THERMAL AND KINETIC PHYSICS (PHY 214)
EXERCISE 6 : WEEK 6

OUTLINE SOLUTIONS
Question 1. 1998 Exam Q1

a) The Zeroth law of Thermodynamics states that if systems A and B are in
thermal equilibrium with system C then they must both be in thermal equilibrium with
each other.

Ideal gas temperature is that temperature measured by a constant volume gas
thermometer with

T = limit 273.16(mj.
Prp =0 Prp

The limit is taken in order that the gas approximates more closely to an ideal gas
where U, its internal energy is only representative of the Kinetic energies of its
constituent parts. It is related to the observations of Robert Boyle that the product of
pressure and temperature of a gas is equal to a constant in thermal equilibrium
PV =const.

The Kinetic temperature relates the internal energy (and therefore mean kinetic energy
of a gas) to the temperature of that gas.

1 - 3 3N

U=NZmVps=-PV=>_—"RT
2 M2 2Np

Rearranging gives
mvrzms =3kgT

o [3kgT 3><1.38><10_23JK_1><300K~517 a
28x1.66x10 “"kg




b) The First Law of Thermodynamics in infinitesimal form is;
dU =dQ +dW

Where dU is the infinitesimal change in the internal energy of a system, €Q is the
infinitesimal heat transfer to or from the system under consideration and dW the
infinitesimal work carried out by or on the system under consideration.

NB. The sign convention is such that dQ is positive if the heat flows to the system
and dW is positive if the work is done on the system.

C) An adiabatic process is a process in which there is no heat flow into or out

of the system under consideration.
The gas has an internal energy U =§PV therefore using the first law and this

equation of state we obtain

dU:gRN+§WP:dQ+mN:O—RN
Re-arranging

T pdv = —2vdp

2 2

Collecting V and P on opposite sides
7dv _dP

5V P

Integrating
7 7
—%Inv =InP = In PVA = const = PVA = const

This is true of any equilibnrium state on the adiabatic.

Therefore

7 7
Wqéz%wé



d)

A
C
P17 R
P A
i p—t 2
vz VY Vi

i)
i) To calculate heat absorbed it is easiest to calculate work done in the

cycle as change in internal energy is zero and therefore according to the first law

AQ = —AW
1. On the isobar a = b the work done is
b a V
AW, _,p = [-PdV =P [dV =P-2
a b 2
2. On the isochore, b — c there is no work done
AW, =0
3. And on the isotherm, c —» a
a a
AW, _, 5 = [- PdV = -nRT jd—v _ NRTINS — nRT |n(3j = —0.693P,V,
¢ ¢ \/ Va 2
Therefore
AWpnet = 0.5P,V, —0.693P,V, = —-0.193P,V,
And finally

AQNet = —AWpNet = +0.193P,V, is the heat absorbed.



)] For 1 mole of an ideal gas

i) For 1 mole of a van der Waals gas

(P+ijv ~b =RT
V2 B

We would ideally like to find (Z—\T/j and there are two ways (at least) in which this
P
may be done

A. We can find (S—IJ easily by making T the subject of the equation of state and
P

then use the reciprocal relationship to find Z—\_I{j
P

T=1{pv_pp 2 20
R Y

V2

(aTj a 2ab)1 [Pv3_av+2ab)1
_ =P+ — == _
vV Jp vZ v3 )R v 3 R

Using the reciprocal relation

(ﬂ) __ RV
T Jp PV3-aVv+2ab
B. Or we can use implicit differentiation by writing

(P +ijv b =RT
v? -
Expanding bracket



PV +§—Pb_a_b: RT

V2

and differentiate both sides wrt T holding P constant

O lpy+2 _pp_]_ g
oT \ v 2

Weuse -2 f(Pv)=-2 t(pv)L
ot Y o1
{p_%ﬂib}(&) _R
v2 v3 \aT Jp

And solve for (G_Vj
T Jp

(ﬂj __ RV
T Jp PV3-aVv+2ab
As previously

It is now straightforward to use the definition of 3

\Y

1(avj RV? 1
oT Jp

ﬂ:— = 3 =
Pv3_av+2ab T-34, +2ab
ﬁev Ry 2

Which is the same as the ideal gas fora, b —» 0



Question 2 1999 Exam Q1

a) The Zeroth law of Thermodynamics states that if systems A and B are in
thermal equilibrium with system C then they must both be in thermal equilibrium with
each other.
The empirical temperature is defined for any thermometric property as

X

Ty =27316x
X1p

Therefore, for the constant volume gas thermometer the temperature is defined as
P
Prp
It differs from the ideal gas temperature which is only defined as the dilution of the
gas in a constant volume gas thermometer tends to zero (more closely to

approximate an ideal gas) as

T = limit 273.16(ij
Pre =0 Prp
We know that all molecules/atoms will have the same mean Kinetic energy
irrespective of type.
1 1
KE)==-m =3x=kgT
< > 2 rms 2 B

That is %kBT per degree of freedom

Therefore

(KE)., = >kgT =15x1.38x10723JK 1 x 200K = 6.00x1072L]
02 2

And quite generally




b) The First Law of Thermodynamics in infinitesimal form is

dU =dQ +dW
Where dU is the infinitesimal change in the internal energy of a system, €Q is the
infinitesimal heat transfer to or from the system under consideration and dW the
infinitesimal work carried out by or on the system under consideration.
The sign convention is such that €Q is positive if the heat flows to the system and
dW is positive if the work is done on the system.

C) An adiabatic process is a process in which there is no heat flow into or out of
the system under consideration.
Using the equation of state for the photon gas which has an internal energy
U =3PV
With the first law
dU =3PdV +3vdP =dQ+dW =0-PdV

Re-arranging

4PdV = -3vdP
Grouping V and P terms either side and then integrating
_Adv _dP
3V P
4
—%Inv =InP Pvé = const
d)
i)
A
a
o K
P i
o ! .
Va v V.



i) For the process a - b — ¢ we split into two parts

In the isobaric processa — b

b a
AWa—>b =—deV = deV = —PaVa
a b

In the isochoric process b — c there is no work done

Therefore the net work is
AWNet = AWa—>b—>c = _PaVa

This a negative quantity and is work done BY the gas on the surroundings

For the isothermal process a — ¢

c ¢ dv V, 1
a a c

This is again a negative quantity representing work done BY the gas on its
surroundings
This is no surprise as in both cases an expansion is involved and the gas does work.
iii) For the processa—>b > ¢
In the isobaric process a — b using the first law

AQ = AU — AW

3 5
AQa5p = > €Q/,P, —V,P, } PaVa = +§ PaVa

And in the isochoric process b — ¢

AQ = AU — AW = AU :g P, _ZPaVa}_gPaVa



S 3
AQNet = 4Qa5b—c = +E PaVa — > PVa = +P,Vy

For the isothermal process a — c there is no change in the internal energy and

therefore from the First Law
AQa ¢ = AUg ¢ = AWy, = =AW, ¢ = +0.693PV,

e) For 1 mole of an ideal gas

PV—RT = v=RI

P
GVJ -RT —-PV \ 1 8VJ 1
_ = = = — - K=——| — = —
o) p2  pZ P vier); P

For 1 mole of a van der Waals gas

(P+1Jv _b =RT
v? -

. . : oV . oP ,
We would ideally like to find (a_P) but can find (W) more easily and then use

T T

the reciprocal relationship

o RT _a
V-b y?

(Ej _O( RT _a)_ -RT 2a

oV )r v T-bSv2) g-p2 v3

Using the reciprocal relation by inverting

e
T

oP )1 —RTV3+2a -b?2

thus



1 vig-pE vig-b?
V_RTV3+2aq-b2 2a¢-b2-RTV?

Dividing top and bottom by ¢ —b_

_ (V-b)v2 _ V2(V-h)
2a(V—b —RTV7 ~ 2aVv-2 b—(P a )v3

Or alternatively by implicit differentiation

0

oP

a ~ 0
P+— | -b |=—RT=0
[ +v2j“ ’} oP

Olpved _pp-20 | g
oP \Y, V2

N a v |, 2abov
b+ 2

v+pLl_ 2 97 0
P \2 P v3 oP
3_
[P—%+Zis}y=b—v PV —av+2ab oV _\ .\,
Vi v3 | oP V& oP
-l Vie-vo __ V?q-b3
V pv3_aV +2ab PV3_aV +2ab
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Question 3 1998 Exam Q2

a) The Kelvin-Planck statement based on empirical observation states;

It is impossible to devise a device that , operating in a cycle, produces no other
effect than the extraction of heat from a single body (a reservoir) with the
production of an equivalent amount of work.

b) We may define the efficiency of a heat engine in a simple manner

What we want out
What we putin

n = efficiency = figure of merit=

And in turn with reference to the schematic diagram write this in terms of the heat

flows
T
W _
77E=_:Q1 Q2 =1_& lQl
Q Q Q > W
System
Q2
T
3
P 4 . .
— Adiabatic
Q1
2I
i adiabatic :1
v, Vv Vi
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1 — 2 is an adiabatic compression where work is done on the gas and the usual

equation holds,
TV Tt =Tv)

3 — 4 is also an adiabatic expansion where work is done by the gas
TV =T

where Vq =V, and V, =V3 were used.

2 = 3is an isochore and no work is done as dV = 0. The heat can be calculated from

the first law
AU =Uz -U;p =gnR(T3 -Ty)=4Q=0Q,

We can see that Q; is positive as T3 > T, and it is therefore a flow of heat into the gas.

4 — 1 is also an isochore and again no work is done as dV = 0. The heat can be

calculated from the first law
AU =Uy -Uy =§HR(T1 —Ty)=4Q=-Q;

We can see that Q- is negative as T; > T, and it is therefore a flow of heat from the

gas.

The efficiency is

Q _; Cy(Ta—T)

g =l-=5=1-—""——"——=~
: Q Cv (T3 -Ty)

NB. the modulus of Q. has been taken.

Taking the two results derived for the adiabats and subtracting one from the other we
obtain

-1 -1
¥ _lely =G-T, yzy

Thus

12



Where ;/:C—Pzz
Cy 5

Defining the compression ratio y. = %

b
1
ne=1-—+
¢
1 1
0 i) Mg =1-—g=1- o= 0564
7C (O%O) -
ii) PV = Pva4

14
P, = Pl(\\;—lJ =1 atmx8'4 =1838 atm=1.86x10° Pa
2

PV, 1.86x10°x50x10°m3

To =112 K
nR 8.31J molt K1
5 6.3
i) T, = PVs _ 24x1.01x10 Pa><150><1.0 m” 146 K
nR 8.31J mol™ K~
iv) In process 2 — 3 which is isochoric there is no work done and the first

law then reads

AUp_y3 = 4Qy_,3
5 -
AQ3=7 €3 - PV, =25xV,x €—P,

AQ, ,3=0Q; =25x50x10°m> x €4-1838 }1.01x10°Pa=+71 J

V) W =7 xQp =0.564x71 J =400 J

This is the energy delivered as work in one cycle so if there are 60 cycles per second

the power is

Power =400 J x60 st =2400 Watts

13



Question 4 1999 Exam Q3

a) Infinitesimal entropy change may be defined in terms of reversible heat flow
as
ds = I
T

NB. The entropy is not defined in absolute terms with only entropy difference having

absolute meaning between two equilibrium states
f
AS = Jd&
i
The second law of thermodynamics for processes undergone by a thermally isolated

system may be expressed as
AS>0

Where the equality applies to a reversible process.

b)
i)  The final equilibrium state of the system is found by finding the final
temperature T; of the mixture accounting for the fact that no heat is exchanged with

the external environment, AQ=0

C\é}Vater(f _27315Enlce +C\é}Vater(f _3OOE1water+|S_)Lmlce ~0

42x10°€; —273150,5kg + 4.2 x10% €; —3005kg +3.33x10° x 0.5kg =0

4.2x10% x5.5kg x T¢ = 4.2 x10° x Q.5kg x 27315+ 5kg x 300 3-3.33x10° x 0.5kg

 4.2x10°x1636-1.66x10°  6.7x10°

3 = 3 =290 K
4.2x10° x5.5 2.31x10

Ty

14



Therefore the final equilibrium state is 5.5kg of water at 290 K

i) The net entropy change is to be found by considering the entropy changes
occurring during the three processes
1. The change as 5kg of water cools from 300K to 290 k

290 290 -
AScooling = d—Q:me | d—T:me In&):5kg><4.2><103><(3.39><10_2
300 T 300 T 300 -

AScopling=5kg x4.2x10% x (339x1072 > 712 K
Cooling gx4a.cx X §9.09X% 7

2. The change as 0.5kg of water warms from 273.15 to 290 is calculated in an

identical fashion

290 290 _
ASwaming = ] d_Q=mCP | —T—mcp In 290 = 0.5kg x 4.2 x10° x (5.98x10_2
27315 T 27315 1 27315 )

3 ( —2 ) -1
ASwaming =0.5kg x4.2x10° x £5.98x107° 51256 JK

3. Finally there is a change associated with the phase change as 0.5kg of ice

turns to 0.5kg of water

AQ  Im'®  1665x10°

AS =+ = =
ce>Water™ " " 27315 27315

—6095 JK1

The net change in entropy is then the sum of these three components

ASpnet = -712+1256+6095=+231 JK*

iii) As the system is thermally isolated the second law requires that the

change in entropy must be greater than zero (the process are irreversible as the

15



final 5.5kg of water cannot separate out spontaneously into 0.5 kg of ice and 5
kg of water at 300K). This is indeed seen to be the case in ii)

c)  We are given the following
3

U= EnRT PV =nRT
From which we may deduce further that
dU = nRdT and P_IR
2 T V

Also we know dQ =TdS and so the first law may be written in the form

dU =TdS +dW =TdS — PdV

known as the thermodynamic identity

Using all of this we may write

dS:d—U+EdV=§an—T+an—V
T T 2 T \Y

Allowing us to first hold V constant on the RHS and integrate both sides to give

3 Ty
AS = —nRIn— + const
2 T
Where the constant of integration will depend on the value of V at which the
integration was performed.
Similarly we may hold T constant and integrate both sides to give
Vs
A4S =nRIn— + const
Vi
Where the constant of integration will depend on the value of T at which the
integration was performed.

To bring these two expressions for AS together we must write

AS =§nRInT—2+nRIn\Q
2 T Vq
for the change in entropy when the gas undergoes the process taking it from (T, Vi)

to (Tz, Vz)

16



d)

i)  Boltzmann in seeking to explain entropy with a microscopic model
conjectured that;
Entropy is a measure of the MICROSCOPIC probability of finding the system under
study in a given MACROSCOPIC equilibrium state.
By probability Boltzmann was considering a number that is proportional to the number
of distinct ways a system can arrange itself microscopically to achieve a particular
macroscopic equilibrium state.

i) Using the result from c) we have

AS =§nRInT—2+nRIn\Q = nRIn% =nRIN3=+1.1nR

T Vi Vi
iii)  Again using the result from c) we have

AS = gnRInT—2+ nRIn\Q = EnRInﬂ =1.5nRIn2 = +1.04nR

Ty \ Ty
iv) From Boltzmanns understanding of entropy based on the number
microscopic arrangements that could represent a given macrostate we can see

how these results agree as follows;

For the expansion where V goes to 3V the number of arrangements available is

given by
1|1 V "
QMomQSpatialv :: QMomm( X 3 ]
11 3V "
QW/:QMomm[ﬂxe]
1 \
S(V):kIn_Q:kInQM0m+kIn—+kNln(—j
N! AX 3
S(3\/)=kIn.Q(S’\/):kInQMOm+klni+kNln V. :klni+kNIn3+kNIn v
N! AX3 N! AX3

17



AS=5(3V)-S(V)= NAkN£In3=nRIn3
A

Where we use n= Ni and k= Ni and R is the universal gas constant and
A A

Na is Avagadro’s number.

This is the same change in entropy as in the previous answer obtained from

macroscopic considerations.

For the heating where T goes to 2T the number of arrangements available is given by

1 pI:’SmS "
Omom(T )—QSpatiaI = -QSpatialm 3
3k T
=MVymg =1/ ——
Prms rms m
N
3
%k V23
R T/2
1 m
QMom(T):—I - 3
N! Ap
And
N
%
2
¥ V2% %
1 m
Opom(2T) = - -
3k %
ST =kIn2pon=kIn—+kNIn +—=NkInT
- N! ApB 2

18



3

SQT}kInQMonzkln%+kNln +§Nk|n2+§NklnT

AS =S(2T)—S(T):§Nkln2=gann3

This is the same change in entropy as in the previous answer obtained from

macroscopic considerations.

Tutorial Questions

(a) This is a heat balance problem. First we have an ideal (Carnot) heat pump
whose efficiency is found by considering the following definition and

diagram
T,=Te
Heat flow Into hot reservoir @,
THP = Work in "W ?Ql
W
Thp = o= 1
Q-Q Ti-Tp
Q
We can identify T, the temperature of the cold reservoir as T,
We can also identify T, as the temperature of the building, Te T2=T,

In equilibrium the heat pumped in must equate with the heat lost to the surroundings

o T -
=nypW = —2--W =a . -T
Ql THP To T, (e 0.

We need to find an expression for T, and so re-arrange the above equation

WTe =a @ _To:2

19



Re-arranging into the form of a quadratic
2 3 2 _
ala — @ +2aTy To +aTg =0

We can solve this quadratic in Te by the usual formula

T
¢ 20
2
p W W e
2a 40

To=To+ V|14 J14 2900
2c W

(b)

The engine we are considering is a Carnot engine and it has
the property that the hot reservoir is gradually cooling as the

engine operates.

_aw 1 2
e dQ, e T
dW =7gdQ
dQ|_ =—medT1

The minus sign is required because the hot reservoir is cooling and dT; is negative

whereas we require dQ; to be a positive quantity

f 10 28315( T,
[dW = [pgdQ =-mcp [ [1-—=(dTy
i 100 37315

T, is a constant and we have

20

W+ 20Tyt W + 20T, 2 —4a?T2

QED

T2:100C




37315 37315 4T,
W =mcp[ [dT =T, | ﬂj
28315 28315 11

W = 4.2x10% x QNaterxloom3D90—28315x |n%j

W =4.2x10° x Gy aterx1000m® §0-+78°

Awater = kgLt L =103kgm™3

W = 4.2x10% x (03kgm™ ><1000m3}168= 7.06x10'% J

21



