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Thermal & Kinetic Physics (PHY-214) Exam 2009
Solutions.
SECTION A
Al. dU =TdS — PdV

duU is the incremental change in internal energy.
dS is the incremental change in entropy.
-PdV is the incremental work done on the system where P is the pressure and dV the

incremental change in volume.

A2, Cp = (ﬁj
T Jp

H =U + PV s the enthalpy.

Or Cp :T(ﬁj
aT o

A3. U :gPV

A4.  The work done in one cycle is on the environment and is therefore negative and given as
-100J following convention.

Where I use the fact that a — b is isochoric and therefore AW, _,, =0.

Now use the fact that c — a is an isotherm and that therefore AU, _,5 =0
AQc5a = —AW¢_,5 = —40J

A5.  During the process a — b — c there is no temperature change and therefore no change
in internal energy. Therefore the first law reads;

AQasb—sc = ~(MWayp + AW )= _(AchcIe - AWC—)Ei): ~(~100J -403)

AQq yp_sc = +140J

The minus sign indicates that this is heat expelled by the system.

A®6. dU =TdS + BydM
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duU is the incremental change in internal energy.
dS is the incremental change in entropy at temperature T.
BodM is the incremental work done on the system where By is the applied magnetic field and dM

the incremental change in total magnetic moment of the paramagnet.

AT.
Th
Q1
W
Q2
Tc
Looking at the schematic diagram
Q1 =Qx+W
A8.
W Q1 -Q T
Q1
__h
T T, W
Q2

Tc

A9. Foranideal gas PV = RT and therefore we can write
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p_RT v_RT p_RT
\Y P

(@j _-RT (&j _R [a_T] Vv

oV)r V2 oT)p P oPJ)y R
[6_Pj (G_Vj (a_T) :ﬂEX:ﬂBX:_l (QED)
oV)r\aT Jp\eP)y, v2 PR y2 PR

A10. RV =P;V/{ and PzF\Q/—T

Substituting to replace P with T

TV =TVt
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SECTION B
Bl
a)
i)
T

Where dS is the incremental change in the entropy of a system as heat dQg flows reversibly at
temperature T. If the heat flows from the system then following sign convention it is negative
and the entropy change is negative.

i) The second law for a thermally isolated system may be written as an inequality involving
the entropy change AS of that system

AS >0
The equality holds for a reversible process.
b)

) There is no net heat flow as the process takes place in an adiabatic container so we
calculate the final temperature

AQp,0 =5kg xCp X(Tf —298K)
AQjce =1.0kg x Cp x (T4 —273.15K )+1.0kg xI Me!ting

And
AQce + AQu 0 =1.0kg xCp x (T —273.15K )+ 1.0kg x| ™M 1 5kg x Cp x (T¢ 298K )= 0

6kg xCp x T¢ = Cp(273.15x1kg + 298 x 5kg ) — 1kg x I ™e'in9

T, (273.15x1kg + 298 x5kg)  1kg | melting
f 6kg 6kg Cp
3 5 1 —1
T, = 1.76315x10°kgK  1kg 3.33x ;o Jkgl] . > 6380107 13,214
6kg 6kg 4.2x10%Jkg K -
T; =280.58K

The final state of the system is 6kg of water at 280.58 K and at 1 atmosphere
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B1 b) cont

i) The net entropy change for the water initially at 300k is

280.6
AS1,0 = 5kg x 42x10%IK kg | d?T =21x10%In 23856

298

—_1263 JK1

12806 T 1kg x3.33x10°
—+

]

ASce = 1kg x 4.2x10% IK kg T 7315
273.15 '

ASjee = (4.2 x10%In 227830'165

+1219.11JJK_1

AS|ge =113.02+1219.11 JK 1 =+1332.13 JK L

ASyet = ASjge + ASp 0 =(1332.13-1263) JK ' =+69.13 JK !

iii) The mixing process is not reversible as without further input 1kg of 6kg of water at
280.6 K will not turn into ice.

Iv) As the process is irreversible we expect from the Second Law that AS >0 and this is
what is seen to be the case

c)

) The final temperature of the mix can be found by making the total heat flow zero

mCp|(Ts -Tp)+(T; -T,)|=0

Tf _ Tl +T2
2
The entropy change of the universe is simply the entropy changes of the two masses of water
combined;
Tigr T T T
AS =mep| | OI—T+ | Ll mcp{ln(—fj+ In(—fﬂ
o T T T,
i 2 T, +T
AS =mcep| In T—f =mcp2In % QED
T VT1T2
i) For the Second Law to be obeyed requires that AS >0 as we have an irreversible

process. This requires that the argument of the logarithm is greater than 1
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B1. c) cont

iii) To demonstrate that the second Law is obeyed it is necessary to demonstrate the
inequality of part ii) is generally true for all T, and T, as follows.

Tl +T2 > 21IT1T2

Squaring both sides of the inequality
(Ty+T,)? > 4TyT,
-|-2 2
1 +T2 + 2T1T2 > 4T1T2
T2 +T¢-2T T, =(T,-T,)? >0

This is always true if T; and T, are real numbers and therefore the Second Law is obeyed.
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B2.
a)
2V 2V
i) The work is given by W =— [PdV =-PR, [dV =—-RV; and this is negative and
Vi Vi
therefore represents work done by the gas.
Vi
2
i) The work is given by W = — [PdV
Vi

As it is adiabatic we have PV” = const

V/ 1-y
2 —pv/ | (V.
W=-RV/ [V7dv=—1T1 |1 | _yl77
o 1 2
V; 7

Y
W = ﬂv_l_)/ [27—1 _ 1]
1-y :
W — I:1|VI (1_2)/—1)
1-y
y= g—P is always greater than 1 and therefore the denominator is negative as is the term in
Vv

the brackets making W positive ie. work is done on the gas.

Vi
2
i) The work is given by W = — [PdV
Vi
p_RT
V
V/ V:
2 |
w=-rT [ Y _rrin A

v i

W =-RT In[%j =RTIn2

W is positive and therefore represents work done on the gas.
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b)
) The efficiency of a heat engine is given by T
W —
R Q
Q Q Q1
W
Q2
T
Q1
b 1 c

|

1

: adiabatic

P

|

I

|

1

|

I I

| |

| | 1

\II V ! y

‘.’ b \/.c ‘V’a:

Figure 1
i) In an isobaric process we use the heat capacity at constant pressure to find Q;
Q= Qb—>c = CP(TC _Tb)

i) In an isochoric process we use the heat capacity at constant volume to find Q,

Q2 =-Qd-a =Cv (Td _Ta)
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B2. b) cont

. . B _&
Iv) Inparti)we have ng =1

1

ng = _CV(Td _Ta) 1_£(Td _Ta) QED
CP(TC_Tb) 7 (Tc_Tb)

c)
i) Considering the two adiabatic processes ¢ — d and a — b and using the adiabatic rule

¢ — d is an adiabatic process thus

VAt
TV =Tgvi?t = Ty :TC[—Cj
a — b is also an adiabatic process and similarly

v, )
TVIt=TpoV/' = T,=T, (—b]

We also know that

Vo Ty R Ve
V. T ¢ A

And similarly
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LT :Tb(ﬁj_Tb _ToVa [V_Mﬁj
Vo Vi Va Va

Including these in the earlier expression for 7

ATg-Ta g 2l

1
7y Te—Ty 7 (V, -1 YA -1
Ve Vb

V, . : . V, . . .
We have vy, =V—a is the expansion ratio and vy, =V—"’1 is the compression ratio and when
c b

ne =1

these are used in the above

11 v? =977
e =1——|:%] QED
Y lve —7e
iiy  For arigid diatomic gas y = Ce 7
Cy 5
Also we are given yg :\Q:M:LG% and y, 252@:10
V. 3000 V, 500
1 ys7 =y 5|1.666 1% —10714
7e =1 g a1ty T 00
7| vl -ye 7| 1.66671-10
_ -2
ne =1-0.71x| 42 ?'98"10 - _1-071x 2% _1_ 0,639 - 0.361
6x10" -1x10" 0.5

iii)  From our definition of 7

e = _ 0.361

Q

10
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If Q; =50J then W =0.361 x 50J = 18] per cycle.

The required output is 1kW = 1000J/sec requiring the engine to undergo 55 cycles per second.

11
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B3.
a)
) Using the definition of F as given

F=U-TS
To write the incremental for F
dF =dU —-TdS — SdT
Using the thermodynamic identity, dU =TdS — PdV , to simplify this

dF =TdS—PdV - TdS—-SdT

dF = —PdV — SdT

The natural variables are then, volume, V and temperature Tand F =F(V,T)

i) We use the natural variables to write the incremental dF in an alternative way

dF=(fj dV+[ﬁj dT
N ) aT )y

And comparing this to the incremental form in i)

S= —(ﬁj and P-= —(ﬁ) as required.
aT )y v )t

iii) It follows that as dF is a perfect differential we may make use of the fact

°F _OF i(ﬁj_i(ﬁjj
dTov  oVoT oT oV ) oV \aT
Implying from our expressions for P and S in ii) that
oP 0S
~ | == ED
=), (=) oeD

12
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b)
) A particular gas has a Helmoltz function given by

F - _%_ RT In(v —nb)+ j(T)

We canuse P = —(% from a) to obtain an expression for P
T
o (OF) _[n*a_ nRT
N Jr v2 V-nb
Re-arrange
2
pyna_ nRT
v2 V-nb
n’a
P+—- |V —nb)=nRT QED
\
i) To find the change in entropy after an expansion at constant temperature we use the

Maxwell relation from a)
=[5
oT )y \oV )t
L)
or y V—-nb oV )7

Vs 1
AS =nR [ ——dV
v.V —nb

Vf —nb
AS =nRlIn
Vi—nb

2nkB

i) If AS =
To

(Tf - Ti) when the gas temperature is raised from T; to Ty at constant

volume we can use the previously found S = —(g—ij to find j(T) from
%

n2a

F =1 % ~nRTIn{v —nb)+ ()

13
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. Tf
AS = {— nRIn(V — nb)+ﬂ} _ke (1, 7))
dT T, To
B3. b) cont
4 _nkg T
dar Ty
i(T)= 1nke 12, const
2 Ty
)
) The heat capacity at constant volume is given in terms of partial differential of a
state function as
o -(Y)
oT N

Using the ideal gas equation of stste for a monatomic gas, U = % PV = gnRT

From the expression for Cy we have

CV =(8Uj —EnR

a A 2
i) The thermodynamic identity for a P-V-T system is;
dU =TdS — PdV
From the thermodynamic identity
aJ _18 _pdv.
dv T const dv T const dv T const

14
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(ﬁ) :T(ﬁj _p
oV )t oV )t
. oP 0S . .
iii) We can use the Maxwell relation | — | =| —| as found in a) to write
or y \0V )t
B3. ¢) cont
(30 ),
oV )t aT ly
Rearrange vdW equation of state
V-nb 2
oP)y _ nR
or y V-—nb
Therefore
(@j - DR nRT  nRT +n2a_n2a
oV )t V —nb V-nb V-nb y2 2
We also have

(@) o -2
oT M 2

Integrating these two equations wrt to dV and dT respectively

nza

U(TV) =2 g(T) U(T,V)=§nRT+f(V)

where g(T) and f(V) are constants of integration.

The only consistent solution is

3 n’a
U(T,V)zgnRT—T+const QED

15
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B4
a)
3
. . m A 2 mV2
1)  Wearegiven P(v)= 4nv© exp| —
27KgT 2kgT
V= [VvP(v)dv
0
3
3 2
V=4z jv3exp—mv dv
272kgT | 9 2kgT
_dx m
Making the suggested substitutions v — x , dv = — and —a
2v 2kgT

3 3
V= 411[3}4 % [ xexp(—ax)x = 27{3}4 [ x exp(—ax)dx
T s

0 0

We now find this integral by integrating by parts;

—ax

u=x dv=e
du = dx v=—1e_ax
a
fudv =[xe ™ =-"¢ j—le_axdx

ol

i)  Weare given the flux, @ = %nv and number density n =g

16
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B4. a) cont
The equation of state for the ideal gas that we need is

PV =ny,RT = NkgT

N P
nN=—=——
V. kgT
—02xn—
SkpT
5
no, = 1.01x10"Pa _ 2.8x10%

5x1.4x10723 x 300K

i)  First we need to find v as follows

-23 -1
7 - [8kgT _ [8x1.4x1077JK ><§$0K _20x10%ms—1
7am 3.14x32x1.66x10“"kg

Now we use @ = —nv = %x4.8x1024 x 2 ><1O5m_25_1

1
4
Q=24 ><1029 m_zs_1 =24 ><1025 cmzs_1

b)

i) The ratio of fluxes incident upon the aperture of the pipe is

& N mv Mg
D, N5 nmpvp nmp\m
. NS N3 {m4 4 -
i) He He He _ \/g:1.28x10 1
ﬂ4 ms
4He He He

17
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B4. b) cont

i) If this process is repeated through j cycles

NS o 10( 2
- 3]

_ -
N"’He %

We require to find value for j that gives 30% *He

e _

Mape (;))=20( [4)' _30
NE 90( V3 70
*He

4) 30x90
3] ~70x10

{2

In3.86  1.351

= = =9.4~10 cycles
In1.155 0.1437

j

18



