THERMAL AND KINETIC PHYSICS 2010, (PHY 214)

Outline Solutions to Coursework 3 :

QUESTION 1: (10 marks)

This is the same series of paths that were considered in week 2 exercises when the work and internal energy changes were calculated for each of the three paths.

Path 1.

From week 2 we found that

$$
A W_{1}=-\int_{V_{a}}^{2 V_{a}}\left(-\frac{P_{a}}{2 V_{a}} V+\frac{3}{2} P_{a}\right) d V=-0.75 P_{a} V_{a}
$$

and

$$
\Delta U_{1}=\frac{3}{2}\left(P_{b} V_{b}-P_{a} V_{a}\right)=\frac{3}{2}\left[\frac{P_{a}}{2} 2 V_{a}-P_{a} V_{a}\right]=0
$$

We find from this the heat flow by using the first law as follows

$$
A Q_{1}=\Delta U_{1}-A W_{1}=0+\frac{3}{4} P_{a} V_{a}=0.75 P_{a} V_{a}
$$

Path 2

From week 2 we found that

$$
A W_{2}=-P_{a} V_{a} \log _{e} 2=-0.693 P_{a} V_{a}
$$

and

$$
\Delta U=\frac{3}{2}\left(P_{b} V_{b}-P_{a} V_{a}\right)=\frac{3}{2}\left[\frac{P_{a}}{2} 2 V_{a}-P_{a} V_{a}\right]=0
$$

We find from this the heat flow by using the first law as follows;

$$
A Q_{2}=\Delta U_{2}-\Delta W_{2}=0+0.693 P_{a} V_{a}=+0.693 P_{a} V_{a}
$$

Path 3

From week 2 we found that

$$
A W_{3}=-0.555 P_{a} V_{a}
$$

and

$$
\Delta U_{3}=-0.555 P_{a} V_{a}
$$

We find from this the heat flow by using the first law as follows;

$$
\begin{equation*}
A Q_{3}=\Delta U_{3}-A W_{3}=-0.555 P_{a} V_{a}+0.555 P_{a} V_{a}=0 \tag{2mks}
\end{equation*}
$$

as we would expect for an adiabatic process.

QUESTION 2: (14 Marks)

(a) From $P V^{\gamma}=c$ we can express the pressure as $P=c V^{-\gamma}$ Then the work calculation is

$$
\begin{aligned}
A W_{1}= & -\int_{V_{1}}^{V_{2}} P d V=-c \int_{V_{1}}^{V_{2}} V^{-\gamma} d V=-c\left[\frac{-V^{-\gamma+1}}{\gamma-1}\right]_{V_{1}}^{V_{2}} \quad[3 \mathbf{m k s} \\
& \Delta W_{1}=\frac{c}{\gamma-1}\left[V_{2}^{-\gamma+1}-V_{1}^{-\gamma+1}\right]=\frac{1}{\gamma-1}\left[c V_{2}^{-\gamma+1}-c V_{1}^{-\gamma+1}\right]
\end{aligned}
$$

and using $P=c V^{-\gamma}$ gives

$$
A W_{1}=\frac{1}{\gamma-1}\left[P_{2} V_{2}-P_{1} V_{1}\right]
$$

(b) For monatomic argon $\gamma_{A r}=5 / 3$ while for diatomic nitrogen $\gamma_{N_{2}}=7 / 5$. In an adiabatic process $P_{a} V_{a}^{\gamma}=P_{b} V_{b}^{\gamma}$ and if $V_{b}=3 V_{a}, P_{b}=\left(3^{-\gamma}\right) P_{a}$. Remembering that in any process

Work BY gas $=-$ Work ON gas
we can use the result in (a) to calculate for argon

Work BY Argon $=-\left(\frac{1}{5 / 3-1}\right)\left(P_{b} V_{b}-P_{a} V_{a}\right)=\frac{3}{2}\left[1-3^{-2 / 3}\right] P_{a} V_{a}=0.779 P_{a} V_{a}$
and for nitrogen we obtain

Work BY Nitrogen $=-\left(\frac{1}{7 / 5-1}\right)\left(P_{b} V_{b}-P_{a} V_{a}\right)=\frac{5}{2}\left[1-3^{-2 / 5}\right] P_{a} V_{a}=0.889 P_{a} V_{a}$

Thus the diatomic gas does more work on the surroundings.

QUESTION 3:(16 marks)

(a)
$P V^{\gamma}=P V V^{\gamma-1}=n R T V^{\gamma-1}=$ const $\quad \Rightarrow$
thus the adiabatic law can also be written as

$$
T V^{\gamma-1}=\text { const }
$$

For $\gamma=7 / 5, \quad T V^{2 / 5}=$ const or $T=\frac{c}{V^{2 / 5}}$.

For a small volume change, $\Delta T \approx\left(\frac{d T}{d V}\right)_{\text {adiabatic }} \times \Delta V$

$$
\begin{equation*}
\left(\frac{d T}{d V}\right)_{\text {adiabatic }}=-\frac{2}{5} \frac{c}{V^{7 / 5}}=-\frac{2}{5} \frac{T}{V} \tag{2mks}
\end{equation*}
$$

thus

$$
\Delta T \approx\left(\frac{d T}{d V}\right)_{\text {adiabatic }} \times \Delta V \approx-\frac{2}{5}(300 K)((-0.1)=+12 \mathrm{~K}
$$

(b)
(i) There are three systems to use throughout the two stage process;

1) the initial state, tyre is at $T_{\text {atm }}$ and P_{i}
2) the state immediately after the valve is opened and shut, $T, P_{\text {atm }}$ and
3) the final equilibrium state, $T_{\text {atm }}, P_{f}$

Let V be the fixed total volume of the tyre and let V_{1} be the initial volume of gas which remains inside the tire throughout. We can apply the equation of state to each stage for the n_{1} moles of gas which remain inside .
$N B$. We are using the fact that V and n are extensive variables and in general we can divide any volume V of a gas with n molecules into $\left(V_{1}, n_{1}\right)$ and $\left(V_{2}, n_{2}\right)$ and write $P V_{1}=n_{1} R T$ and $P V_{2}=n_{2} R T$ (P and T are intensive variables being the same in each of the divided volumes).

Thus in stage 1, $P_{i} V_{l}=n_{1} R T_{A t m}\left(\right.$ and $\left.P_{i} V=n R T_{A t m}\right)$
in stage $2, P_{A t m} V=n_{1} R T$, where T is some intermediate temperature immediately following the expansion of the gas. and in stage 3 finally $P_{f} V=n_{l} R T_{A t m}$.

Stage 1 to stage 2 is an adiabatic process, $P V^{\gamma}=$ const or equivalently $P^{1 / \gamma} V=$ const by taking root γ on both sides of the equation, but only if we compare systems with the same number of moles n (or molecules) ie for our initial system only the sub-volume V_{1} containing n_{1} moles so we can write $P_{i}^{1 / r} V_{1}=P_{a t m}^{1 / r} V$ and use the equation of state to change the variables

$$
P^{1 / \gamma_{V}}=P^{1 / \gamma^{-1}} P V=P^{1 / \gamma^{-1}} n_{1} R T=\text { const }
$$

Thus the adiabatic law in terms of pressure and temperature is

$$
\begin{equation*}
P^{1 / \gamma^{-1}} T=\text { const } \tag{1mk}
\end{equation*}
$$

Remember the constant is generally not the same constant!

As we go from stage 1 to stage 2 adiabatically we can write

$$
\begin{equation*}
P_{i}^{1 / \gamma^{-1}} T_{A t m}=P_{A t m}^{1 / \gamma^{-1}} T \tag{1mk}
\end{equation*}
$$

whence

$$
\frac{T}{T_{A t m}}=\left(\frac{P_{i}}{P_{A t m}}\right)^{1 / \gamma^{-1}}=\left(\frac{P_{i}}{P_{A t m}}\right)^{-2 / 7}
$$

If $P_{i}=4 \mathrm{~atm}$, then $T=T_{A t m} \times 4^{-2 / 7}=0.673 T_{A t m}$
[2mks]
ii) Now we compare stage 1 with stage 3,

NB. In comparing stages 1 and 3 we need to take care in using equations of state and adiabatic rule as there is a different number of molecules present in stage 1 and 3 (some were lost when the valve was opened). To apply the equations equally to stages 1 and 2 (or 3) we need only consider in stage 1 the volume V_{1} containing the molecules n_{1}

From the equation of state we will have

$$
P_{i} V_{1}=P_{f} V
$$

Or equivalently $\quad \frac{P_{i}}{P_{f}}=\frac{V}{V_{1}}$

However, from stage 1 to stage 2 we have the adiabatic relation $P_{i} V_{1}^{\gamma}=P_{A t m} V^{\gamma}$ Thus

$$
\frac{P_{i}}{P_{A t m}}=\left(\frac{V}{V_{1}}\right)^{\gamma}=\left(\frac{P_{i}}{P_{f}}\right)^{\gamma}
$$

Taking logs

$$
\begin{array}{r}
\ln \left(\frac{P_{i}}{P_{A t m}}\right)=\gamma \ln \left(\frac{P_{i}}{P_{f}}\right) \\
\gamma=\frac{\ln \left(\frac{P_{i}}{P_{A t m}}\right)}{\ln \left(\frac{P_{i}}{P_{f}}\right)}
\end{array}
$$

