THERMAL AND KINETIC PHYSICS (PHY 214)
EXERCISE 8 : WEEK 9

OUTLINE SOLUTIONS

QUESTION 1: (20 marks)

(a) We consider an infinitesimal change in temperature $d T$ at constant total magnetization, \mathcal{M}. The thermodynamic identity tells us that for any change

$$
d U=T d S+B_{0} d \mathcal{M}
$$

so for a change at constant \mathcal{M} we have $d U=T d S$ and if we divide this equation by $d T$ at constant \mathcal{M} we get

$$
\left.\frac{d U}{d T}\right|_{\mathcal{M}}=\left.T \frac{d S}{d T}\right|_{\mathcal{M}}
$$

Identifying the partial derivatives gives

$$
\left(\frac{\partial U}{\partial T}\right)_{\mathcal{M}}=T\left(\frac{\partial S}{\partial T}\right)_{\mathcal{M}}=C_{\mathcal{M}}
$$

Alternatively consider a change $d \mathcal{M}$ at constant T so we may divide the thermodynamic identity by $d \mathcal{M}$, remembering that all changes are at constant T, to get

$$
\left.\frac{d U}{d \mathcal{M}}\right|_{T}=\left.T \frac{d S}{d \mathcal{M}}\right|_{T}+B_{0}
$$

However, if we regard U as a function of \mathcal{M}, then we see that

$$
\left.\frac{d U}{d \mathcal{M}}\right|_{T}=\left(\frac{\partial U}{\partial \mathcal{M}}\right)_{T}
$$

giving the required result

$$
\left(\frac{\partial U}{\partial \mathcal{M}}\right)_{T}=T\left(\frac{\partial S}{\partial \mathcal{M}}\right)_{T}+B_{0}
$$

(b)
i) Using the definition, $F=U-T S$ and considering a small change in the Helmholtz free energy we may write

$$
\begin{gather*}
d F=d U-T d S-S d T=T d S+B_{0} d \mathcal{M}-T d S-S d T \\
d F=-S d T+B_{0} d \mathcal{M} \tag{3mks}
\end{gather*}
$$

ii) The above indicates that F has as its natural variables T and \mathcal{M}, so that

$$
\begin{equation*}
d F=\left(\frac{\partial F}{\partial T}\right)_{\mathcal{M}} d T+\left(\frac{\partial F}{\partial \mathcal{M}}\right)_{T} d \mathcal{M} \tag{2mks}
\end{equation*}
$$

so that, identifying the two expressions for $d F$ we have

$$
\begin{equation*}
-S=\left(\frac{\partial F}{\partial T}\right)_{\mathcal{M}} \quad B_{0}=\left(\frac{\partial F}{\partial \mathcal{M}}\right)_{\mathrm{T}} \tag{2mks}
\end{equation*}
$$

Since the mixed second partial derivatives of a perfect differential obey

$$
\left(\frac{\partial^{2} F}{\partial \mathcal{M} \partial T}\right)=\left(\frac{\partial^{2} F}{\partial T \partial \mathcal{M}}\right)
$$

we deduce

$$
\begin{gathered}
\left(\frac{\partial^{2} F}{\partial \mathcal{M} \partial T}\right)=\frac{\partial}{\partial \mathcal{M}} \frac{\partial F}{\partial T}=-\left(\frac{\partial S}{\partial \mathcal{M}}\right)_{T}=\frac{\partial}{\partial T} \frac{\partial F}{\partial M}=\left(\frac{\partial B_{0}}{\partial T}\right)_{\mathcal{M}} \quad[\mathbf{2 m k s}] \\
-\left(\frac{\partial S}{\partial \mathcal{M}}\right)_{T}=\left(\frac{\partial B_{0}}{\partial T}\right)_{\mathcal{M}}
\end{gathered}
$$

and substituting the above gives the required result

$$
\left(\frac{\partial U}{\partial \mathcal{M}}\right)_{T}=-T\left(\frac{\partial B_{0}}{\partial \mathrm{~T}}\right)_{\mathcal{M}}+B_{0}
$$

[1mk]
(c) Using the equation of state we can evaluate the derivative of B_{0} with respect to T,

$$
\begin{equation*}
B_{0}=\frac{\mu_{0} T}{C V} \mathcal{M} \rightarrow\left(\frac{\partial B_{0}}{\partial T}\right)_{\mathcal{M}}=\frac{\mu_{0}}{C V} \mathcal{M} \tag{2mks}
\end{equation*}
$$

and substituting into ii) above gives

$$
\begin{equation*}
\left(\frac{\partial U}{\partial \mathcal{M}}\right)_{T}=-T\left(\frac{\mu_{0}}{C V} \mathcal{M}\right)+B_{0}=-B_{0}+B_{0}=0 \tag{2mks}
\end{equation*}
$$

Since this derivative is identically zero, U cannot depend on \mathcal{M} and must be a function of T alone.
[1mk]

QUESTION 2: (20 marks)

(a) The Carnot cycle consists of two isothermal paths on which heat is exchanged and two adiabatic paths. For a fluid as the working substance, the corresponding P - V diagram is given in the lecture notes.

[3mks]
(b) For the general reversible engine cycle shown below

we can express the area under a curve in the $\mathrm{T}-\mathrm{S}$ plane as (I take T on the vertical axis and S on the horizontal axis)

$$
\text { Area }=\int_{S_{i}}^{S_{f}} T d S=\int_{i}^{f} t Q=\text { Heat absorbed in going from i to } f
$$

We can split the engine cycle into an upper path starting at $S_{\text {min }}$ and ending at $S_{\max }$ and the return (lower) path starting at $S_{\max }$ and finishing at $S_{\min }$. On the upper path we have

$$
\begin{equation*}
A_{U P}=\int_{\min }^{\max } t Q=\Delta Q_{S_{\text {min }} \rightarrow S_{\text {max }}} \tag{4mks}
\end{equation*}
$$

Since the entropy of the substance is increasing, it is absorbing heat so that the area computed just above is the total heat Q_{1} supplied to the engine,

$$
A_{\mathrm{UP}}=Q_{1}
$$

On the return path, the positive area $A_{\text {Low }}$ is also a heat flow given by

$$
A_{\text {LOW }}=\left|\begin{array}{|c|c|c|}
\min \\
\int \\
\max
\end{array}\right| Q\left|=\left|-Q_{2}\right|\right.
$$

where Q_{2} is the waste heat coming out of the engine,

$$
\mathrm{A}_{\mathrm{LOW}}=Q_{2}
$$

The engine efficiency is given then as

$$
\begin{equation*}
\eta_{E}=1-\frac{Q_{2}}{Q_{1}}=1-\frac{A_{L O W}}{A_{U P}} \tag{1mk}
\end{equation*}
$$

(c) In the T - S plane, an isotherm is a horizontal straight line while an adiabat is a vertical straight line (constant entropy). Thus the Carnot cycle is just a rectangle.

(d) To compare the general engine shown in (b) with the Carnot engine shown in (c), enclose the general cycle in the smallest rectangle that will just hold it, i.e., a rectangle with horizontal sides at $T_{\max }$ and $T_{\min }$ and with vertical sides at $S_{\max }$ and $S_{\min }$

By the geometry of this diagram it is obvious that the following inequalities hold:

$$
A_{L O W}^{\text {Engine }}>A_{L O W}^{\text {Carnot }} \quad A_{U P}^{\text {Carnot }}>A_{U P}^{\text {Engine }}
$$

[2mks]

It follows that

$$
\frac{A_{\text {LOW }}^{\text {Engine }}}{A_{U P}^{\text {Engine }}}>\frac{A_{\text {LOW }}^{\text {Carnot }}}{A_{U P}^{\text {Carnot }}}
$$

And hence that

$$
\begin{equation*}
1-\frac{A_{\text {LOW }}^{\text {Engine }}}{A_{U P}^{\text {Engine }}}<1-\frac{A_{\text {LOW }}^{\text {Carnot }}}{A_{U P}^{\text {Carnot }}} \tag{2mks}
\end{equation*}
$$

or

$$
\eta_{\text {General Engine }}<\eta_{\text {Carnot Engine }}
$$

