TKP Exam Solutions 2007
Section A

Al)  The zeroth law of thermodynamics states that if bodies A and B are each
separately in thermal equilibrium with a third body C then they must be in thermal
equilibrium with each other.

A2)  The empirical temperature scale is defined as

Tg = 273.16[ij
Rrp

Where R is the resistance at the unknown temperature and R+p is the resistance at the
triple point of water.

A3) The ideal gas temperature scale is defined as

Teas = 273.16 limit (l]
Pre -0\ Prp

Where the limit Prp — 0 is taken to more closely approximate an ideal gas by
reducing the effects of intermolecular interactions as the gas becomes dilute.

A4)  The mean kinetic energy of a molecule in a gas at temperature T is given by;

%<mv2> = (KE) :ngT

The kinetic energy of a CO, molecule is given as

(KE) =0.0285¢eV = ngT
therefore
2 0.0285eV

=— = 220K
38.63x10°eVK™

And for CO,

%<mv2> — 0.0285eV

-19
<V2> _ 2x0.0285eV ><1.6><12(7) C o 195410°m?s?
co, 44amu x1.66 x107“" kg

therefore



v, (CO,) =353.3ms™

Similarly for N, as they are at the same temperature they will have the same average
kinetic energy and

<V2>  2x0.0285eV x1.6x107°C
N,

— =1.96x10°m?s™?
28amu x1.66x10“" kg

therefore
V,.. (N,) =443ms™

A5) dU =dQ +dW and the conventions used are that heat flowing into the system
is positive and work done on the system is positive.

A6)  The work done on a gas is equal to the area between the volume axis and the
curve representing the process being positive when traversed from right to left ie.
when compressing the gas.
AT)  The equation of state of an ideal gas is

PV =nRT
Where P, V and T are the pressure, volume and temperature respectively and n is the
number of moles of the gas.
In an isothermal process there will be no change in internal energy.
A8) Inan isobaric process dP =0

in an isochoric process dV = 0 and
in an adiabatic process €Q =0

A9)  During the process a — b, AQ =+150J , AW =—-60J from the first law
AU, ,p =150 —60J = 90J

A10) During the process b — ¢, AQ =-108J , AW =0J from the first law
AUy, =—-108] —0J =—-108J

Al1l) During the adiabatic process ¢ — a the change in internal energy must be
AU, +AUp . =—AU_,, =90J —108] = 18]

It is adiabatic so AQ =0J and therefore using the first law

AWe 5q =AU¢ 5 —AQ =AU, 5 =18J



Al12) we are given

u="Lpy
2

The process is adiabatic and therefore ¢Q =0
du = %(Pdv +VdP) = —PdV

rearranging

S pav +Lvap =0
2 2

After integration

%Inv =—InP +const

9
PVA =PV’ =(PVIV’ 1 =nRTV” T =const QED
_9
=3

C .
Al3) y= C—P where Cp and Cy, are the heat capacities of the gas at constant
%

pressure and volume respectively.



Section B
Bl (a)
) The Clausius statement of the second law is

It is impossible to devise a device that , when operating in a cycle, produces no other
effect than the transfer of heat from a cooler to a hotter body (reservoir).

i) The heat pump has a figure of merit defined as useful output, Q;,
divided by input required to achieve the desired effect, W.

_ Q&
THP = W
From the first law we have W = Q; — Q>
Therefore
Q
nHp =
Q1 —-Qy
iii)
Q1 —-Q2 Qp —9kW
9Q; =90kwW
Q) =10kwW
W =Q; —Qp =10kW — 9kW =1kW
(b)
A
i) y)
Pz """""
A
P
L
Py p------- < 3
L Q2 i
] v ] o
V]_ v V3



The process 1 — 2 is isochoric and therefore no work is done leaving
the first law as

i)
AUy, 5 =4Q) 57
. 5
We are given U = > PV
5
dU; o ZE(PZ ~P V1 =4Q 5 =Q

The process 3 — 1 is isobaric and therefore AW3_,; = P;(V3 -V;)

whilst AU5_,; = g(vl —V3 )P, and from the first law

5
AQ3_,1 =AUz 1 —AW3_ ;1 = E(Vl —V3)P +(Vp —V3)P
7
AQ3_y1 = E(Vl ~V3)P =Q;

i)

We can define the engine efficiency as useful work out divided by heat
in.

W _Q&u-Q_, @
e Q Q Q

In this definition of efficiency the moduli of the heats are required and Q; as
calculated in part ii) is a negative number (heat is expelled) and we therefore need
to take the positive modulus in this case. Q; as calculated is positive in any case.

Thus using results from part ii)
7
~(Vg-vi)R

ne =1-7
E(PZ_Pl)‘/l

The pressures and volumes at points 2 and 3 are related through the adiabatic rule

7

Pv "° = const

5 5
v, i ()T (R)T_ 5
V3 V3 (P P,



V3 =V1IO%

To obtain Vs in terms of V; in the equation for the efficiency

5

Z(Vs -Vi )R Vi p% -1R %

2 7 7p/f-1
et T s moAm s 1 0

E(PZ_Pl)‘/l 2 A P
(c)
i) To find p we first need P, which we find by noting V; =V3 and

7 7 7
PZVZA = P3VSA = Plvsé
7 7
vy )5 ootec |5
P,=P|-3| =lam x(mj =10 atm = 25.11 atm
Vo 0.0001cc
i) We have found the engine efficiency in part ii in terms of
p= P _ 25.11
P
5
ﬁ 3 0.714 _ B
pe =1L P I g g BT g g 9997 gay
5 p-1 25.11-1 1

iii) To calculate the work done in one cycle we need to know Q;

Q = g(P2 ~ PV, = 2.5%(25.11-1)x1.01x10° x 00001

Qq = 608.775J

Now we use the efficiency to calculate W

W =Q; xng =608.77x0.477 = 290.38J



B2) (a)

1) The entropy form of the second law of thermodynamics for an isolated
system is given by the inequality

AS>0
where the equality applies for a reversible process.
i) Boltzmann conjectured that the macroscopic entropy S was related to
the number of accessible microstates available to make up that macrostate. He

suggested that

Entropy is a measure of the MICROSCOPIC probability of finding the system
under study in a given MACROSCOPIC equilibrium state.

(b)
)] The final state of the water will be 3kg of ice at -5 °C or 268.15 K
i) The calculation is to be carried out in 3 stages, the cooling from 15 °C

(288.15 K) to 0 °C (273.15 K). The change of state at 273.15 K from
water to ice and the final cooling of the ice from 273.15 K to 268.15 K.

1. In cooling from 288.15 K to 273.15 K we need to calculate
273.15 273.15
[dS=4S= | aQ
288.15 288.15

as an integral with the temperature changing. We do this by finding dQ in terms of
dT using the assumption of constant pressure

dQ = medT
273.15
AS=mCp ] I —mCpInZ"310 _ gg 4.2 %103 Jkg LK 1 x -5.34x 102

AS = -9419JK L

2. In changing state from water to ice at constant temperature we need to
calculate the total latent heat and divide this by the temperature

S miYS —miSt _3kgx3.33x109Jkg

- - - —-10971JK 1
27315 273.15 273.15




3. In cooling from 273.15 to 268.15 K the ice will change entropy by an

amount
. 268.15
AS =mCK® | 9T mcp 1n 28815 _ 3kg x 2.1x 103 Jkg 1K 1 x —1.847 x 1072
P T P 27315
273.15 :

AS = ~116JK 1
The total entropy change is then the sum of these three

AsTo@l _ 9419 _-10971-116 = —20506JK L

iii) The surrounding environment remains at the ambient temperature and all
that is required is to find the heat input/output from part ii) in order to

calculate A4S

1. For the cooling down of the water there will be heat added to the environment that
is lost from the water

273.15 3 1 1
AQ=mCp [dT =mCpAT = 3kg x4.2x103Jkg 1K 1 x15 =189,000J
288.15
g 189000 _ 64 83K L
268.15

2. For the phase change water to ice again heat is added to the environment

~ miSt 3kgx3.33x10°Jkg~?

_ _ — +3725JK 1
268.15 268.15

3. For the cooling of the ice

. 268.15 . 268.15
AQ =-mCE®  [dT =-mCE€ In==—
Q | P ST

=3kg x 3.33x10° x1.847 x 102 JK " =18,451J
273.15 2

AS — 18451
268.15

— +68.810JK 1

s Total — 70482+ 3726+ 69 = +74313JK 1

environment



iv) The second law requires that the total entropy change of an isolated system
is greater than (or equal to in the case of reversible changes) zero.

The sum total of the entropy changes here ia

ASUniverse = (74313 — 20506)JK 1 = +53807JK 1

The overall change in the entropy is positive as required by the second law. It can be
noted that none of the three processes is reversible as water will not warm to 15 °C
when sitting outside in a garden at temperature -5 °C. Ice will not spontaneously melt
in theses circumstances and a block of ice at -5 °C will not warm up to 0 °C.

(©)

1) Beginning with the thermodynamic identity
dU =TdS - PdVv

jo_8Qr _dU P

=—+—dV
T T T
We are given
5
U :EPV PV = NkgT
Which gives
U :ENkBT = dU :ENdeT
2 2

and

P _ Nkg

T \

Using these in the equation for dS

ds =ENde—T+ Nde—V
2 T \Y

f Tt Vs T Vi
45 = [dS = 2Nkg [ T+ Nkg | IV = 3 Nig Inf = |+ Nikg Inf —-

QED



In the Joule free expansion gas is initially confined to a reduced volume in a container
with walls that are both rigid & adiabatic by a secondary partition as in LHS of
diagram. The expansion occurs without heat flow when this partition is broken
allowing the gas to expand freely into the previously empty volume as in RHS of
diagram.

For an ideal gas the internal energy remains constant as there is no work done (rigid
walls) and no heat flow (adiabatic walls) AU = AQ + AW = 0. This implies no

temperature change between initial and final states.

iii) If an ideal gas undergoes such a free expansion we may calculate the
change in entropy from

5 Ty Vi
AS =— NkB In| — |+ NkB Inl — | = NkB In3=1.098 x NkB
2 T; Vi

Where the fact that AT = 0 has been used.

This is consistent with the Boltzmann interpretation of entropy as a measure of the
number of accessible microstates that give rise to the macrostate. We have a slight
increase in entropy after the expansion and Boltzmann would explain this as due to
the increased number of positions available to the molecules of the gas in the larger
volume. Many of the increased number of configurations (microstates) available to
the N molecules would give rise to identical macrostates giving an increase in entropy
according to Boltzmann’s conjecture.

10




B3) a)
i) F=U-TS
dF =dU —TdS — SdT
Using the thermodynamic identity dU =TdS — PdV allows us to write this
dF =-PdV - SdT

The natural variables of F are then V and T which means we can also write the

infinitesimal for F as
dF = (ﬁj dv +(ﬁj dT
oV )t aoT Ny

This allows the identification

{5
oV )7 oT

(6_P] _[&*F | [ &°F (ﬁj [ @*F | [ @%F
aT N oVoT oToV oV )1 oVaoT oToV
Giving the Maxwell relation

P (35
&) -, o0

G=U-TS+PV

dG =dU —TdS — SdT + PdV +VdP
Using the thermodynamic identity
dG =-SdT +VdP

We identify the natural variables of G as T and P and can therefore also write the
infinitesimal dG as

de:(@j dn(%j dp
oT Jp oP )

Allowing the identifications

11



s:_(@) V{@J
aT Jp oP )¢
(@j _[d*c)_ [o% (a_vj _[ &%
oP )t oPOT oToP T Jp | OTOP
Giving the Maxwell relation

0S oV
(a—pl - ‘(EJP QFP

i) Using the thermodynamic identity at constant V
dU =TdS - PdV =TdS

Therefore

(32|13
aT )y aT Ny

iii) We may write using the thermodynamic identity

(auj TdS — PdV (auj (asj
e e T T B I ey
NV ) av N ) \ov

Using the previously obtained Maxwell relation (ﬁj = (QJ
aT oV )
ERE R
N ot A
. . . n’a
iv)  The equation of state given is | P+ —- (Vv —nb)=nRT
V
By obtaining P as the subject
V-nb y?2

12



We can use the expression (QJ :T(Ej — P derived in iii)
oV )t aT

= = B T2 T2
T V —nb V-nb V-nb v \Vj

2 2
(Qj _t MR ,_NRT nRT n%a_n‘a
oV

We also have

(Q} =CV =§nR
T 2

Integrating these two equations wrt to dV and dT respectively

n2a

U(T V)= B+ g(T) U(T,V):gnRT+f(V)

The only consistent solution is

2
U(T,V):EnRT —E+const
2 Vv

The first term on the RHS is the kinetic energy and the second term is the potential
energy of intermolecular interaction. At T = 0 the first term, the KE = 0 and at infinite
volume the second term, PE = 0 and therefore U should be zeroat T=0,V — «
implying that the const =- 0.

3 n2a

U(T,V):EI’IRT —T

Is the required expression for the internal energy of the Van der Waals gas

13



(b)

/

melting C

Sol /
P

vapourisation

Liq

Vap
TP

T

v

P-T diagram for simple substance

TP is the triple point being the pressure and temperature at which the solid liquid and
vapour phases coexist.

C is the critical point beyond which (at higher temperatures and pressures) the vapour
and liquid phases have the same density and become indistinguishable.

(©)

Given the Clausius Clapeyron equation for the liquid-vapour co-existence curve
LV
L
dT  T(WV —vt]

Y

We can make the approximation v* >> vk the molar volume of the vapour is much

greater than that of the liquid.

Also as it is an ideal gas

Giving an approximate form of the liquid vapour Clausius Clapeyron equation
P ItVp

o RT?
Re-arranging

14



dpP |LV dT

P RT?
Integrating this equation

Inp=-1-v i+const
RT

Where P and T are any pair of points lying on the coexistence curve

InP, =-I LV i+ const
RTy

InPy =-I Lv L+c0nst
RTp

We subtract one from the other giving

Pl 11 1
P Ry T QED
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B4) a) Cavity radiation is the radiation contained within a cavity that is at the
same temperature as the cavity walls ie. the radiation is in thermal equilibrium with

the cavity.
Its temperature is determined by the temperature T of the cavity walls and the volume

of the cavity V.

1) We are given u(T) = 4—GT4 and the equation of state U = 3PV
C

Writing
u(T)=B=3p=4_UT4
Vv c
-8 1a-1, 21 —4
p_20 14 _1333,207x10 ‘;5 - T a7
3¢ 3x10°ms™
-8 -14
P-1333x 22720 5314 -1.33x10Pa =130 335 am
3x10 1.01x10
i) For a photon gas at 1 Atm
4 (3¢ 3x108 5 20
T = (——Pj = 0.75><—8x1.01><10 Pa =4.00x10
4o 5.67 x10~
T =1.4x10° K
b)
Starting with the thermodynamic identity
dU =TdS - PdV
U(T)=u(T V =  dU=d(u(T))=TdS - Pdv

. . 1
We can use the equation of state rewrittenas P = gu

d(u(T)V)=TdS—%u(T)dV

16



Rearranging this by expanding d(u(T)V) using the product and the chain rules.

TdS = (u(T )av +u’/ (T )VdT)+%u(T Ydv (u/ _ dL;(TT )j

/
s - [MVJM (A
T 3T

We have been given previously

W(T)=" —gp-24974
Y c

Allowing the expression for dS to be rewritten as

ds = 109 1247 , 169134
C 3c

We now know that S has T and V as natural variables and can write
ds = (@j dT+ (éj av
T )y oV )t
By inspection of these two equations it is the case that

(@j :]'B_JTZV
TN c

Integrating this wrt T

s=20973 4 1 (v)
3c

Also by inspection

(@j _1603
ovV)r 3¢

Integrating this wrt V

17



16UT:"\/+g(T)

The only consistent solution to these two forms of S is

S = 16GT3\/ + const QED

3c

If the photon gas is expanded reversibly and adiabatically there is no change in S and
therefore

TV, =TV, = T564v, = T2=64T3 =  T,=025T

c)
The mean free path in a gas is defined by the mean distance travelled by a molecule in
a gas between collisions.

1) In the equation A = 1 the mean free path is A, n is the number density of
no

molecules and o is an area called the collision cross section where we
imagine a disc of area o attached to a molecule in motion increasing the
probability that the molecule may collide with a neighbour.

i) Effusion describes the process whereby molecules or any particle in
Brownian motion confined to a box escape from that box via a hole whose
diameter is less than a mean free path.

iii) The number of molecules escaping will be determined by the rate of
collision of particles with the holes. This is given by the particle flux
multiplied by the mean speed

N oclnv=1n BkgT
4 4 am

The percentage of escaped He atoms is given by

n|_/
n
— & %100 = x 100

e

n n m
_ He  .100= Hev A %100
NHe +NA NHeyMA +NayMpe

18



Now dividing top and bottom by /mpe

NHe +NA Mo m%H iny
e
Divide top and bottom by nye
my
m
MHe 100 = He 100

From data given

Vm%He :\/%:3'16 and n%He :0-%.1:

Therefore the percentage of escaped He atoms is

MHe ,100-_ 516

— x100 = 25.98% ~ 26%
NHe +NA 3.16+9
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