % sin? 0) sin? Od¢>+
2
9L sin? fdodt,
p

where p* =12 +a?cos’0, A =r? —r,r +a*, and a = ﬁ, where J is the angular momentum of the
black hole.
a) Explain why the location of the event horizon, 7., is given by g, = oo and show that

r r
Thor = 39 + (gg)2 — a?.
b) Compare this expression with the expression for the radius of the event horizon in the case of a

non-rotating black hole.
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Q3

a) What is the limit of stationarity and what is the ergosphere?

b) Explain why the location of the sphere corresponding to the limit of stationarity, 7, is determined
by g+ = 0, and show then that

r r
Ts = Eg + \/(59)2 —a2cos?f.

c) Sketch the rotating black hole as projected on i) the equatorial plane, § = 7/2, and ii) the
perpendicular plane, ¢ = 0 (indicate the event horizon, the limit of stationarity and the ergosphere).

Q4
a) Explain qualitatively why it is possible to extract the energy of a rotating black hole despite the
fact that no signal can escape outside from within the black hole horizon.

b) Show that the circle r = rp, and 6 = 7/2, is the world line of a photon moving around the
rotating black hole with angular velocity

a

Qhor =

TgThor

(Hint: put dr =0, df = 0 and d¢ = Qp,rdt into ds and show that ds = 0.)
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F. Course work 6

Q1.

a) A binary system consists of two neutron stars of the same mass M. The orbital period of the system is P.
Using Newtonian mechanics, estimate to an order of magnitude the separation between the neutron stars, r, and the
fractional relativistic corrections to the orbital motion.

b) Evaluate the relativistic corrections if P =8 min and M = 1.5Mg. Compare your estimate with relativistic effects
in the solar system. It is known that the perihelion shift of Mercury is 43" per century. What analogous shift can
you expect in the case of the binary system of neutron stars? (Hint: The relativistic shift per one orbital period is of
order ry/r, where r, is gravitational radius of the neutron star.)

Q2.
The quadrupole formula for the metric perturbation associated with gravitational waves is given by
2G d*Dagp
hog = — t—R/c),
g 3ctR  dt? ( /<)

where R is the distance to the source of the gravitational waves and

Dag = /(31‘a$5 — Tzdag)dM
is the quadrupole tensor of the source. Consider a mass m moving along circular orbit around the black hole of mass
M, assuming that m < M.

a) Show that all the amplitudes h,g of gravitational wave, emitted by such system, are periodic functions of time
with w = 2wq, where wg = 27/T, and T is the orbital period.

b) Show that, to an order of magnitude (omitting the indices o and 3)
halo Rgw o
R\ ¢ ’

where 7, is the gravitational radius of the mass m and R, is the gravitational radius of the black hole.

Q3.

The future LISA mission will be able to detect gravitational waves with A > 10723, if 107 Hz < w < 3-1073H 2.
From what distance will it be possible to detect gravitational radiation from the binary system, containing the black

hole of mass m = 3Mg, moving along a circular orbit with radius r = 104Rg around the massive black hole of mass
M =103My?
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A. Solutions to course work 1

Q1

a) Formulate the equivalence principle and explain what is the difference in interpretation of this principle in Newtonian theory
and in General relativity.

Solution:The equivalence principle states that a uniform gravitational field is equivalent, i.e. is not distinguishable
from a uniform acceleration.

It is explained within frame of newtonian theory just by the following ”coincidence”: inertial mass m;, is equal to
gravitational mass mg,.

The GR gives a very simple and natural explanation of the Principle of Equivalence: in curved space-time all bodies
move along geodesics, that is why their world lines are the same in given gravitational field.

b) Ezplain the similarity between an ”actual” gravitational field and a non-inertial reference system. Give the definition of a
locally Galilean coordinate system.

Solution:The similarity is that for a given gravitational and at a given event one can always choose such a non-inertial
frame that the motion of particles or propagation of light with respect to this non-inertial frame in the vicinity of
that event (i.e. locally) is the same as in the given "actual” gravitational field.

The local galilean frame of reference (the freely falling frame of reference) is a such frame in which

gir — mix = diag(1,—-1,—-1,-1). (A.1)

¢) Explain why an ”actual” gravitational field cannot be eliminated by any transformation of coordinates over all space-time.
Solution:In general ”actual” gravitational field is non-uniform and one should produce different transformations to
the local galilean frame of reference at different events (points) of space-time.

d) Show that in a uniformly rotating system of coordinates z/, y/, z/, such that

’

r=a cothfy, sin Qt, y:x/ sither/ cosQt, z=2z2,

the interval ds has the following form:
ds® = gikd:cidxk = gipdz ‘dx k=

=[P = QP22+ yDdt? —dx'? — dy? — dz? + 2Qy dz'dt — 2Q2 dy dt.

Solution:The transformation should be back rotation around z -axis:

/ ’

t =t, 2z =z, T = xcos o+ ysin @, yl = x8ing — y cos ¢, (A.2)
where ¢ = —t.
Then
2% +y? = (zcosp+ ysing)? + (xsin¢ — ycos ¢)? = z? + ¢, (A.3)
and
dt = dt, dz = dz, dx = dx cos ¢+ dysin ¢ + (xsin ¢ — y cos ¢)$dt,
dy/ = dzsin¢ — dy cos ¢ — (x cos ¢ + ysin ¢)dt. (A4)
Then

dz'? + dy? = (dz cos ¢ + dysin ¢) — (zsin ¢ + y cos ¢)(Qdt)? + (—dz sin ¢ — dy cos ¢ — (x cos ¢ — ysin ¢)Qdt)? =

= da® + dy® + (2 + 4?)(dt)? — 2Qdt(ydx — zdy), (A.5)

10
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ydi —z'dy = (—xsin¢g — ycos @) (dx cos d — dysin ¢ — (zsin ¢ + y cos ¢)2dt)—

—(zcos ¢ — ysing)(—dxsin ¢ — dy cos ¢ — (x cos ¢ — ysin @)Qdt) =

= (2% + y*)Qdt — (yda — xdy). (A.6)
Thus
ds? = [¢® — Q*(z? + y)|dt* — da? — dy?® — dz* — Q* (2 + y?)dt*+
+2Qdt(ydx — xdy) + 2% (2? + y?)|dt* + 2Qdt(zdy — ydx) =
= 2dt? — da® — dy® — d2°. (A7)
Q2

a) Formulate the covariance principle and explain the relationship between this principle and the principle of equivalence.
Solution:The Principle of Covariance which says: the shape of all physical equations should be the same in an
arbitrary frame of reference.

The Principle of Covariance is more general and more mathematical version of the Principle of Equivalence.

b) Give the definition of a contravariant vector in terms of the transformation of curvilinear coordinates.

Solution:The Contravariant four-vector is the combination of four quantities (components) A?, which are transformed
like differentials of coordinates:

A= oz’

= SR Ak = SpA*, (A.8)

¢) Give the definition of a covariant vector in terms of the transformation of curvilinear coordinates.
Solution:The Covariant four-vector is the combination of four quantities (components) A;, which are transformed
like components of the gradient of a scalar field:

ax/k
ozt

A; = Al = SkA,. (A.9)

d) What is the mized tensor of the second rank in terms of the transformation of curvilinear coordinates (you can assume that
a mized tensor of the second rank is transformed as a product of covariant and contrvariant vectors).

Solution:Mixed tensor of the 2 rank has 4> = 16 components and 2 indices, 1 contravariant and 1 covariant.
Corresponding transformation law is

L =8i8mAm, (A.10)

we see 2 transformation matrices in the transformation law. It really looks like transformation of the product of two
vectors

BiCy = (SLB™) (S;;nc,’n) — §igmpne . (A.11)

e) Explain why the principle of covariance implies that all physical equations should contain only tensors.

Solution:The Principle of Covariance predetermines the mathematical structure of General Relativity: all equations
should contain tensors only, because tensors are objects which are transformed properly in the course of coordinate
transformations from one frame of reference to another keeping the shape of any physical equation being unchanged.

11
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Q3

a) Prove that the metric tensor is symmetric. Give a rigorous proof that the interval is a scalar.
Solution:

, 1 , . 1 . _ 1 _
ds® = gipdaztdz® = §(gikd:rldxk + gikd:cldxk) = i(gkidxkd:cl + gikdxzdxk) = §(g;ﬂ + gik)dxzdxk =

= girda'dz”, (A.12)
where
- 1
Jik = 5 (gri + gir), (A.13)

» o~ N

which is obviously a symmetric one. Then we just drop

ds* = gundaida® = (SPS{ ) (Sida'™) (S da'™) = (SP.SE)(S1SE) (ghymda’Pda’™) =

= 0,00 (gnmdaPdz"™) = g, dx"Pdx"’ = glpdada’® = ds'?, (A.14)

!
Inm
hence ds = ds’ which means that ds is a scalar.

b) Give the definition of the reciprocal tensors of the second rank. What is the contravariant metric tensor g
Solution:Two tensors A;, and B are called reciprocal to each other if

A B =6t (A.15)
A contravariant metric tensor g** is reciprocal to the covariant metric tensor g;:
gig™ = 6. (A.16)
¢) Show that in an arbitrary non-inertial frame
9" = S{0)0S{oy0 — St0y)15t0y1 — Stoy2S(ay2 — Si0y3Stoyss

where S(io)k is the transformation matriz from locally inertial frame of reference (galilean frame) to this non-inertial frame.
Solution:Let Séo)  to be the transformation matrix from locally inertial frame of reference (galilean frame) to an
arbitrary non-inertial frame, let us denote it as . In the galilean frame of reference

1 0 0 0
i i 0-1 0 O ik
gF =n* = 0 0 -1 0 =% = diag(1, -1, -1, 1), (A.17)
0 0 O 1
hence
g* = Séo)nségo)mﬁlm = 550)0550)0 - S€0)1Sé€0)1 - 520)2550)2 o 530)3550)3' (A-18)

d) Demonstrate how wusing the reciprocal contravariant metric tensor ¢** and the covariant metric tensor gi, you can form
contravariant tensor from covariant tensors and vice versa.

Solution:With the help of the metric tensor and its reciprocal we can form contravariant tensors from covariant
tensors and vice versa, for example:

Al = g™ Ay, A = gi AR, (A.19)

in other words we can rise and descend indices as we like, like a kind of juggling with indices. We can say that
contravariant, covariant and mixed tensors can be considered as different representations of the same geometrical
object.

12
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Q4
a) In the local Galilean frame fo] of reference a mized tensor of the second rank, C} has the only one non-vanishing

component, C’g[G] =1, and all other components are equal to zero. Write down all components of this mized tensor in arbitrary
frame of reference. FExpress your result in terms of transformation matriz.
Solution:

Ci = S(iO)n‘gzg)kC:rLz[G] = SEO)nSZg)k(S{JL(S?n = S(io)oggo)k- (A.20)

b) In the non-rotating system of Cartesian coordinates (z, y, z) the only non-vanishing component of some tensor Al s
Al =1 and all other components vanish. Using coordinate transformation from Cartesian to the uniformly rotating cylindrical
coordinates (r, 0, @)

x =rcos(6 4+ Qt), y=rsin(0+Qt), z=Z,

show that in the latter coordinates O
A = —7”27 sin 2(0 + Qt).

Solution:
P =Gl SmAm (A.21)

Multiplying both sides of l) by S(’)“S‘il one obtains

SESIAL =S¢ Siskgmam (A.22)
hence
SkS1sisl = glomAn = AL (A.23)
Thus
. ozt 9zt 9(rcos(0 + Qt)) Or
A — glgl — — -, A24
S0 0x'0 Jzl cot Ox ( )
Taking into account that
2 2 2 or
r* =z +y° and 2r— =2z, (A.25)
Ox
one finally obtains
Q Q
A = [ Gin(0 + Qb)) [cos(0 + Qb)) = —% sin 2(0 + Q). (A.26)
c c

13
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B. Solutions to course work 2

Q1.

a) Motivate the necessity to introduce parallel translation for proper differentiation of tensors and explain the geometrical and
physical meaning of the Christoffel symbols.

Solution:Differentiating, say, vectors we take difference between components of this vector at infinitesimally close
but nevertheless different points. At different points in general case matrices of transformation are different and the
differential of vector (tensor) is not a vector (tensor). In order to make the differential of a tensor be also a tensor,
we should take difference of two objects at the same point. To do this we need produce a parallel translation.

The Christoffel symbols from geometrical point of view appear as coefficients in corrections to components of tensors
due to the parallel translations in curved space-time (in flat space-time such corrections obviously are equal to zero).
From physical point of view the Christoffel symbols represent non-inertial ”forces” in non-inertial frames of reference
or gravitational ”forces”.

b) List all physical and geometrical arguments, you know, to demonstrate that the Christoffel symbols do not form a tensor.
Solution:1) Corrections for the parallel translations are added to not tensors to obtain tensors, hence the are not
tensors (geometrical argument);

2) Gravitational field can be eliminated locally, which means that in locally inertial frame of reference the Christoffel
symbols are equal to zero, while according to the definition of tensors, the tensors vanishing in one frame of reference
should vanish in any other frame of reference, hence the Christoffel symbols do not form a tensor (physical argument).

Q2

a) Write down the covariant derivative of the mized tensor of the second rank in terms of Christoffel symbols.
Solution:

Yt knfme

b) Ezplain why for the derivation of physical equations in the presence of a gravitational field one can simply replace partial
derivatives by covariant derivatives. Take any physical equation by your own choice and write down it in the presence of
gravitational field.

Solution:According to the principle of covariance all physical equation should have the same shape in arbitrary
frames of reference, but in locally inertial frames where the Christoffel symbols are equal to zero partial derivatives
are identical to covariant derivatives.

For example the energy-momentum conservation without gravity (in flat space time) and in inertial frame of reference
T,il should be replaced by T,i;i.

Q3
Show by straightforward calculations that
pio- 19 _0Oly—g
M 9goxk T dzk

You can use here without proof that the differential of g can be expressed as

dg = gg"* dgix = —ggirdg™.
Solution:
ki = 59 (gkn,i + Gink — gki;n)- (B.2)

Replacing indices of summation in the first term in the brackets, i — n and n — 7 we obtain

g—,k 1
29 2

1. , . 1.
i(gmgki,n + 9" Gink — 9" Grin) = igmgm,k = (In|gl) &- (B.3)

14
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Taking into account that g < 0, i.e. |g| = —g, we finally obtain

_ Olny/—g

oxk

i _ 199 _
Mg Oak

Q4

The four-velocity and the four-momentum of a particle of mass m in a gravitational field are defined as

i dz’ pi — meu’
T ods’ - ’
Solution:
a) Show that win' =1 and pip' = m22.
Solution:
ds?® = gipda’dz®,
hence
ds? dx® dzk - .
1= Te2 = ik = giu'u® = uu'.
pip’ = (meu;)(meu') = m2ctuu’ = m?c?.

b) Show that in a static gravitational field with metric interval ds®> = goo(dz®)? + gapdz®dz®, the
2

(B.4)

(B.5)

(B.6)

(B.7)

energy of the particle,

E = mc*uo, is given by
E— m62\/900
= 71 =,
ez
where
c\/ —gapdredzh
V=
\/goodxo
Solution:
0 dz® daP da® v2g00(dz)? v?
1= W2y g 2 0y2 | (T2 UTgoularT)m 021 _ & B.8
9oo(~ )"+ gap— == = goo(u’)" + (=) 24 goo(w)*(L = =), (B.8)
hence
1
u = (B.9)
goo(l — &
Finally
2
mee,/
E = mc*uy = mc?goou’ = 900‘ (B.10)
,U‘Z
e

15
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C. Solutions to course work 3

Q1

Using the locally-inertial coordinate system prove that the Riemann tensor has the following symmetry properties:
a) Rikim = —Riitm = —Rikmi.
b) Rikim = Rimik.
¢) Rikim + Rimkt + Ritmi = 0.

Solution:In the local galilean frame of reference

. n I n ™ _
Riklm — nanklm = Nin (ka,l kl,m) -

1 1
= 5MNin [gnp(gk:p,m + 9mp,k — gkm,p],l — = Nin [gnp(gkp,l + Gip,k — gkl,p],m -

2 2

- 57”'"7’@ (Gkp,m,t + Gmp,k,l = Gkom,p,t — Gkp,im = Gip,k,m + Gkt,p,m) =

1, 1
= 551- (Gmp,k,t = Gremp,l = Gip.kym + Gkipm) = 5 (Gimk,l + Ghiism — Gilkym — Gkmisl) -

2
a)
1 1
Riiim = 5 (gkm,i,l + 9it,k,;m — Gklim — gim,k,l) = —5 (gim,k,l + 9kli;m — Gilkym — gkm,i,l) = —Rikim-
1 1
Rigmu = 3 (Git,o.m + Gkmoil — Gim kol — Gklim) = —3 (Gim. ket + Grliym — Gilkym — Gkmil) = —Rikim.-
b)
1 1
Rl’mik = 5 (glk,m,i + Imil,k — Glim,k — ka,l,i) = 5 (gi'm,k,l + 9kl,i,m — Gil,k,m — gknb,i,l) = Riklm-
c)

Rikim + Rimki + Ritmk = Nin (FZm,z — T+ e =T + Tl — Thvak) =
Nin (FZm,l —Thks = Thim + Dlem + Uik — F?m,k) =

= Nin (Fzm,z —Tms = Thim + Ukpm + T — F:Lnl,k) =0.

16
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Q2
a) Show that
R, = Fék,l - Flil,k + T = D T

b) Using a locally-inertial coordinate system prove the Bianchi identity:

n n n
Rikl;m + Rimk;l + Rilm;k =0.

¢) Using the Bianchi identity, prove that the Ricci tensor and the scalar curvature R = g'* Ry, satisfy the following identity:

1
! [
Rini = 5 R,

Solution:a) Starting from
R;;lm = le;cm,l - F;‘cl,m + F;lFZm - F7;Lm Zla

(which is obtained by straightforward calculation of Ag.j.pm — Agim:1), and using definition of the Ricci tensor R;, = Rél >
one obtains

Rip = Ry =T — Ui e + 1000 — T, =

pn= ik

7l 1 l m mil
=D —Taue + il — Ui i

b) The Bianchi identity, Riyiom + Rigy + Rl = 0, In the local galilean frame of reference, where all Christoffel
symbols are equal to zero, can be re-written as

7" n T —
Riim + Rivge s + Ripm i, = 0
and the Riemann tensor in this frame can be written as

i i i i T i n_ i i
Rklm - ka,l - Fkl,m + Fnlrkm - anrkl — Y km,0 Fkl,rn?

n n n _ n n n n n n _

Riim + Riget + Rl k. = (Fil,k - Fik,z),m + (Fim,l - Fil,m)7k + ( ikym im,lc)J =

™ n n n n n _
=T em = Vikam ik = Uitk + Likmy — Dimokg =

= Tk = Dt + Cikms — Dikam) + Limax — D] = [0] 4 [0] + [0] = 0.

¢) After contracting the Bianchi identity we obtain

gklR;clm;z‘ + gklR}cil;m + gklRimz’;l = gmgkl (Rnkimsi + Rnkit;m + Rokmii) =

l

= gklgin (_Rk:nlm;i + Rnk:il;m - Rnkim;l) = _gianm;i + gklel;m - gklem;l = _R;Ln,z + R,’m - Rm;l =

= 2R+ R, =0.
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Q3
a) Using the Einstein equations in the form

Ri—irj(ﬂffék )

wizere G is the gravitational constant, prove that the energy-momentum tensor of matter T} satisfies the conservation law
Z;l In_the limiting case of a weak gravitational field described by a Newtonian potential ¢ we can write
goo =1+ ch;b, goa =0 and gap = —bag,
where a, f =1,2,3. Consider the (0,0) - component of EFEs to show that in this case
AN¢ = 4nGp,

where i is the density of matter. [ Hint: in the non-relativistic case TF = pciuiu®, u® =0 and u® = up = 1.]
Solution:a) Contracting EFEs in given form, one obtains

R—pRi =Y (Tl - 751 ) g (T 4T> - 7%7’
ct ct 2 ct

Then taking covariant divergence of both sides of EFEs, one obtains
i 8rG 1 87G 4rG 8nG 1
Ryi =3 (Tk i~ 25kT,z‘) = T — Lo =g Thu + 5Bk
hence

. C4 ) 1
T, = —(R, — =Rx) =0.
ki = grg Pl — 5 )
b) In small velocity approximation
TF ~ pctuu®, (C.1)

where p is the mass density, i.e., TY = pc? and all other components are small, i.e., [T0| < 7§ and |T?| < T3). This
means that T'= T} ~ T.
In weak field approximation one can neglect by the non-linear part in the Ricci tensor:

1 1
Roo = Ry ~ TG00 = 77 % 900,05 = ¢aﬁ, (C.2)
where ¢ is defined by
2
goo =1— c—f (C.3)
Following usual notations
1% 900,08 = Lgoo, (C.4)
where A is the Laplace operator. From EFEs we obtain
81G 1 87G 1, 0 ArG
*Aﬁb = —(Ty - QT) —(Tg — §To) = cTTO' (C.5)
Hence,
A¢ = 47Gp. (C.6)

This is the Poisson equation, hence, as one can see, in this approximation EFEs give the Newtonian gravity and ¢ is
the Newtonian gravitational potential.

18
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D. Solutions to course work 4

Q1

Prove that the determinant of the metric tensor, g = |gix|, s negative in all frames of reference. '
Solution:Taking into account that g;; and g°* are reciprocal, one obtains that g = det(gi) = 1/det(g™*).
We know that

gik — Séo)nS(kO)mnlm-
Obviously, det(n'™ = —1, hence
det(gik) = detSéO)n X detSé“O)m X det(nlm) =52

where S is the determinant of the transformation matrix. One can see that g = —S~2 < 0 in all frames of reference.

Q2

Prove the following identity:
1 ; 1 ;
dln/—g = 5glkdgik = _igikdglk-

Solution:The determinant g depends on all components g;;. Calculating g with the help, say the first raw, one can
write

g=M"g;,
where M are minors of the components in the first row. Obviously M do not contain gi;. Hence

dg

— = M".
09

This is true for any row in determinant, thus
8gm'

Taking into account that ¢g°* is inverse matrix of g;;, one can write g** = M /g, i.e. M* = gg**. Thus

0 . )
dg = 5 dgix = M*dgi = g9 dgi.

Jik

hence
ik dg
9" dgix = ; =dlnl|g| = dIn(—g) = 2In\/—g.
Then
g™ dgix = d(g™gir) — gindg™ = dd; — girdg™ = —gindg™.

Finally

L 1 i
dln\/—g = Qg kdgik = figikdg k.
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Q3
Let ¢ is an arbitrary scalar field. Prove that
1

9" b = N (\/jgglkdjk)z

Solution:Let us introduce the following covariant vector: A; = ¢ ; = ¢,;. After that

ng¢;k;i = glkAk;i = (gzkAk);i = A,,Lz = A?z +I5,A" = A?z + iglm (gim,n + Gnm,i — gin,m) A" =

= A,i + gg gim,nA + 59 (gnm,i - gin,m) A"

Using the answer to Q2, one has

And taking into account that

gim (gnm,1 - gzn,m) - gimgnm,i - gzmgin,m - gmlgnz,m - gzmgzn,m - gimgin,m - gimgin,m - 07

we obtain
9% b = A + V\/jg N (vV=g94") , = (V=g99"4Ai) , 7= (V=99"d.) ,,
1 ik
= —— (V=99"0ux) ;-

ﬁ

-9

Q4
Let Ak is a symmetric tensor. Prove that
1

Al =
Ve

1
(v —gAf) L 59kl,iAkl.

Solution:

1 1
Afk = Aik + FgmA:n - FZZAZL = Af,k: + §gkn (gk:n,m + Imn,k — gkm,n) A:n - §gmn (gln,k + Gkn,i — gzk,n) A]:n =

g 1 1 1
= ATm + 2;1 A;n + §gk:n (gmn,k - gkm,n) A:n - igmnAI:ngkn,i - igmnAfn (gin,k - gik,n) ==

V=9 m
V=9

b
V=g

= AP+ AP+ S AT (9" gk = 87" Ghm.n) =5 A" Gion i =5 AT (Gin. e = Gikn) = (V=947) =5 0m.:A™.
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E. Solutions to course work 5

Q1

a) A spherically symmetric gravitational field in vacuum is given by the Schwarzschild metric. Using this metric show that

-1
I = —Th = 5% (1- )
10 =55 , )

and ” ,
Tl = 29 (1 - —9) .
00 ™ 9p2 T

Solution:
b) Show that the time component of the geodesic equation has the following form:

(1_19)‘1@@_0

a2 T r drdr 7

&t
dr?2 72

where T is proper time (ds = cdt). Solve this equation for a particle which is falling radially towards a black hole. Show that
dt Tg
—(1-—=) =1
dr ( r )

Solution:

¢) Show that when the particle in b) has zero velocity at infinity, then

dr 2_627“9
dr) — r

Find T and t as functions of r and sketch them on the same graph. Ezplain why t — oo when r — rg.
Solution:

Q2

Solution:

A rotating black hole is described by the Kerr metric.

2 2
ds®> = (1 — %)dt2 — %drz —p%d0® — (r’ +d® + % sin® 0) sin® Od¢°+
p p

2
T sin® Odepdt,

where p* =12 +a’cos’ 0, A =r> —ryr+a®, and a = ﬁ, where J is the angular momentum of the black hole.
Solution:

a) Ezplain why the location of the event horizon, Thor, is given by grr = 00 and show that

Thor = T?g‘f' (*)2_0/2-

Solution:

b) Compare this expression with the expression for the radius of the event horizon in the case of a non-rotating black hole.

21



A. Polnarev. (MTH720U/MTHMO033 ). 2011. Course work 5.

Q3
a) What is the limit of stationarity and what is the ergosphere?
Solution:

b) Ezxplain why the location of the sphere corresponding to the limit of stationarity, ris, is determined by g = 0, and show then
that

Ts = %g + (%’)2 a? cos? 0.

Solution:

¢) Sketch the rotating black hole as projected on i) the equatorial plane, 0 = w/2, and i) the perpendicular plane, ¢ = 0 (indicate
the event horizon, the limit of stationarity and the ergosphere).

Q4

a) Ezplain qualitatively why it is possible to extract the energy of a rotating black hole despite the fact that no signal can escape
outside from within the black hole horizon.

Solution:

b) Show that the circle 1 = rhor and 0 = /2, is the world line of a photon moving around the rotating black hole with angular
velocity

Qhor = a4 .
TgThor
(Hint: put dr =0, df =0 and d¢ = Qpordt into ds and show that ds = 0.)

Solution:
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F. Solutions to course work 6

Q1.

a) A binary system consists of two neutron stars of the same mass M. The orbital period of the system is P. Using Newto-
nian mechanics, estimate to an order of magnitude the separation between the meutron stars, r, and the fractional relativistic
corrections to the orbital motion.

Taking into account that
P =27/w,
where w is the angular velocity which according Newtonian theory is related with the separation r as

, GM GM

wr=——, thus w=
r

r3

Hence

aM\Y?  ramT\'?  r7\Y? s
r = — 3 = —_— (GM) .
4 2w
b) Evaluate the relativistic corrections if P =8 min and M = 1.5Mg. Compare your estimate with relativistic effects in the
solar system. It is known that the perihelion shift of Mercury is 43” per century. What analogous shift can you expect in the
case of the binary system of neutron stars? (Hint: The relativistic shift per one orbital period is of order rq/r, where rg is
gravitational radius of the neutron star.)

1 year

=—, hence the periastron shift per 1 year is

Per 1 year there are N revolutions and N =

Ap ~ T9 N o 775/,
T

Comparing with the case of Mercury we have the ratio of the number of revolutions per year

N/NMerc = PMerc/P~

B (ALY (ay (Pume) _ (MY (M TP N (Paere
A@Me»,-c M@ T P M@ M@ PMerc P
(M 2/3 P —5/3
- MiQ) PMerc .

. 1
Prrere = (0.5)3/2 year, and P = % year = 52 Jear,

Hence

Taking to account that

we obtain

437 43 \°
Ap = [ — ) x 10%2/3(0.5)3/25/3 (64)°/% = [ ——2__ 0.5)5/2 x 64%/3 =
? <100)>< (05) (64) Goxgo) (0D

<43 x 0.25 x 0.7 x 4°

~ (0.7/3.5)° = 0.2°.
23600 ) (0.7/3.5) 0

23



A. Polnarev. (MTH720U/MTHMO033 ). 2011. Solutions to course work 6.

Q2.
The quadrupole formula for the metric perturbation associated with gravitational waves is given by
2G d*Dag
hog = — t—R/c),
o0 = “3ap qp R/

where R is the distance to the source of the gravitational waves and
Da[; = /(3xaxﬁ - T25a5)dM

is the quadrupole tensor of the source. Consider a mass m moving along circular orbit around the black hole of mass M,
assuming that m << M.

a) Show that all the amplitudes hop of gravitational wave, emitted by such system, are periodic functions of time with w = 2w,
where wo = 2w /T, and T is the orbital period.

T, = 1 coswyt,

To = rsinwgt,

1
Dy = mr2(3cos® wot — 1) = imTQ(l + 3 cos 2wt),
20 2 L o
Doy = mrZ(3sin” wot — 1) = Smr (1 — 3 cos 2wpt),

3
Dy = imrg sin 2wyt

then
2Gmr? 3 dwiGmr?
hi1 = —73021}; 5(20.)0)2 cos 2wot = 70.2064;17‘ cos 2wy,
2Gmr? 3 4w Gmr?
hog = %5(2“0)2 cos 2wot = 7%047}7:74 sin 2wy,
2Gmr? 3 4w Gmr?
iz = =g i () sin 2ot = =L sin 2en,

it is clear, that

w = 2wy.

b) Show that, to an order of magnitude (omitting the indices o and 3)

ha ' Rqw v
R c ’

where ry is the gravitational radius of the mass m and Ry is the gravitational radius of the black hole.
From

GM

2
TWH = —5—
0 72 ’

24



we have

and finally

Thus

rot = (AGM) 73w/,

2 2
. dwgGmer _rgRy ~ 7

9
AR rR R
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Q3.

The future LISA mission will be able to detect gravitational waves with h > 10723, if 107*Hz < w < 3-10"*Hz. From what
distance will it be possible to detect gravitational radiation from the binary system, containing the black hole of mass m = 3Mg),
moving along a circular orbit with radius r = 10*R, around the massive black hole of mass M = 10* Mg, ?

s GM  +_ 2GM  , R,
wy = —= —

B2l em T
hence,
R, R, 106 107*Hz
TN o TN 2102k T VRR, T V2
r “1012R3 ~ V3R, 2
thus

w=2wy=1+v210"*Hz > 10"*Hz,

which means that the radiation is within LISA frequency range.

h

31018 3.1010 TRA M 10-4Hz

3-10° (3-10°-10°\*® m R | M ,5 @
)y ()

1pc

R M w
~ 10~19 mo g M g3 2/3
(M.)(lpc) (M) (10*4Hz)
Then
3-10%m ,3-10°-10%-1.4-10"*s tem 9
= /3510723
L R 3-1010 )7 > 1077,
if

R <3-10%-10%°cm -10~% ~ 1 Mpc.
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