Thermal \& Kinetic Physics 2009
 Solutions

Thermal \& Kinetic Physics (PHY-214) Exam 2009
 Solutions.

SECTION A

A1.

$$
d U=T d S-P d V
$$

$d U$ is the incremental change in internal energy.
$d S$ is the incremental change in entropy.
$-P d V$ is the incremental work done on the system where P is the pressure and $d V$ the incremental change in volume.

A2.

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P}
$$

$H=U+P V$ is the enthalpy.

Or

$$
C_{P}=T\left(\frac{\partial S}{\partial T}\right)_{P}
$$

A3. $U=\frac{5}{2} P V$
A4. The work done in one cycle is on the environment and is therefore negative and given as -100J following convention.

$$
\Delta W_{\text {Cycle }}=\Delta W_{a \rightarrow b}+\Delta W_{b \rightarrow c}+\Delta W_{c \rightarrow a}=\Delta W_{b \rightarrow c}+\Delta W_{c \rightarrow a}=-100 \mathrm{~J}
$$

Where I use the fact that $\mathrm{a} \rightarrow \mathrm{b}$ is isochoric and therefore $\Delta W_{a \rightarrow b}=0$.
Now use the fact that $\mathrm{c} \rightarrow \mathrm{a}$ is an isotherm and that therefore $\Delta U_{c \rightarrow a}=0$

$$
\begin{aligned}
& \Delta Q_{c \rightarrow a}=-\Delta W_{c \rightarrow a}=-40 \mathrm{~J} \\
& \Delta W_{b \rightarrow c}=-100 \mathrm{~J}-\Delta W_{c \rightarrow a}=-140 \mathrm{~J}
\end{aligned}
$$

A5. During the process $\mathrm{a} \rightarrow \mathrm{b} \rightarrow \mathrm{c}$ there is no temperature change and therefore no change in internal energy. Therefore the first law reads;

$$
\begin{gathered}
\Delta Q_{a \rightarrow b \rightarrow c}=-\left(\Delta W_{a \rightarrow b}+\Delta W_{b \rightarrow c}\right)=-\left(\Delta W_{\text {cycle }}-\Delta W_{c \rightarrow a}\right)=-(-100 \mathrm{~J}-40 \mathrm{~J}) \\
\Delta Q_{a \rightarrow b \rightarrow c}=+140 \mathrm{~J}
\end{gathered}
$$

The minus sign indicates that this is heat expelled by the system.
A6.

$$
d U=T d S+B_{0} d M
$$

Thermal \& Kinetic Physics 2009 Solutions

$d U$ is the incremental change in internal energy.
$d S$ is the incremental change in entropy at temperature T.
$B_{0} d M$ is the incremental work done on the system where B_{0} is the applied magnetic field and $d M$ the incremental change in total magnetic moment of the paramagnet.

A7.

Looking at the schematic diagram

$$
Q_{1}=Q_{2}+W
$$

A8.

$$
\begin{aligned}
& \eta=\frac{Q_{1}}{W}=\frac{Q_{1}}{Q_{1}-Q_{2}} \\
& \eta_{C}=\frac{T_{1}}{T_{1}-T_{2}}
\end{aligned}
$$

A9. For an ideal gas $P V=R T$ and therefore we can write

Thermal \& Kinetic Physics 2009
 Solutions

$$
\begin{array}{lll}
P=\frac{R T}{V} & V=\frac{R T}{P} & P=\frac{R T}{V} \\
\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}=\frac{-\mathrm{RT}}{\mathrm{~V}^{2}} & \left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}=\frac{\mathrm{R}}{\mathrm{P}} & \left(\frac{\partial \mathrm{~T}}{\partial \mathrm{P}}\right)_{\mathrm{V}}=\frac{\mathrm{V}}{\mathrm{R}}
\end{array}
$$

$\left(\frac{\partial \mathrm{P}}{\partial \mathrm{V}}\right)_{\mathrm{T}}\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{P}}\left(\frac{\partial \mathrm{T}}{\partial \mathrm{P}}\right)_{\mathrm{V}}=\frac{-\mathrm{RT}}{\mathrm{V}^{2}} \frac{\mathrm{R}}{\mathrm{P}} \frac{\mathrm{V}}{\mathrm{R}}=\frac{-\mathrm{PV}}{\mathrm{V}^{2}} \frac{\mathrm{R}}{\mathrm{P}} \frac{\mathrm{V}}{\mathrm{R}}=-1$

A10.

$$
P_{i} V_{i}^{\gamma}=P_{f} V_{f}^{\gamma} \quad \text { and } \quad P=\frac{R T}{V}
$$

Substituting to replace P with T

$$
T_{i} V_{i}^{\gamma-1}=T_{f} V_{f}^{\gamma-1}
$$

-3-

Thermal \& Kinetic Physics 2009
 Solutions

SECTION B

B1

a)
i)

$$
d S=\frac{\delta Q_{R}}{T}
$$

Where $d S$ is the incremental change in the entropy of a system as heat δQ_{R} flows reversibly at temperature T. If the heat flows from the system then following sign convention it is negative and the entropy change is negative.
ii) The second law for a thermally isolated system may be written as an inequality involving the entropy change $\Delta \mathrm{S}$ of that system

$$
\Delta S \geq 0
$$

The equality holds for a reversible process.
b)
i) There is no net heat flow as the process takes place in an adiabatic container so we calculate the final temperature

$$
\begin{aligned}
& \Delta Q_{\mathrm{H}_{2} \mathrm{O}}=5 \mathrm{~kg} \times C_{P} \times\left(T_{f}-298 \mathrm{~K}\right) \\
& \Delta Q_{\text {Ice }}=1.0 \mathrm{~kg} \times C_{P} \times\left(T_{f}-273.15 \mathrm{~K}\right)+1.0 \mathrm{~kg} \times I^{\text {melting }}
\end{aligned}
$$

And

$$
\Delta Q_{I c e}+\Delta Q_{H_{2} \mathrm{O}}=1.0 \mathrm{~kg} \times C_{P} \times\left(T_{f}-273.15 \mathrm{~K}\right)+1.0 \mathrm{~kg} \times\left.\right|^{\text {melting }}+5 \mathrm{~kg} \times C_{P} \times\left(T_{f}-298 \mathrm{~K}\right)=0
$$

$6 \mathrm{~kg} \times C_{P} \times T_{f}=C_{P}(273.15 \times 1 \mathrm{~kg}+298 \times 5 \mathrm{~kg})-1 \mathrm{~kg} \times 1$ melting

$$
\begin{aligned}
& T_{f}=\frac{(273.15 \times 1 \mathrm{~kg}+298 \times 5 \mathrm{~kg})}{6 \mathrm{~kg}}-\frac{1 \mathrm{~kg}}{6 \mathrm{~kg}} \frac{l^{\text {melting }}}{C_{P}} \\
& T_{f}=\frac{1.76315 \times 10^{3} \mathrm{kgK}}{6 \mathrm{~kg}}-\frac{1 \mathrm{~kg}}{6 \mathrm{~kg}} \frac{3.33 \times 10^{5} \mathrm{Jkg}^{-1}}{4.2 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}}=2.938 \times 10^{2}-13.214 \\
& T_{f}=280.58 \mathrm{~K}
\end{aligned}
$$

The final state of the system is 6 kg of water at 280.58 K and at 1 atmosphere

Thermal \& Kinetic Physics 2009
 Solutions

B1 b) cont

ii) The net entropy change for the water initially at 300 k is

$$
\begin{gathered}
\Delta S_{\mathrm{H}_{2} \mathrm{O}}=5 \mathrm{~kg} \times 4.2 \times 10^{3} \mathrm{JK}^{-1} \mathrm{~kg}^{-1} \int_{298}^{280.6} \frac{d T}{T}=2.1 \times 10^{4} \ln \frac{280.6}{298}=-1263 \mathrm{JK}^{-1} \\
\Delta S_{\text {Ice }}=1 \mathrm{~kg} \times 4.2 \times 10^{3} \mathrm{JK}^{-1} \mathrm{~kg}^{-1} \int_{273.15}^{280.6} \frac{d T}{T}+\frac{1 \mathrm{~kg} \times 3.33 \times 10^{5}}{273.15} \\
\Delta S_{\text {Ice }}=\left(4.2 \times 10^{3} \ln \frac{280.6}{273.15}+1219.11\right) \mathrm{JK}^{-1} \\
\Delta S_{\text {Ice }}=113.02+1219.11 \mathrm{JK}^{-1}=+1332.13 \mathrm{JK}^{-1} \\
\Delta S_{\text {Net }}=\Delta S_{\text {Ice }}+\Delta S_{\mathrm{H}_{2} \mathrm{O}}=(1332.13-1263) \mathrm{JK}^{-1}=+69.13 \mathrm{JK}^{-1}
\end{gathered}
$$

iii) The mixing process is not reversible as without further input 1 kg of 6 kg of water at 280.6 K will not turn into ice.
iv) As the process is irreversible we expect from the Second Law that $\Delta S>0$ and this is what is seen to be the case
c)
i) The final temperature of the mix can be found by making the total heat flow zero

$$
\begin{aligned}
& m C_{P}\left\lfloor\left(T_{f}-T_{1}\right)+\left(T_{f}-T_{2}\right)\right\rfloor=0 \\
& T_{f}=\frac{T_{1}+T_{2}}{2}
\end{aligned}
$$

The entropy change of the universe is simply the entropy changes of the two masses of water combined;

$$
\begin{aligned}
& \Delta S=m c_{P}\left[\int_{T_{1}}^{T_{f}} \frac{d T}{T}+\int_{T_{2}}^{T_{f}} \frac{d T}{T}\right]=m c_{P}\left[\ln \left(\frac{T_{f}}{T_{1}}\right)+\ln \left(\frac{T_{f}}{T_{2}}\right)\right] \\
& \Delta S=m c_{P}\left[\ln \left(\frac{T_{f}^{2}}{T_{1} T_{2}}\right)\right]=m c_{P} 2 \ln \left(\frac{\left(T_{1}+T_{2}\right) / 2}{\sqrt{T_{1} T_{2}}}\right)
\end{aligned}
$$

QED
ii) For the Second Law to be obeyed requires that $\Delta S>0$ as we have an irreversible process. This requires that the argument of the logarithm is greater than 1

Thermal \& Kinetic Physics 2009
 Solutions

$$
\frac{T_{1}+T_{2}}{2 \sqrt{T_{1} T_{2}}}>1
$$

B1. c) cont
iii) To demonstrate that the second Law is obeyed it is necessary to demonstrate the inequality of part ii) is generally true for all T_{1} and T_{2} as follows.

$$
T_{1}+T_{2}>2 \sqrt{T_{1} T_{2}}
$$

Squaring both sides of the inequality

$$
\begin{aligned}
& \left(T_{1}+T_{2}\right)^{2}>4 T_{1} T_{2} \\
& T_{1}^{2}+T_{2}^{2}+2 T_{1} T_{2}>4 T_{1} T_{2} \\
& T_{1}^{2}+T_{2}^{2}-2 T_{1} T_{2}=\left(T_{1}-T_{2}\right)^{2}>0
\end{aligned}
$$

This is always true if T_{1} and T_{2} are real numbers and therefore the Second Law is obeyed.

Thermal \& Kinetic Physics 2009
 Solutions

B2.
a)
i) The work is given by $W=-\int_{V_{i}}^{2 V_{i}} P d V=-P_{i} \int_{V_{i}}^{2 V_{i}} d V=-P_{i} V_{i}$ and this is negative and therefore represents work done by the gas.
ii) The work is given by $W=-\int_{V_{i}}^{V_{i}} P d V$

As it is adiabatic we have $P V^{\gamma}=$ const

$$
\begin{aligned}
& W=-P_{i} V_{i}^{\gamma} \int_{V_{i}}^{V_{i} / 2} V^{-\gamma} d V=\frac{-P_{i} V_{i}^{\gamma}}{1-\gamma}\left[\left(\frac{V_{i}}{2}\right)^{1-\gamma}-V_{i}^{1-\gamma}\right] \\
& W=\frac{-P_{i} V_{i}^{\gamma}}{1-\gamma} V_{i}^{1-\gamma}\left[2^{\gamma-1}-1\right] \\
& W=\frac{P_{i} V_{i}}{1-\gamma}\left(1-2^{\gamma-1}\right)
\end{aligned}
$$

$\gamma=\frac{C_{P}}{C_{V}}$ is always greater than 1 and therefore the denominator is negative as is the term in the brackets making W positive ie. work is done on the gas.
iii) The work is given by $W=-\int_{V_{i}}^{V_{i}} P d V$

$$
\begin{aligned}
& P=\frac{R T}{V} \\
& W=-R T \int_{V_{i}}^{V_{i}} \frac{d V}{V}=-R T \ln \left(\frac{V_{i} / 2}{V_{i}}\right) \\
& W=-R T \ln \left(\frac{1}{2}\right)=R T \ln 2
\end{aligned}
$$

W is positive and therefore represents work done on the gas.

Thermal \& Kinetic Physics 2009
 Solutions

B2cont

b)
i) The efficiency of a heat engine is given by

$$
\eta_{E}=\frac{W}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}=1-\frac{Q_{2}}{Q_{1}}
$$

Figure 1
ii) In an isobaric process we use the heat capacity at constant pressure to find Q_{1}

$$
Q_{1}=Q_{b \rightarrow c}=C_{P}\left(T_{c}-T_{b}\right)
$$

iii) In an isochoric process we use the heat capacity at constant volume to find Q_{2}

$$
Q_{2}=-Q_{d \rightarrow a}=C_{V}\left(T_{d}-T_{a}\right)
$$

Thermal \& Kinetic Physics 2009
 Solutions

B2. b) cont

iv) In part i) we have $\eta_{E}=1-\frac{Q_{2}}{Q_{1}}$

$$
\eta_{E}=1-\frac{C_{V}\left(T_{d}-T_{a}\right)}{C_{P}\left(T_{c}-T_{b}\right)}=1-\frac{1}{\gamma} \frac{\left(T_{d}-T_{a}\right)}{\left(T_{c}-T_{b}\right)}
$$

c)
i) Considering the two adiabatic processes $c \rightarrow d$ and $a \rightarrow b$ and using the adiabatic rule
$\mathrm{c} \rightarrow \mathrm{d}$ is an adiabatic process thus

$$
\mathrm{T}_{\mathrm{C}} \mathrm{~V}_{\mathrm{C}}^{\gamma-1}=\mathrm{T}_{\mathrm{d}} \mathrm{~V}_{\mathrm{d}}^{\gamma-1} \quad \Rightarrow \quad \mathrm{~T}_{\mathrm{d}}=\mathrm{T}_{\mathrm{c}}\left(\frac{\mathrm{~V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{d}}}\right)^{\gamma-1}
$$

$\mathrm{a} \rightarrow \mathrm{b}$ is also an adiabatic process and similarly

$$
\mathrm{T}_{\mathrm{a}} \mathrm{~V}_{\mathrm{a}}^{\gamma-1}=\mathrm{T}_{\mathrm{b}} \mathrm{~V}_{\mathrm{b}}^{\gamma-1} \quad \Rightarrow \quad \mathrm{~T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}\left(\frac{\mathrm{~V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}\right)^{\gamma-1}
$$

We also know that
$\mathrm{P}_{\mathrm{b}} \mathrm{V}_{\mathrm{b}}=\mathrm{nRT}_{\mathrm{b}} \quad \mathrm{P}_{\mathrm{c}} \mathrm{V}_{\mathrm{c}}=\mathrm{nRT}_{\mathrm{c}} \quad$ and $\quad \mathrm{P}_{\mathrm{b}}=\mathrm{P}_{\mathrm{c}}$
$\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}}=\frac{\mathrm{T}_{\mathrm{b}}}{\mathrm{T}_{\mathrm{c}}} \quad \Rightarrow \quad \mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{b}} \frac{\mathrm{V}_{\mathrm{c}}}{\mathrm{V}_{\mathrm{b}}}$
$T_{d}-T_{a}=T_{c}\left(\frac{V_{c}}{V_{a}}\right)^{\gamma-1}-T_{b}\left(\frac{V_{b}}{V_{a}}\right)^{\gamma-1}$
$T_{d}-T_{a}=T_{b}\left(\frac{V_{c}}{V_{b}}\right)\left(\frac{V_{c}}{V_{a}}\right)^{\gamma-1}-T_{b}\left(\frac{V_{b}}{V_{a}}\right)^{\gamma-1}=\frac{T_{b} V_{a}}{V_{b}}\left[\left(\frac{V_{c}}{V_{a}}\right)^{\gamma}-\left(\frac{V_{b}}{V_{a}}\right)^{\gamma}\right]$

And similarly

Thermal \& Kinetic Physics 2009
 Solutions

B2. c) cont

$$
\mathrm{T}_{\mathrm{c}}-\mathrm{T}_{\mathrm{b}}=\mathrm{T}_{\mathrm{b}}\left(\frac{\mathrm{~V}_{\mathrm{c}}}{\mathrm{~V}_{\mathrm{b}}}\right)-\mathrm{T}_{\mathrm{b}}=\frac{\mathrm{T}_{\mathrm{b}} \mathrm{~V}_{\mathrm{a}}}{\mathrm{~V}_{\mathrm{b}}}\left[\left(\frac{\mathrm{~V}_{\mathrm{c}}}{\mathrm{~V}_{\mathrm{a}}}\right)-\left(\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{~V}_{\mathrm{a}}}\right)\right]
$$

Including these in the earlier expression for η_{E}

$$
\eta_{E}=1-\frac{1}{\gamma} \frac{T_{d}-T_{a}}{T_{c}-T_{b}}=1-\frac{1}{\gamma} \frac{\left[\left(\frac{V_{a}}{V_{c}}\right)^{-\gamma}-\left(\frac{V_{a}}{V_{b}}\right)^{-\gamma}\right]}{\left(\frac{V_{a}}{V_{c}}\right)^{-1}-\left(\frac{V_{a}}{V_{b}}\right)^{-1}}
$$

We have $\quad \gamma_{\mathrm{e}}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{c}}}$ is the expansion ratio and $\gamma_{\mathrm{c}}=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{b}}}$ is the compression ratio and when these are used in the above

$$
\eta_{E}=1-\frac{1}{\gamma}\left[\frac{\gamma_{e}^{-\gamma}-\gamma_{c}^{-\gamma}}{\gamma_{e}^{-1}-\gamma_{c}^{-1}}\right]
$$

QED

ii) For a rigid diatomic gas $\gamma=\frac{C_{P}}{C_{V}}=\frac{7}{5}$

Also we are given $\gamma_{e}=\frac{V_{a}}{V_{c}}=\frac{5000}{3000}=1.666$ and $\gamma_{c}=\frac{V_{a}}{V_{b}}=\frac{5000}{500}=10$

$$
\begin{gathered}
\eta_{E}=1-\frac{1}{\gamma}\left[\frac{\gamma_{e}^{-\gamma}-\gamma_{c}^{-\gamma}}{\gamma_{e}^{-1}-\gamma_{c}^{-1}}\right]=1-\frac{5}{7}\left[\frac{1.666^{-1.4}-10^{-1.4}}{1.666^{-1}-10^{-1}}\right] \\
\eta_{E}=1-0.71 \times\left[\frac{0.49-3.98 \times 10^{-2}}{6 \times 10^{-1}-1 \times 10^{-1}}\right]=1-0.71 \times \frac{0.45}{0.5}=1-0.639=0.361
\end{gathered}
$$

iii) From our definition of η_{E}

$$
\eta_{E}=\frac{W}{Q_{1}}=0.361
$$

Thermal \& Kinetic Physics 2009
 Solutions

If $Q_{1}=50 \mathrm{~J}$ then $\mathrm{W}=0.361 \times 50 \mathrm{~J}=18 \mathrm{~J}$ per cycle.
The required output is $1 \mathrm{~kW}=1000 \mathrm{~J} / \mathrm{sec}$ requiring the engine to undergo 55 cycles per second.

Thermal \& Kinetic Physics 2009
 Solutions

B3.
a)
i) Using the definition of F as given

$$
F=U-T S
$$

To write the incremental for F

$$
d F=d U-T d S-S d T
$$

Using the thermodynamic identity, $d U=T d S-P d V$, to simplify this

$$
\begin{aligned}
& \mathrm{dF}=\mathrm{TdS}-\mathrm{PdV}-\mathrm{TdS}-\mathrm{SdT} \\
& \mathrm{dF}=-\mathrm{PdV}-\mathrm{SdT}
\end{aligned}
$$

The natural variables are then, volume, V and temperature T and $F=F(V, T)$
ii) We use the natural variables to write the incremental $d F$ in an alternative way

$$
\mathrm{dF}=\left(\frac{\partial \mathrm{F}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} \mathrm{dV}+\left(\frac{\partial \mathrm{F}}{\partial \mathrm{~T}}\right)_{\mathrm{V}} \mathrm{dT}
$$

And comparing this to the incremental form in i)

$$
S=-\left(\frac{\partial F}{\partial T}\right)_{V} \quad \text { and } \quad P=-\left(\frac{\partial F}{\partial V}\right)_{T} \quad \text { as required. }
$$

iii) It follows that as dF is a perfect differential we may make use of the fact

$$
\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{~T} \partial \mathrm{~V}}=\frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{~V} \partial \mathrm{~T}} \quad \Rightarrow \quad \frac{\partial}{\partial \mathrm{~T}}\left(\frac{\partial \mathrm{~F}}{\partial \mathrm{~V}}\right)=\frac{\partial}{\partial \mathrm{V}}\left(\frac{\partial \mathrm{~F}}{\partial \mathrm{~T}}\right)
$$

Implying from our expressions for P and S in ii) that

$$
\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}=\left(\frac{\partial \mathrm{S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}
$$

Thermal \& Kinetic Physics 2009
 Solutions

B3. b) cont.

b)
i) A particular gas has a Helmoltz function given by

$$
F=-\frac{n a}{V}-R T \ln (V-n b)+j(T)
$$

We can use $P=-\left(\frac{\partial F}{\partial V}\right)_{T}$ from a) to obtain an expression for P

$$
P=-\left(\frac{\partial F}{\partial V}\right)_{T}=-\left[\frac{n^{2} a}{V^{2}}-\frac{n R T}{V-n b}\right]
$$

Re-arrange

$$
\begin{aligned}
& P+\frac{n^{2} a}{V^{2}}=\frac{n R T}{V-n b} \\
& \left(P+\frac{n^{2} a}{V^{2}}\right)(V-n b)=n R T
\end{aligned}
$$

QED

ii) To find the change in entropy after an expansion at constant temperature we use the Maxwell relation from a)

$$
\begin{aligned}
& \left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{V}}=\left(\frac{\partial \mathrm{S}}{\partial \mathrm{~V}}\right)_{\mathrm{T}} \\
& \left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b}=\left(\frac{\partial S}{\partial V}\right)_{T} \\
& \Delta \mathrm{~S}=n R \int_{V_{i}}^{V_{f}} \frac{1}{V-n b} d V \\
& \Delta S=n R \ln \left(\frac{V_{f}-n b}{V_{i}-n b}\right)
\end{aligned}
$$

iii) If $\Delta S=\frac{2 n k_{B}}{T_{0}}\left(T_{f}-T_{i}\right)$ when the gas temperature is raised from T_{i} to T_{f} at constant volume we can use the previously found $S=-\left(\frac{\partial F}{\partial T}\right)_{V}$ to find $j(T)$ from

$$
F=-\frac{n^{2} a}{V}-n R T \ln (V-n b)+j(T)
$$

$$
\Delta S=-\left[-n R \ln (V-n b)+\frac{d j}{d T}\right]_{T_{i}}^{T_{f}}=\frac{n k_{B}}{T_{o}}\left(T_{f}-T_{i}\right)
$$

B3. b) cont

$$
\begin{aligned}
& \frac{d j}{d T}=\frac{n k_{B}}{T_{0}} T \\
& \quad j(T)=\frac{1}{2} \frac{n k_{B}}{T_{0}} T^{2}+\text { const }
\end{aligned}
$$

c)
i) The heat capacity at constant volume is given in terms of partial differential of a state function as

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

Using the ideal gas equation of stste for a monatomic gas, $U=\frac{3}{2} P V=\frac{3}{2} n R T$
From the expression for C_{V} we have

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=\frac{3}{2} n R
$$

ii) The thermodynamic identity for a P-V-T system is;

$$
d U=T d S-P d V
$$

From the thermodynamic identity

$$
\left.\frac{d U}{d V}\right|_{T \text { const }}=\left.T \frac{d S}{d V}\right|_{T \text { const }}-\left.P \frac{d V}{d V}\right|_{T \text { const }}
$$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-P
$$

iii) We can use the Maxwell relation $\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial S}{\partial V}\right)_{T}$ as found in a) to write

B3. c) cont

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Rearrange vdW equation of state

$$
\begin{aligned}
& P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}} \\
& \left(\frac{\partial P}{\partial T}\right)_{V}=\frac{n R}{V-n b}
\end{aligned}
$$

Therefore

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T \frac{n R}{V-n b}-P=\frac{n R T}{V-n b}-\frac{n R T}{V-n b}+\frac{n^{2} a}{V^{2}}=\frac{n^{2} a}{V^{2}}
$$

We also have

$$
\left(\frac{\partial U}{\partial T}\right)_{V}=C_{V}=\frac{3}{2} n R
$$

Integrating these two equations wrt to dV and dT respectively

$$
U(T, V)=-\frac{n^{2} a}{V}+g(T) \quad U(T, V)=\frac{3}{2} n R T+f(V)
$$

where $g(T)$ and $f(V)$ are constants of integration.
The only consistent solution is

$$
U(T, V)=\frac{3}{2} n R T-\frac{n^{2} a}{V}+\text { const }
$$

Thermal \& Kinetic Physics 2009
 Solutions

B4

a)
i) We are given $P(v)=\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} 4 \pi v^{2} \exp \left[-\frac{m v^{2}}{2 k_{B} T}\right]$

$$
\begin{gathered}
\bar{v}=\int_{0}^{\infty} v P(v) d v \\
\bar{v}=4 \pi\left[\frac{m}{2 \pi k_{B} T}\right]_{0}^{3 / 2} \int_{0}^{\infty} v^{3} \exp \left(-\frac{m v^{2}}{2 k_{B} T}\right) d v
\end{gathered}
$$

Making the suggested substitutions $\mathrm{v}^{2} \rightarrow \mathrm{x}, \mathrm{dv}=\frac{\mathrm{dx}}{2 \mathrm{v}}$ and $\frac{m}{2 k_{B} T} \rightarrow a$

$$
\overline{\mathrm{v}}=4 \pi\left[\frac{\mathrm{a}}{\pi}\right]^{3 / 2} \frac{1}{2} \int_{0}^{\infty} \mathrm{x} \exp (-\mathrm{ax}) \mathrm{dx}=2 \pi\left[\frac{\mathrm{a}}{\pi}\right]^{3 / 2} \int_{0}^{\infty} \mathrm{x} \exp (-\mathrm{ax}) \mathrm{dx}
$$

We now find this integral by integrating by parts;

$$
\begin{aligned}
& u=x \quad d v=e^{-a x} \\
& d u=d x \quad v=-\frac{1}{a} e^{-a x} \\
& \int u d v=\int x e^{-a x}=-\frac{x}{a} e^{-a x}-\int-\frac{1}{a} e^{-a x} d x \\
& \int_{0}^{\infty} x e^{-a x} d x=\left[-\frac{x}{a} e^{-a x}-\frac{1}{a^{2}} e^{-a x}\right]_{0}^{\infty}=\frac{1}{a^{2}} \\
& \bar{v}=2 \pi\left[\frac{a}{\pi}\right]^{3 / 2} \frac{1}{a^{2}}=\sqrt{\frac{4}{\pi a}}=\sqrt{\frac{8 k_{B} T}{\pi m}}
\end{aligned}
$$

ii) We are given the flux, $\Phi=\frac{1}{4} n \bar{v}$ and number density $n=\frac{N}{V}$

Thermal \& Kinetic Physics 2009
 Solutions

B4. a) cont

The equation of state for the ideal gas that we need is

$$
\begin{aligned}
& P V=n_{m} R T=N k_{B} T \\
& n=\frac{N}{V}=\frac{P}{k_{B} T} \\
& n_{O_{2}}=0.2 \times n=\frac{P}{5 k_{b} T} \\
& n_{O_{2}}=\frac{1.01 \times 10^{5} \mathrm{~Pa}}{5 \times 1.4 \times 10^{-23} \times 300 \mathrm{~K}}=4.8 \times 10^{24}
\end{aligned}
$$

iii) First we need to find \bar{v} as follows

$$
\bar{v}=\sqrt{\frac{8 k_{B} T}{\pi m}}=\sqrt{\frac{8 \times 1.4 \times 10^{-23} \mathrm{JK}^{-1} \times 300 \mathrm{~K}}{3.14 \times 32 \times 1.66 \times 10^{-27} \mathrm{~kg}}}=2.0 \times 10^{5} \mathrm{~ms}^{-1}
$$

Now we use $\Phi=\frac{1}{4} n \bar{v}=\frac{1}{4} \times 4.8 \times 10^{24} \times 2 \times 10^{5} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$

$$
\Phi=2.4 \times 10^{29} \mathrm{~m}^{-2} \mathrm{~s}^{-1}=2.4 \times 10^{25^{\prime \prime}} \mathrm{cm}^{2} \mathrm{~s}^{-1}
$$

b)
i) The ratio of fluxes incident upon the aperture of the pipe is

$$
\frac{\Phi_{1}}{\Phi_{2}}=\frac{N_{1}^{e}}{N_{2}^{e}}=\frac{n_{1}}{n_{2}} \frac{v_{1}}{v_{2}}=\frac{n_{1}}{n_{2}} \sqrt{\frac{m_{2}}{m_{1}}}
$$

QED
ii)

$$
\frac{N_{{ }_{3} \mathrm{He}}^{e}}{N_{{ }_{4} \mathrm{He}}^{e}}=\frac{n_{3^{H e}}}{n_{4_{4}}} \sqrt{\frac{m_{4_{4}}}{m_{3_{3}} \mathrm{He}}}=\frac{10}{90} \sqrt{\frac{4}{3}}=1.28 \times 10^{-1}
$$

Thermal \& Kinetic Physics 2009
 Solutions

B4. b) cont

iii) If this process is repeated through j cycles

$$
\left.\frac{N_{3^{H e}}^{e}}{N_{4}^{e}}(j)\right)=\frac{10}{90}\left(\sqrt{\frac{4}{3}}\right)^{j}
$$

We require to find value for j that gives $30 \%{ }^{3} \mathrm{He}$

$$
\left.\begin{array}{l}
\frac{N_{3^{H e}}^{e}}{N_{4}^{e}}(j e
\end{array}\right)=\frac{10}{90}\left(\sqrt{\frac{4}{3}}\right)^{j}=\frac{30}{70}, ~\left(\sqrt{\frac{4}{3}}\right)^{j}=\frac{30 \times 90}{70 \times 10} .
$$

