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I. COURSE WORKS

Time table Last updated 7.11.11

Course work is handed out is due to

CW1 Lecture 2 Lecture 4

CW2 Lecture 4 Lecture 6

CW3 Lecture 6 Lecture 7

CW4 Lecture 7 Lecture 9

CW5 Lecture 9 Lecture 11

CW6 Lecture 11 two weeks after Lecture 11
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 1.

————————————————————————————————————————————————-

A. Course work 1

Q1

a) Formulate the equivalence principle and explain what is the difference in interpretation of this principle in Newtonian
theory and in General relativity.

b) Explain the similarity between an ”actual” gravitational field and a non-inertial reference system. Give the
definition of a locally Galilean coordinate system.

c) Explain why an ”actual” gravitational field cannot be eliminated by any transformation of coordinates over all
space-time.

d) Show that in a uniformly rotating system of coordinates x
′
, y

′
, z

′
, such that

x = x
′
cos Ωt− y

′
sin Ωt, y = x

′
sin Ωt+ y

′
cos Ωt, z = z

′
, (A.1)

the interval ds has the following form:

ds2 = gikdx
idxk = g

′

ikdx
′idx

′k =

= [c2 − Ω2(x
′2 + y

′2)]dt2 − dx
′2 − dy

′2 − dz
′2 + 2Ωy

′
dx′dt− 2Ωx

′
dy′dt. (A.2)

Q2

a) Formulate the covariance principle and explain the relationship between this principle and the principle of equiva-
lence.

b) Give the definition of a contravariant vector in terms of the transformation of curvilinear coordinates.

c) Give the definition of a covariant vector in terms of the transformation of curvilinear coordinates.

d) What is the mixed tensor of the second rank in terms of the transformation of curvilinear coordinates (you can
assume that a mixed tensor of the second rank is transformed as a product of covariant and contrvariant vectors).

e) Explain why the principle of covariance implies that all physical equations should contain only tensors.

Q3

a) Prove that the metric tensor is symmetric. Give a rigorous proof that the interval is a scalar.

b) Give the definition of the reciprocal tensors of the second rank. What is the contravariant metric tensor gik.

c) Show that in an arbitrary non-inertial frame

gik = Si(0)0S
k
(0)0 − S

i
(0)1S

k
(0)1 − S

i
(0)2S

k
(0)2 − S

i
(0)3S

k
(0)3, (A.3)

where Si(0)k is the transformation matrix from locally inertial frame of reference (galilean frame) to this non-inertial

frame.

d) Demonstrate how using the reciprocal contravariant metric tensor gik and the covariant metric tensor gik you can
form contravariant tensor from covariant tensors and vice versa.

Q4

a) In the local Galilean frame xi[G] of reference a mixed tensor of the second rank, Cik has the only one non-vanishing

component, C0
0[G] = 1, and all other components are equal to zero. Write down all components of this mixed tensor

in arbitrary frame of reference. Express your result in terms of transformation matrix.

b) In the non-rotating system of Cartesian coordinates (x, y, z) the only non-vanishing component of some tensor
Aik is A1

1 = 1 and all other components vanish. Using coordinate transformation from Cartesian to the uniformly
rotating cylindrical coordinates (r, θ, φ)

x = r cos(θ + Ωt), y = r sin(θ + Ωt), z = Z, (A.4)

show that in the latter coordinates

A
′1
0 = −rΩ

2c
sin 2(θ + Ωt). (A.5)
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 2.

————————————————————————————————————————————————-

B. Course work 2

Q1

a) Motivate the necessity to introduce parallel translation for proper differentiation of tensors and
explain the geometrical and physical meaning of the Christoffel symbols.

b) List all physical and geometrical arguments, you know, to demonstrate that the Christoffel symbols
do not form a tensor.

Q2

a) Write down the covariant derivative of the mixed tensor of the second rank in terms of Christoffel
symbols.

b) Explain why for the derivation of physical equations in the presence of a gravitational field one
can simply replace partial derivatives by covariant derivatives. Take any physical equation by your
own choice and write down it in the presence of gravitational field.

Q3

Show by straightforward calculations that

Γiki =
1

2g

∂g

∂xk
=
∂ ln
√
−g

∂xk
. (B.1)

You can use here without proof that the differential of g can be expressed as

dg = ggikdgik = −ggikdgik. (B.2)

.

Q4

The four-velocity and the four-momentum of a particle of mass m in a gravitational field are defined
as

ui =
dxi

ds
, pi = mcui. (B.3)

a) Show that uiu
i = 1 and pip

i = m2c2.

b) Show that in a static gravitational field with metric interval ds2 = g00(dx
0)2 + gαβdx

αdxβ, the
energy of the particle, E = mc2u0, is given by

E =
mc2
√
g00√

1− v2

c2

, (B.4)

where

v =
c
√
−gαβdxαdxβ√
g00dx0

. (B.5)
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 3.

————————————————————————————————————————————————-

C. Course work 3

Q1

Using the locally-inertial coordinate system prove that the Riemann tensor has the following sym-
metry properties:

a) Riklm = −Rkilm = −Rikml.

b) Riklm = Rlmik.

c) Riklm +Rimkl +Rilmk = 0.

Q2

a) Show that

Rik = Γlik,l − Γlil,k + ΓlikΓ
m
lm − Γmil Γ

l
km.

b) Using a locally-inertial coordinate system prove the Bianchi identity:

Rn
ikl;m +Rn

imk;l +Rn
ilm;k = 0.

c) Using the Bianchi identity, prove that the Ricci tensor and the scalar curvature R = gikRik satisfy
the following identity:

Rl
m;l =

1

2
Rm.

Q3

a) Using the Einstein equations in the form

Ri
k =

8πG

c4

(
T ik −

1

2
δikT

)
,

where G is the gravitational constant, prove that the energy-momentum tensor of matter T ik satisfies
the conservation law T ki;k = 0.

b) In the limiting case of a weak gravitational field described by a Newtonian potential φ we can
write

g00 = 1 +
2φ

c2
, g0α = 0 and gαβ = −δαβ,

where α, β = 1, 2, 3. Consider the (0, 0) - component of EFEs to show that in this case

4φ = 4πGµ,

where µ is the density of matter. [ Hint: in the non-relativistic case T ki = µc2uiu
k, uα = 0 and

u0 = u0 = 1.]
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 4.

————————————————————————————————————————————————-

D. Course work 4

Q1

Prove that the determinant of the metric tensor, g = |gik|, is negative in all frames of reference.

Q2

Prove the following identity:

d ln
√
−g =

1

2
gikdgik = −1

2
gikdg

ik.

Q3

Let φ is an arbitrary scalar field. Prove that

gikφ;k;i =
1√
−g
(√
−ggikφ,k

)
,i
.

Q4

Let Aik is a symmetric tensor. Prove that

Aki;k =
1√
−g
(√
−gAki

)
,k
− 1

2
gkl,iA

kl.
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 5.

————————————————————————————————————————————————-

E. Course work 5

Q1

a) A spherically symmetric gravitational field in vacuum is given by the Schwarzschild metric. Using
this metric show that

Γ0
10 = −Γ1

11 =
rg
2r2

(
1− rg

r

)−1

,

and

Γ1
00 =

rg
2r2

(
1− rg

r

)
.

b) Show that the time component of the geodesic equation has the following form:

d2t

dτ 2
+
rg
r2

(
1− rg

r

)−1 dt

dτ

dr

dτ
= 0,

where τ is proper time (ds = cdτ). Solve this equation for a particle which is falling radially towards
a black hole. Show that

dt

dτ

(
1− rg

r

)
= 1.

c) Show that when the particle in b) has zero velocity at infinity, then(
dr

dτ

)2

=
c2rg
r
.

Find τ and t as functions of r and sketch them on the same graph. Explain why t → ∞ when
r → rg.

Q2

A rotating black hole is described by the Kerr metric.

ds2 = (1− rgr

ρ2
)dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2 +

rgra
2

ρ2
sin2 θ) sin2 θdφ2+

2rgra

ρ2
sin2 θdφdt,

where ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rgr + a2, and a = J
mc

, where J is the angular momentum of the
black hole.
a) Explain why the location of the event horizon, rhor, is given by grr =∞ and show that

rhor =
rg
2

+

√
(
rg
2

)2 − a2.

b) Compare this expression with the expression for the radius of the event horizon in the case of a
non-rotating black hole.
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 5.

————————————————————————————————————————————————-

Q3

a) What is the limit of stationarity and what is the ergosphere?
b) Explain why the location of the sphere corresponding to the limit of stationarity, rls, is determined
by gtt = 0, and show then that

rls =
rg
2

+

√
(
rg
2

)2 − a2 cos2 θ.

c) Sketch the rotating black hole as projected on i) the equatorial plane, θ = π/2, and ii) the
perpendicular plane, φ = 0 (indicate the event horizon, the limit of stationarity and the ergosphere).

Q4

a) Explain qualitatively why it is possible to extract the energy of a rotating black hole despite the
fact that no signal can escape outside from within the black hole horizon.
b) Show that the circle r = rhor and θ = π/2, is the world line of a photon moving around the
rotating black hole with angular velocity

Ωhor =
a

rgrhor
.

(Hint: put dr = 0, dθ = 0 and dφ = Ωhordt into ds and show that ds = 0.)
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Course work 6.

————————————————————————————————————————————————-

F. Course work 6

Q1.

a) A binary system consists of two neutron stars of the same mass M . The orbital period of the system is P .
Using Newtonian mechanics, estimate to an order of magnitude the separation between the neutron stars, r, and the
fractional relativistic corrections to the orbital motion.

b) Evaluate the relativistic corrections if P = 8 min and M = 1.5M�. Compare your estimate with relativistic effects
in the solar system. It is known that the perihelion shift of Mercury is 43” per century. What analogous shift can
you expect in the case of the binary system of neutron stars? (Hint: The relativistic shift per one orbital period is of
order rg/r, where rg is gravitational radius of the neutron star.)

Q2.

The quadrupole formula for the metric perturbation associated with gravitational waves is given by

hαβ = − 2G

3c4R

d2Dαβ

dt2
(t−R/c),

where R is the distance to the source of the gravitational waves and

Dαβ =

∫
(3xαxβ − r2δαβ)dM

is the quadrupole tensor of the source. Consider a mass m moving along circular orbit around the black hole of mass
M , assuming that m�M .

a) Show that all the amplitudes hαβ of gravitational wave, emitted by such system, are periodic functions of time
with ω = 2ω0, where ω0 = 2π/T , and T is the orbital period.

b) Show that, to an order of magnitude (omitting the indices α and β)

h ≈ rg
R

(
Rgω

c

)2/3

,

where rg is the gravitational radius of the mass m and Rg is the gravitational radius of the black hole.

Q3.

The future LISA mission will be able to detect gravitational waves with h > 10−23, if 10−4Hz < ω < 3 · 10−3Hz.
From what distance will it be possible to detect gravitational radiation from the binary system, containing the black
hole of mass m = 3M�, moving along a circular orbit with radius r = 104Rg around the massive black hole of mass
M = 103M�?
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course works.

————————————————————————————————————————————————-

II. SOLUTIONS TO COURSE WORKS
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course work 1.

————————————————————————————————————————————————-

A. Solutions to course work 1

Q1

a) Formulate the equivalence principle and explain what is the difference in interpretation of this principle in Newtonian theory
and in General relativity.

Solution:The equivalence principle states that a uniform gravitational field is equivalent, i.e. is not distinguishable
from a uniform acceleration.
It is explained within frame of newtonian theory just by the following ”coincidence”: inertial mass min is equal to
gravitational mass mgr.
The GR gives a very simple and natural explanation of the Principle of Equivalence: in curved space-time all bodies
move along geodesics, that is why their world lines are the same in given gravitational field.

b) Explain the similarity between an ”actual” gravitational field and a non-inertial reference system. Give the definition of a
locally Galilean coordinate system.

Solution:The similarity is that for a given gravitational and at a given event one can always choose such a non-inertial
frame that the motion of particles or propagation of light with respect to this non-inertial frame in the vicinity of
that event (i.e. locally) is the same as in the given ”actual” gravitational field.
The local galilean frame of reference (the freely falling frame of reference) is a such frame in which

gik → ηik ≡ diag(1,−1,−1,−1). (A.1)

c) Explain why an ”actual” gravitational field cannot be eliminated by any transformation of coordinates over all space-time.

Solution:In general ”actual” gravitational field is non-uniform and one should produce different transformations to
the local galilean frame of reference at different events (points) of space-time.

d) Show that in a uniformly rotating system of coordinates x
′
, y

′
, z

′
, such that

x = x
′
cos Ωt− y

′
sin Ωt, y = x

′
sin Ωt+ y

′
cos Ωt, z = z

′
,

the interval ds has the following form:

ds2 = gikdx
idxk = g

′
ikdx

′idx
′k =

= [c2 − Ω2(x
′2 + y

′2)]dt2 − dx
′2 − dy

′2 − dz
′2 + 2Ωy

′
dx′dt− 2Ωx

′
dy′dt.

Solution:The transformation should be back rotation around z
′
-axis:

t
′

= t, z
′

= z, x
′

= x cosφ+ y sinφ, y
′

= xsinφ− y cosφ, (A.2)

where φ = −Ωt.
Then

x
′2 + y

′2 = (x cosφ+ y sinφ)2 + (x sinφ− y cosφ)2 = x2 + y2, (A.3)

and

dt
′

= dt, dz
′

= dz, dx
′

= dx cosφ+ dy sinφ+ (x sinφ− y cosφ)Ωdt,

dy
′

= dx sinφ− dy cosφ− (x cosφ+ y sinφ)Ωdt. (A.4)

Then

dx
′2 + dy

′2 = (dx cosφ+ dy sinφ)− (x sinφ+ y cosφ)(Ωdt)2 + (−dx sinφ− dy cosφ− (x cosφ− y sinφ)Ωdt)2 =

= dx2 + dy2 + (x2 + y2)(Ωdt)2 − 2Ωdt(ydx− xdy), (A.5)
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course work 1.

————————————————————————————————————————————————-

y
′
dx

′
− x

′
dy

′
= (−x sinφ− y cosφ)(dx cosφ− dy sinφ− (x sinφ+ y cosφ)Ωdt)−

−(x cosφ− y sinφ)(−dx sinφ− dy cosφ− (x cosφ− y sinφ)Ωdt) =

= (x2 + y2)Ωdt− (ydx− xdy). (A.6)

Thus

ds2 = [c2 − Ω2(x2 + y2)]dt2 − dx2 − dy2 − dz2 − Ω2(x2 + y2)dt2+

+2Ωdt(ydx− xdy) + 2Ω2(x2 + y2)]dt2 + 2Ωdt(xdy − ydx) =

= c2dt2 − dx2 − dy2 − dz2. (A.7)

Q2

a) Formulate the covariance principle and explain the relationship between this principle and the principle of equivalence.

Solution:The Principle of Covariance which says: the shape of all physical equations should be the same in an
arbitrary frame of reference.
The Principle of Covariance is more general and more mathematical version of the Principle of Equivalence.

b) Give the definition of a contravariant vector in terms of the transformation of curvilinear coordinates.

Solution:The Contravariant four-vector is the combination of four quantities (components) Ai, which are transformed
like differentials of coordinates:

Ai =
∂xi

∂x′k
A′k = SikA

′k. (A.8)

c) Give the definition of a covariant vector in terms of the transformation of curvilinear coordinates.

Solution:The Covariant four-vector is the combination of four quantities (components) Ai, which are transformed
like components of the gradient of a scalar field:

Ai =
∂x′k

∂xi
A′k = S̃ki A

′
k. (A.9)

d) What is the mixed tensor of the second rank in terms of the transformation of curvilinear coordinates (you can assume that
a mixed tensor of the second rank is transformed as a product of covariant and contrvariant vectors).

Solution:Mixed tensor of the 2 rank has 42 = 16 components and 2 indices, 1 contravariant and 1 covariant.
Corresponding transformation law is

Aik = SinS̃
m
k A
′n
m, (A.10)

we see 2 transformation matrices in the transformation law. It really looks like transformation of the product of two
vectors

BiCk =
(
SinB

′n) (S̃mk C ′m) = SinS̃
m
k B

′nC ′m. (A.11)

e) Explain why the principle of covariance implies that all physical equations should contain only tensors.

Solution:The Principle of Covariance predetermines the mathematical structure of General Relativity: all equations
should contain tensors only, because tensors are objects which are transformed properly in the course of coordinate
transformations from one frame of reference to another keeping the shape of any physical equation being unchanged.
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course work 1.

————————————————————————————————————————————————-
Q3

a) Prove that the metric tensor is symmetric. Give a rigorous proof that the interval is a scalar.

Solution:

ds2 = gikdx
idxk =

1

2
(gikdx

idxk + gikdx
idxk) =

1

2
(gkidx

kdxi + gikdx
idxk) =

1

2
(gki + gik)dxidxk =

= g̃ikdx
idxk, (A.12)

where

g̃ik =
1

2
(gki + gik), (A.13)

which is obviously a symmetric one. Then we just drop ” ˜ ”.

ds2 = gikdx
idxk = (S̃ni S̃

m
k g
′
nm)(Sipdx

′p)(Skwdx
′w) = (S̃ni S

i
p)(S̃

m
k S

k
w)(g′nmdx

′pdx′w) =

= δnp δ
m
w (g′nmdx

′pdx′w) = g′pwdx
′pdx′w = g′ikdx

′idx′k = ds′2, (A.14)

hence ds = ds′ which means that ds is a scalar.

b) Give the definition of the reciprocal tensors of the second rank. What is the contravariant metric tensor gik.

Solution:Two tensors Aik and Bik are called reciprocal to each other if

AikB
kl = δli. (A.15)

A contravariant metric tensor gik is reciprocal to the covariant metric tensor gik:

gikg
kl = δli. (A.16)

c) Show that in an arbitrary non-inertial frame

gik = Si(0)0S
k
(0)0 − Si(0)1Sk(0)1 − Si(0)2Sk(0)2 − Si(0)3Sk(0)3,

where Si(0)k is the transformation matrix from locally inertial frame of reference (galilean frame) to this non-inertial frame.

Solution:Let Si(0)k to be the transformation matrix from locally inertial frame of reference (galilean frame) to an

arbitrary non-inertial frame, let us denote it as . In the galilean frame of reference

gik = ηik =

 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 ≡ ηik ≡ diag(1,−1,−1,−1), (A.17)

hence

gik = Si(0)nS
k
(0)mη

lm = Si(0)0S
k
(0)0 − S

i
(0)1S

k
(0)1 − S

i
(0)2S

k
(0)2 − S

i
(0)3S

k
(0)3. (A.18)

d) Demonstrate how using the reciprocal contravariant metric tensor gik and the covariant metric tensor gik you can form
contravariant tensor from covariant tensors and vice versa.

Solution:With the help of the metric tensor and its reciprocal we can form contravariant tensors from covariant
tensors and vice versa, for example:

Ai = gikAk, Ai = gikA
k, (A.19)

in other words we can rise and descend indices as we like, like a kind of juggling with indices. We can say that
contravariant, covariant and mixed tensors can be considered as different representations of the same geometrical
object.
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course work 1.

————————————————————————————————————————————————-
Q4

a) In the local Galilean frame xi[G] of reference a mixed tensor of the second rank, Cik has the only one non-vanishing

component, C0
0[G] = 1, and all other components are equal to zero. Write down all components of this mixed tensor in arbitrary

frame of reference. Express your result in terms of transformation matrix.

Solution:

Cik = Si(0)nS̃
m
(0)kC

n
m[G] = Si(0)nS̃

m
(0)kδ

n
0 δ

0
m = Si(0)0S̃

0
(0)k. (A.20)

b) In the non-rotating system of Cartesian coordinates (x, y, z) the only non-vanishing component of some tensor Aik is
A1

1 = 1 and all other components vanish. Using coordinate transformation from Cartesian to the uniformly rotating cylindrical
coordinates (r, θ, φ)

x = r cos(θ + Ωt), y = r sin(θ + Ωt), z = Z,

show that in the latter coordinates

A′10 = −rΩ
2c

sin 2(θ + Ωt).

Solution:

Aik = SinS̃
m
k A
′n
m (A.21)

Multiplying both sides of (A.22) by Sk0 S̃
1
i one obtains

Sk0 S̃
1
iA

i
k = SinS̃

1
i S

k
0 S̃

m
k A
′n
m, (A.22)

hence

Sk0 S̃
1
i δ
i
1δ

1
k = δ1nδ

m
0 A
′n
m = A′10 . (A.23)

Thus

A′10 = S1
0 S̃

1
1 =

∂x1

∂x′0
∂x′1

∂x1
=
∂(r cos(θ + Ωt))

c∂t

∂r

∂x
. (A.24)

Taking into account that

r2 = x2 + y2 and 2r
∂r

∂x
= 2x, (A.25)

one finally obtains

A′10 = [−rΩ
c

sin(θ + Ωt)][cos(θ + Ωt)] = −rΩ
2c

sin 2(θ + Ωt). (A.26)

13



A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course work 2.

————————————————————————————————————————————————-

B. Solutions to course work 2

Q1.

a) Motivate the necessity to introduce parallel translation for proper differentiation of tensors and explain the geometrical and
physical meaning of the Christoffel symbols.

Solution:Differentiating, say, vectors we take difference between components of this vector at infinitesimally close
but nevertheless different points. At different points in general case matrices of transformation are different and the
differential of vector (tensor) is not a vector (tensor). In order to make the differential of a tensor be also a tensor,
we should take difference of two objects at the same point. To do this we need produce a parallel translation.
The Christoffel symbols from geometrical point of view appear as coefficients in corrections to components of tensors
due to the parallel translations in curved space-time (in flat space-time such corrections obviously are equal to zero).
From physical point of view the Christoffel symbols represent non-inertial ”forces” in non-inertial frames of reference
or gravitational ”forces”.

b) List all physical and geometrical arguments, you know, to demonstrate that the Christoffel symbols do not form a tensor.

Solution:1) Corrections for the parallel translations are added to not tensors to obtain tensors, hence the are not
tensors (geometrical argument);
2) Gravitational field can be eliminated locally, which means that in locally inertial frame of reference the Christoffel
symbols are equal to zero, while according to the definition of tensors, the tensors vanishing in one frame of reference
should vanish in any other frame of reference, hence the Christoffel symbols do not form a tensor (physical argument).

Q2

a) Write down the covariant derivative of the mixed tensor of the second rank in terms of Christoffel symbols.

Solution:

Aik;n = Aik,n + ΓinmA
m
k − ΓmknA

i
m. (B.1)

b) Explain why for the derivation of physical equations in the presence of a gravitational field one can simply replace partial
derivatives by covariant derivatives. Take any physical equation by your own choice and write down it in the presence of
gravitational field.

Solution:According to the principle of covariance all physical equation should have the same shape in arbitrary
frames of reference, but in locally inertial frames where the Christoffel symbols are equal to zero partial derivatives
are identical to covariant derivatives.
For example the energy-momentum conservation without gravity (in flat space time) and in inertial frame of reference
T ik,i should be replaced by T ik;i.

Q3

Show by straightforward calculations that

Γiki =
1

2g

∂g

∂xk
=
∂ ln
√
−g

∂xk
.

You can use here without proof that the differential of g can be expressed as

dg = ggikdgik = −ggikdgik.

Solution:

Γiki =
1

2
gin(gkn,i + gin,k − gki;n). (B.2)

Replacing indices of summation in the first term in the brackets, i→ n and n→ i we obtain

1

2
(gnigki,n + gingin,k − gingki;n) =

1

2
gingin,k =

g − , k
2g

=
1

2
(ln |g|),k. (B.3)
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A. Polnarev. (MTH720U/MTHM033 ). 2011. Solutions to course work 2.

————————————————————————————————————————————————-
Taking into account that g < 0, i.e. |g| = −g, we finally obtain

Γiki =
1

2g

∂g

∂xk
=
∂ ln
√
−g

∂xk
. (B.4)

Q4

The four-velocity and the four-momentum of a particle of mass m in a gravitational field are defined as

ui =
dxi

ds
, pi = mcui.

Solution:

a) Show that uiu
i = 1 and pip

i = m2c2.

Solution:

ds2 = gikdx
idxk, (B.5)

hence

1 =
ds2

ds2
= gik

dxi

ds

dxk

ds
= giku

iuk = uiu
i. (B.6)

pip
i = (mcui)(mcu

i) = m2c2uiu
i = m2c2. (B.7)

b) Show that in a static gravitational field with metric interval ds2 = g00(dx0)2 + gαβdx
αdxβ, the energy of the particle,

E = mc2u0, is given by

E =
mc2
√
g00√

1− v2

c2

,

where

v =
c
√
−gαβdxαdxβ√
g00dx0

.

Solution:

1 = g00(
dx0

ds
)2 + gαβ

dxα

ds

dxβ

ds
= g00(u0)2 + (

dx0

ds
)2 − v2g00(dx0)2

c2ds2
= g00(u0)2(1− v2

c2
), (B.8)

hence

u0 =
1√

g00(1− v2

c2

. (B.9)

Finally

E = mc2u0 = mc2g00u
0 =

mc2
√
g00√

1− v2

c2

. (B.10)
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C. Solutions to course work 3

Q1

Using the locally-inertial coordinate system prove that the Riemann tensor has the following symmetry properties:

a) Riklm = −Rkilm = −Rikml.
b) Riklm = Rlmik.

c) Riklm +Rimkl +Rilmk = 0.

Solution:In the local galilean frame of reference

Riklm = ηinR
n
klm = ηin

(
Γnkm,l − Γnkl,m

)
=

=
1

2
ηin [gnp(gkp,m + gmp,k − gkm,p],l −

1

2
ηin [gnp(gkp,l + glp,k − gkl,p],m =

=
1

2
ηinη

np (gkp,m,l + gmp,k,l − gkm,p,l − gkp,l,m − glp,k,m + gkl,p,m) =

=
1

2
δpi (gmp,k,l − gkm,p,l − glp,k,m + gkl,p,m) =

1

2
(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) .

a)

Rkilm =
1

2
(gkm,i,l + gil,k,m − gkl,i,m − gim,k,l) = −1

2
(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) = −Riklm.

Rikml =
1

2
(gil,k,m + gkm,i,l − gim,k,l − gkl,i,m) = −1

2
(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) = −Riklm.

b)

Rlmik =
1

2
(glk,m,i + gmi,l,k − gli,m,k − gmk,l,i) =

1

2
(gim,k,l + gkl,i,m − gil,k,m − gkm,i,l) = Riklm.

c)

Riklm +Rimkl +Rilmk = ηin
(
Γnkm,l − Γnkl,m + Γnml,k − Γnmk,l + Γnlk,m − Γnlm,k

)
=

ηin
(
Γnkm,l − Γnmk,l − Γnkl,m + Γnlk,m + Γnml,k − Γnlm,k

)
=

= ηin
(
Γnkm,l − Γnkm,l − Γnkl,m + Γnkl,m + Γnml,k − Γnml,k

)
= 0.
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Q2

a) Show that

Rik = Γlik,l − Γlil,k + ΓlikΓmlm − Γmil Γ
l
km.

b) Using a locally-inertial coordinate system prove the Bianchi identity:

Rnikl;m +Rnimk;l +Rnilm;k = 0.

c) Using the Bianchi identity, prove that the Ricci tensor and the scalar curvature R = gikRik satisfy the following identity:

Rlm;l =
1

2
Rm.

Solution:a) Starting from

Riklm = Γikm,l − Γikl,m + ΓinlΓ
n
km − ΓinmΓnkl,

(which is obtained by straightforward calculation of Ak;l;m−Ak;m;l), and using definition of the Ricci tensor Rik = Rlilk,
one obtains

Rik = Rnink = Γnik,n − Γnin,k + ΓnpnΓpik − ΓnpkΓpin =

= Γlik,l − Γlil,k + ΓlikΓmlm − Γmil Γ
l
km.

b) The Bianchi identity, Rnikl;m + Rnimk;l + Rnilm;k = 0, in the local galilean frame of reference, where all Christoffel
symbols are equal to zero, can be re-written as

Rnikl,m +Rnimk,l +Rnilm,k = 0

and the Riemann tensor in this frame can be written as

Riklm = Γikm,l − Γikl,m + ΓinlΓ
n
km − ΓinmΓnkl = Γikm,l − Γikl,m,

Rnikl,m +Rnimk,l +Rnilm,k =
(
Γnil,k − Γnik,l

)
,m

+
(
Γnim,l − Γnil,m

)
,k

+
(
Γnik,m − Γnim,k

)
,l

=

= Γnil,k,m − Γnik,l,m + Γnim,l,k − Γnil,m,k + Γnik,m,l − Γnim,k,l =

= [Γnil,k,m − Γnil,m,k] + [Γnik,m,l − Γnik,l,m] + [Γnim,l,k − Γnim,k,l] = [0] + [0] + [0] = 0.

c) After contracting the Bianchi identity we obtain

gklRiklm;i + gklRikil;m + gklRikmi;l = gingkl (Rnklm;i +Rnkil;m +Rnkmi;l) =

= gklgin (−Rknlm;i +Rnkil;m −Rnkim;l) = −ginRnm;i + gklRkl;m − gklRkm;l = −Rim;i +R,m −Rlm;l =

= −2Rim;i +R,m = 0.
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Q3

a) Using the Einstein equations in the form

Rik =
8πG

c4

(
T ik −

1

2
δikT

)
,

where G is the gravitational constant, prove that the energy-momentum tensor of matter T ik satisfies the conservation law
T ki;k = 0.
b) In the limiting case of a weak gravitational field described by a Newtonian potential φ we can write

g00 = 1 +
2φ

c2
, g0α = 0 and gαβ = −δαβ ,

where α, β = 1, 2, 3. Consider the (0, 0) - component of EFEs to show that in this case

4φ = 4πGµ,

where µ is the density of matter. [ Hint: in the non-relativistic case T ki = µc2uiu
k, uα = 0 and u0 = u0 = 1.]

Solution:a) Contracting EFEs in given form, one obtains

R = Rii =
8πG

c4

(
T ii −

1

2
δiiT

)
=

8πG

c4

(
T − 4

2
T

)
= −8πG

c4
T.

Then taking covariant divergence of both sides of EFEs, one obtains

Rik;i =
8πG

c4

(
T ik;i −

1

2
δikT,i

)
=

8πG

c4
T ik;i −

4πG

c4
T,k =

8πG

c4
T ik;i +

1

2
R,k,

hence

T ik;i =
c4

8πG
(Rik;i −

1

2
R,k) = 0.

b) In small velocity approximation

T ki ≈ ρc2uiuk, (C.1)

where ρ is the mass density, i.e., T 0
0 = ρc2 and all other components are small, i.e., |T 0

α| � T 0
0 and |T βα | � T 0

0 . This
means that T ≡ T ii ≈ T 0

0 .
In weak field approximation one can neglect by the non-linear part in the Ricci tensor:

R00 = R0
0 ≈ Γα00,α = −1

2
ηαβg00,α,β =

1

c2
φ,α,β , (C.2)

where φ is defined by

g00 = 1− 2φ

c2
. (C.3)

Following usual notations

ηαβg00,α,β = 4g00, (C.4)

where 4 is the Laplace operator. From EFEs we obtain

R0
0 =

1

c2
4φ =

8πG

c4
(T 0

0 −
1

2
T ) ≈ 8πG

c4
(T 0

0 −
1

2
T 0
0 ) =

4πG

c4
T 0
0 . (C.5)

Hence,

4φ = 4πGρ. (C.6)

This is the Poisson equation, hence, as one can see, in this approximation EFEs give the Newtonian gravity and φ is
the Newtonian gravitational potential.
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D. Solutions to course work 4

Q1

Prove that the determinant of the metric tensor, g = |gik|, is negative in all frames of reference.

Solution:Taking into account that gik and gik are reciprocal, one obtains that g ≡ det(gik) = 1/det(gik).
We know that

gik = Si(0)nS
k
(0)mη

lm.

Obviously, det(ηlm = −1, hence

det(gik) = detSi(0)n × detS
k
(0)m × det(η

lm) = −S2,

where S is the determinant of the transformation matrix. One can see that g = −S−2 < 0 in all frames of reference.

Q2

Prove the following identity:

d ln
√
−g =

1

2
gikdgik = −1

2
gikdg

ik.

Solution:The determinant g depends on all components gik. Calculating g with the help, say the first raw, one can
write

g = M1ig1i,

where M1i are minors of the components in the first row. Obviously M1i do not contain g1i. Hence

∂g

∂g1i
= M1i.

This is true for any row in determinant, thus

∂g

∂gni
= Mni.

Taking into account that gik is inverse matrix of gik, one can write gik = M ik/g, i.e. M ik = ggik. Thus

dg =
∂g

∂gik
dgik = M ikdgik = ggikdgik,

hence

gikdgik =
dg

g
= d ln |g| = d ln(−g) = 2 ln

√
−g.

Then

gikdgik = d(gikgik)− gikdgik = dδii − gikdgik = −gikdgik.

Finally

d ln
√
−g =

1

2
gikdgik = −1

2
gikdg

ik.
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Q3

Let φ is an arbitrary scalar field. Prove that

gikφ;k;i =
1√
−g

(√
−ggikφ,k

)
,i
.

Solution:Let us introduce the following covariant vector: Ai = φ,i = φ;i. After that

gikφ;k;i = gikAk;i =
(
gikAk

)
;i

= Ai;i = Ai,i + ΓiinA
n = Ai,i +

1

2
gim (gim,n + gnm,i − gin,m)An =

= Ai,i +
1

2
gimgim,nA

n +
1

2
gim (gnm,i − gin,m)An.

Using the answer to Q2, one has

1

2
gimgim,n =

(
ln
√
−g
)
,n

=
(
√
−g),n√
−g

.

And taking into account that

gim (gnm,i − gin,m) = gimgnm,i − gimgin,m = gmigni,m − gimgin,m = gimgin,m − gimgin,m = 0,

we obtain

gikφ;k;i = Ai,i +
(
√
−g),n√
−g

An ==
1√
−g
(√
−gAn

)
,n

=
1√
−g
(√
−ggniAi

)
,n

=
1√
−g
(√
−ggniφ,i

)
,n

=

=
1√
−g
(√
−ggikφ,k

)
,i
.

Q4

Let Aik is a symmetric tensor. Prove that

Aki;k =
1√
−g

(√
−gAki

)
,k
− 1

2
gkl,iA

kl.

Solution:

Aki;k = Aki,k + ΓkkmA
m
i − ΓmikA

k
m = Aki,k +

1

2
gkn (gkn,m + gmn,k − gkm,n)Ami −

1

2
gmn (gin,k + gkn,i − gik,n)Akm =

= Ami,m +
g,m
2g

Ami +
1

2
gkn (gmn,k − gkm,n)Ami −

1

2
gmnAkmgkn,i −

1

2
gmnAkm (gin,k − gik,n) =

= Ami,m+
(
√
−g),m√
−g

Ami +
1

2
Ami

(
gkngmn,k − gkngkm,n

)
−1

2
Akngkn,i−

1

2
Akn (gin,k − gik,n) =

1√
−g
(√
−gAki

)
,k
−1

2
gkl,iA

kl.
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E. Solutions to course work 5

Q1

a) A spherically symmetric gravitational field in vacuum is given by the Schwarzschild metric. Using this metric show that

Γ0
10 = −Γ1

11 =
rg
2r2

(
1− rg

r

)−1

,

and
Γ1
00 =

rg
2r2

(
1− rg

r

)
.

Solution:

b) Show that the time component of the geodesic equation has the following form:

d2t

dτ2
+
rg
r2

(
1− rg

r

)−1 dt

dτ

dr

dτ
= 0,

where τ is proper time (ds = cdτ). Solve this equation for a particle which is falling radially towards a black hole. Show that

dt

dτ

(
1− rg

r

)
= 1.

Solution:

c) Show that when the particle in b) has zero velocity at infinity, then(
dr

dτ

)2

=
c2rg
r
.

Find τ and t as functions of r and sketch them on the same graph. Explain why t→∞ when r → rg.

Solution:

Q2

Solution:

A rotating black hole is described by the Kerr metric.

ds2 = (1− rgr

ρ2
)dt2 − ρ2

∆
dr2 − ρ2dθ2 − (r2 + a2 +

rgra
2

ρ2
sin2 θ) sin2 θdφ2+

2rgra

ρ2
sin2 θdφdt,

where ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rgr + a2, and a = J
mc

, where J is the angular momentum of the black hole.

Solution:

a) Explain why the location of the event horizon, rhor, is given by grr =∞ and show that

rhor =
rg
2

+

√
(
rg
2

)2 − a2.

Solution:

b) Compare this expression with the expression for the radius of the event horizon in the case of a non-rotating black hole.
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Q3

a) What is the limit of stationarity and what is the ergosphere?

Solution:

b) Explain why the location of the sphere corresponding to the limit of stationarity, rls, is determined by gtt = 0, and show then
that

rls =
rg
2

+

√
(
rg
2

)2 − a2 cos2 θ.

Solution:

c) Sketch the rotating black hole as projected on i) the equatorial plane, θ = π/2, and ii) the perpendicular plane, φ = 0 (indicate
the event horizon, the limit of stationarity and the ergosphere).

Q4

a) Explain qualitatively why it is possible to extract the energy of a rotating black hole despite the fact that no signal can escape
outside from within the black hole horizon.

Solution:

b) Show that the circle r = rhor and θ = π/2, is the world line of a photon moving around the rotating black hole with angular
velocity

Ωhor =
a

rgrhor
.

(Hint: put dr = 0, dθ = 0 and dφ = Ωhordt into ds and show that ds = 0.)

Solution:
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F. Solutions to course work 6

Q1.

a) A binary system consists of two neutron stars of the same mass M . The orbital period of the system is P . Using Newto-
nian mechanics, estimate to an order of magnitude the separation between the neutron stars, r, and the fractional relativistic
corrections to the orbital motion.

Taking into account that

P = 2π/ω,

where ω is the angular velocity which according Newtonian theory is related with the separation r as

ω2r =
GM

r2
, thus ω =

√
GM

r3
.

Hence

r =

(
GM

ω2

)1/3

=

(
GMT 2

4π2

)1/3

=

(
T

2π

)2/3

(GM)1/3.

b) Evaluate the relativistic corrections if P = 8 min and M = 1.5M�. Compare your estimate with relativistic effects in the
solar system. It is known that the perihelion shift of Mercury is 43” per century. What analogous shift can you expect in the
case of the binary system of neutron stars? (Hint: The relativistic shift per one orbital period is of order rg/r, where rg is
gravitational radius of the neutron star.)

Per 1 year there are N revolutions and N = 1 year
P , hence the periastron shift per 1 year is

∆ϕ ∼ rg
r
N ∝ T−5/3.

Comparing with the case of Mercury we have the ratio of the number of revolutions per year

N/NMerc = PMerc/P.

Hence

∆ϕ

∆ϕMerc
∼
(
M

M�

)(a
r

)(PMerc

P

)
=

(
M

M�

)(
M

M�

)−1/3(
P

PMerc

)−2/3(
PMerc

P

)
=

=

(
M

M�

)2/3(
P

PMerc

)−5/3
.

Taking to account that

PMerc = (0.5)3/2 year, and P =
5.7

365
year ≈ 1

64
year,

we obtain

∆ϕ =

(
43”

100

)
× 103·2/3(0.5)3/2·5/3 (64)

5/3
=

(
43

60× 60

)o
× (0.5)5/2 × 645/3 =

(
43× 0.25× 0.7× 45

3600

)o
≈ (0.7/3.5)o = 0.2o.
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Q2.

The quadrupole formula for the metric perturbation associated with gravitational waves is given by

hαβ = − 2G

3c4R

d2Dαβ
dt2

(t−R/c),

where R is the distance to the source of the gravitational waves and

Dαβ =

∫
(3xαxβ − r2δαβ)dM

is the quadrupole tensor of the source. Consider a mass m moving along circular orbit around the black hole of mass M ,
assuming that m�M .

a) Show that all the amplitudes hαβ of gravitational wave, emitted by such system, are periodic functions of time with ω = 2ω0,
where ω0 = 2π/T , and T is the orbital period.

x1 = r cosω0t,

x2 = r sinω0t,

D11 = mr2c (3 cos2 ω0t− 1) =
1

2
mr2(1 + 3 cos 2ω0t),

D22 = mr2c (3 sin2 ω0t− 1) =
1

2
mr2(1− 3 cos 2ω0t),

D12 =
3

2
mr2c sin 2ω0t,

then

h11 = −2Gmr2

3c4R

3

2
(2ω0)2 cos 2ω0t =

4ω2
0Gmr

2

c4R
cos 2ω0,

h22 =
2Gmr2

3c4R

3

2
(2ω0)2 cos 2ω0t = −4ω2

0Gmr
2

c4R
sin 2ω0,

h12 =
2Gmr2

3c4R

3

2
(2ω0)2 sin 2ω0t =

4ω2
0Gmr

2

c4R
sin 2ω0,

it is clear, that

ω = 2ω0.

b) Show that, to an order of magnitude (omitting the indices α and β)

h ≈ rg
R

(
Rgω

c

)2/3

,

where rg is the gravitational radius of the mass m and Rg is the gravitational radius of the black hole.

From

rω2
0 =

GM

r2
,

24



we have

1

r3
=

ω2
0

GM
,

and finally

r−1c = (4GM)−1/3ω2/3.

Thus

h ≈ 4ω2
0Gmr

2

c4R
=
rgRg
rR

≈ rg
R

(
Rgω

c

)2/3

.
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Q3.

The future LISA mission will be able to detect gravitational waves with h > 10−23, if 10−4Hz < ω < 3 · 10−3Hz. From what
distance will it be possible to detect gravitational radiation from the binary system, containing the black hole of mass m = 3M�,
moving along a circular orbit with radius r = 104Rg around the massive black hole of mass M = 103M�?

ω2
0 =

GM

r3
=

+

c2
2

2GM

c2r3
= c2

Rg
2r3

,

hence,

ω0 = c

√
Rg
2r3

= c

√
Rg

2 · 1012R3
g

=
10−6c√

2Rg
=

10−4Hz√
2

,

thus

ω = 2ω0 =
√

210−4Hz ≥ 10−4Hz,

which means that the radiation is within LISA frequency range.

h =
3 · 105

3 · 1018

(
3 · 105 · 10−4

3 · 1010

)2/3

(
m

M·
)(
R

1pc
)−1(

M

M·
)2/3(

ω

10−4Hz
)2/3

≈ 10−19(
m

M·
)(

R

1 pc
)−1(

M

M·
)2/3(

ω

10−4Hz
)2/3.

Then

h =
3 · 105cm

R
(
3 · 105 · 103 · 1.4 · 10−4s−1cm

3 · 1010
)2/3 > 10−23,

if

R < 3 · 1023 · 105cm · 10−4 ≈ 1Mpc.
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