
 
TKP Exam Solutions 2007 

Section A 
 
A1)  The zeroth law of thermodynamics states that if bodies A and B are each 
separately in thermal equilibrium with a third body C then they must be in thermal 
equilibrium with each other. 
 
A2) The empirical temperature scale is defined as  
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Where R is the resistance at the unknown temperature and RTP is the resistance at the 
triple point of water. 
 
A3) The ideal gas temperature scale is defined as 
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Where the limit PTP → 0 is taken to more closely approximate an ideal gas by 
reducing the effects of intermolecular interactions as the gas becomes dilute. 
 
A4) The mean kinetic energy of a molecule in a gas at temperature T is given by; 
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The kinetic energy of a CO2 molecule is given as  
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Similarly for N2 as they are at the same temperature they will have the same average 
kinetic energy and  
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A5) WdQddU +=  and the conventions used are that heat flowing into the system 
is positive and work done on the system is positive. 
A6) The work done on a gas is equal to the area between the volume axis and the 
curve representing the process being positive when traversed from right to left ie. 
when compressing the gas. 
 
A7) The equation of state of an ideal gas is  
 
  nRTPV =  
 
Where P, V and T are the pressure, volume and temperature respectively and n is the 
number of moles of the gas.  
In an isothermal process there will be no change in internal energy. 
 
A8) In an isobaric process dP = 0 
 in an isochoric process dV = 0 and  
 in an adiabatic process 0=Qd  
 
A9) During the process a → b, JQ 150+=∆ , JW 60−=∆ from the first law 
 
  JJJU ba 9060150 =−=→∆  
 
A10) During the process b → c, JQ 108−=∆ , JW 0=∆ from the first law 
 
  JJJU cb 1080108 −=−−=→∆  
 
A11) During the adiabatic process c → a the change in internal energy must be 
 
  JJJUUU accbba 1810890 −=−=−=+ →→→ ∆∆∆  
 
It is adiabatic so JQ 0=∆  and therefore using the first law 
 
  JUQUW acacac 18==−= →→→ ∆∆∆∆  
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A12) we are given 
 

   PVU
2
7

=  

 
The process is adiabatic and therefore 0=Qd  
 

( ) PdVVdPPdVdU −=+=
2
7  

rearranging 
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After integration 

    constPlnVln +−=
7
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( ) constnRTVVPVPVPV ==== −− 117
9 γγγ  QED 
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A13) 
V

P
C
C

=γ  where CP and CV are the heat capacities of the gas at constant 

pressure and volume respectively. 
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Section B 
 
B1) (a) 
 

i) The Clausius statement of the second law is 
 
It is impossible to devise a device that , when operating in a cycle, produces no other 
effect than the transfer of heat from a cooler to a hotter body (reservoir). 
 

ii) The heat pump has a figure of merit defined as useful output, Q1, 
divided by input required to achieve the desired effect, W. 
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Therefore 
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ii) The process 1 → 2 is isochoric and therefore no work is done leaving 
the first law as 

 
2121 →→ = QU ∆∆  

 

We are given PVU
2
5

=  

 

    ( ) 12111221 2
5 QQVPPdU ==−= →→ ∆  

 
  The process 3 → 1 is isobaric and therefore )VV(PW 13113 −=→∆  

whilst ( 13113 2
5 PVVU −=→∆ )  and from the first law 

 

   ( ) ( 131131131313 2
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iii) We can define the engine efficiency as useful work out divided by heat 

in. 
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In this definition of efficiency the moduli of the heats are required and Q2 as 
calculated in part ii) is a negative number (heat is expelled) and we therefore need 
to take the positive modulus in this case. Q1 as calculated is positive in any case. 
 
Thus using results from part ii) 
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The pressures and volumes at points 2 and 3 are related through the adiabatic rule 
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To obtain V3 in terms of V1 in the equation for the efficiency 
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 (c) 
 

i) To find p we first need P2 which we find by noting  and 31 VV =
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ii) We have found the engine efficiency in part ii in terms of 
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iii) To calculate the work done in one cycle we need to know Q1 

 

 

( ) ( ) 00010100111112552
2
5 5

1121 ....VPPQ ×××−×=−=  

 
 J.Q 7756081 =  

 
Now we use the efficiency to calculate W 
 
    J...QW E 382904770776081 =×=×= η  
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B2) (a) 
 

i) The entropy form of the second law of thermodynamics for an isolated 
system  is given by the inequality 

 
0≥S∆  

 
where the equality applies for a reversible process. 
 

ii) Boltzmann conjectured that the macroscopic entropy S was related to 
the number of accessible microstates available to make up that macrostate. He 
suggested that  
 
Entropy is a measure of the MICROSCOPIC probability of finding the system 
under study in a given MACROSCOPIC equilibrium state. 
 
 (b) 
 

i) The final state of the water will be 3kg of ice at -5 oC or 268.15 K 
 
ii) The calculation is to be carried out in 3 stages, the cooling from 15 oC 

(288.15 K) to 0 oC (273.15 K). The change of state at 273.15 K from 
water to ice and the final cooling of the ice from 273.15 K to 268.15 K.  

 
1. In cooling from 288.15 K to 273.15 K we need to calculate  
 

∫==∫
15273

15288

15273

15288
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as an integral with the temperature changing. We do this by finding dQ in terms of 
dT using the assumption of constant pressure 

 
  dTmCdQ P=  
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2. In changing state from water to ice at constant temperature we need to 
calculate the total latent heat and divide this by the temperature 
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3. In cooling from 273.15 to 268.15 K the ice will change entropy by an 
amount  

 
 

211315268
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The total entropy change is then the sum of these three 
 

120506116971104199 −−=−−−= JK,.STotal∆  

 
 
 

iii) The surrounding environment remains at the ambient temperature and all 
that is required is to find the heat input/output from part ii) in order to 
calculate ∆S 

 
1. For the cooling down of the water there will be heat added to the environment that 
is lost from the water 
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2. For the phase change water to ice again heat is added to the environment 
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3. For the cooling of the ice 

 

J,JK..kg
.
.lnmCdTmCQ ice

P
.

.
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13137469726382704 −+=++= JK,,,STotal

tenvironmen∆  
 

 8



iv) The second law requires that the total entropy change of an isolated system 
is greater than (or equal to in the case of reversible changes) zero. 

 
 
The sum total of the entropy changes here ia 
 
    ( ) 11 807532050674313 −− +=−= JK,JKSUniverse∆  
 
The overall change in the entropy is positive as required by the second law. It can be 
noted that none of the three processes is reversible as water will not warm to 15 oC 
when sitting outside in a garden at temperature -5 0C. Ice will not spontaneously melt 
in theses circumstances and a block of ice at -5 oC will not warm up to 0 oC. 
 
 
(c) 
 

i) Beginning with the thermodynamic identity 
 
 

PdVTdSdU −=  
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We are given  
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ii)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2V 
V V 

 
In the Joule free expansion gas is initially confined to a reduced volume in a container 
with walls that are both rigid & adiabatic by a secondary partition as in LHS of 
diagram. The expansion occurs without heat flow when this partition is broken 
allowing the gas to expand freely into the previously empty volume as in RHS of 
diagram. 
 
For an ideal gas the internal energy remains constant as there is no work done (rigid 
walls) and no heat flow (adiabatic walls) 0=+= WQU ∆∆∆ . This implies no 
temperature change between initial and final states. 
 

 
iii) If an ideal gas undergoes such a free expansion we may calculate the 

change in entropy from 
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Where the fact that ∆T = 0 has been used. 
 
This is consistent with the Boltzmann interpretation of entropy as a measure of the 
number of accessible microstates that give rise to the macrostate. We have a slight 
increase in entropy after the expansion and Boltzmann would explain this as due to 
the increased number of positions available to the molecules of the gas in the larger 
volume. Many of the increased number of configurations (microstates) available to 
the N molecules would give rise to identical macrostates giving an increase in entropy 
according to Boltzmann’s conjecture. 
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B3) a) 
 
  i) TSUF −=  
 
   SdTTdSdUdF −−=   
 
Using the thermodynamic identity PdVTdSdU −=  allows us to write this 
 

SdTPdVdF −−=  
 
The natural variables of F are then V and T which means we can also write the 
infinitesimal for F as 
 

    dT
T
FdV

V
FdF

VT
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  

 
This allows the identification 
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Giving the Maxwell relation 
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   PVTSUG +−=  
 
   VdPPdVSdTTdSdUdG ++−−=  
 
Using the thermodynamic identity 
 
   VdPSdTdG +−=  
 
We identify the natural variables of G as T and P  and can therefore also write the 
infinitesimal dG as 
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Giving the Maxwell relation 
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ii) Using the thermodynamic identity at constant V 
 
  TdSPdVTdSdU =−=  
 
Therefore 
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iii) We may write using the thermodynamic identity 
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Using the previously obtained Maxwell relation 
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iv) The equation of state given is ( ) nRTnbV
V
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⎟
⎠
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We can use the expression P
T
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V
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⎠
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We also have 
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Integrating these two equations wrt to dV and dT respectively 

 

  )T(g
V

an)V,T(U +−=
2

  )V(fnRT)V,T(U +=
2
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The only consistent solution is  

 

  const
V

annRT)V,T(U +−=
2

2
3  

 

The first term on the RHS is the kinetic energy and the second term is the potential 

energy of intermolecular interaction. At T = 0 the first term, the KE = 0 and at infinite 

volume the second term, PE = 0 and therefore U should be zero at T = 0, ∞→V  

implying that the const =- 0. 

  
V

annRT)V,T(U
2

2
3

−=  

Is the required expression for the internal energy of the Van der Waals gas 
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(b) 
 
 

C

TP 

P

P-T diagram for simple substance 

T

Sol

Liq

Vap

vapourisation

melting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TP is the triple point being the pressure and temperature at which the solid liquid and 
vapour phases coexist. 
 
C is the critical point beyond which (at higher temperatures and pressures) the vapour 
and liquid phases have the same density and become indistinguishable. 
 
(c) 
 
Given the Clausius Clapeyron equation for the liquid-vapour co-existence curve 

   ( )LV

LV

vvT
l

dT
dP

−
=  

 
We can make the approximation the molar volume of the vapour is much 
greater than that of the liquid. 

LV vv >>

 
Also as it is an ideal gas 
 

   
P

RTvV =  

 
Giving an approximate form of the liquid vapour Clausius Clapeyron equation 
 

2RT
Pl

dT
dP LV

=  

Re-arranging 
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2RT
dTl

P
dP LV=  

 
Integrating this equation 
 

const
RT

lPln LV +−=
1

 

 
Where P and T are any pair of points lying on the coexistence curve 
 

const
RT

lPln LV +−=
1

1
1

 

 

const
RT

lPln LV +−=
0

0
1

 

 
We subtract one from the other giving 
 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=
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1 11
TTR

l
P
Pln

LV
   QED 
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B4) a) Cavity radiation is the radiation contained within a cavity that is at the 
same temperature as the cavity walls ie. the radiation is in thermal equilibrium with 
the cavity. 
Its temperature is determined by the temperature T of the cavity walls and the volume 
of the cavity V. 
 

i) We are given 44 T
c

)T(u σ
=  and the equation of state  PVU 3=

 
Writing  

  443 T
c

P
V
U)T(u σ

===   
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3
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×
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×
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ii) For a photon gas at 1 Atm 
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8

8
4 1000410011
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4
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×

×
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⎠
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⎜
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K.T 51041 ×=  
 
 
 b) 
Starting with the thermodynamic identity 
 
    PdVTdSdU −=  

 

V)T(u)T(U =   ⇒ ( ) PdVTdSV)T(uddU −==  

 

We can use the equation of state  rewritten as uP
3
1

=  

 

   ( ) dV)T(uTdSV)T(ud
3
1

−=  
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Rearranging this by expanding d(u(T)V) using the product and the chain rules. 

 

 ( ) dV)T(uVdT)T(udV)T(uTdS /
3
1

++=    ⎟
⎠
⎞

⎜
⎝
⎛ =
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T
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⎛
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We have been given previously 
 

443 T
c

P
V
U)T(u σ

===  

 
Allowing the expression for dS to be rewritten as 
 

dVT
c

VdTT
c

dS 32
3

1616 σσ
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We now know that S has T and V as natural variables and can write 
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V
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⎠
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⎞

⎜
⎝
⎛
∂
∂

=  

 
By inspection of these two equations it is the case that 
 

VT
cT

S

V

216σ
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂  

Integrating this wrt T 
 

)V(fVT
c

S += 3
3

16σ  

 

Also by inspection 

 

3
3

16 T
cV

S

T

σ
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂  

 

Integrating this  wrt V 
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)T(gVT
c

S += 3
3

16σ  

 

The only consistent solution to these two forms of S is 

    constVT
c

S += 3
3

16σ    QED 

 
If the photon gas is expanded reversibly and adiabatically there is no change in S and 
therefore 
 

1
3
22

3
21

3
1 64VTVTVT ==  ⇒  ⇒ 3

2
3

1 64TT = 12 250 T.T =  
 
 c) 
The mean free path in a gas is defined by the mean distance travelled by a molecule in 
a gas between collisions. 
 

i) In the equation 
σ

λ
n
1

=  the mean free path is λ, n is the number density of 

molecules and σ is an area called the collision cross section where we 
imagine a disc of area σ attached to a molecule in motion increasing the 
probability that the molecule may collide with a neighbour. 

 
ii) Effusion describes the process whereby molecules or any particle in 

Brownian motion confined to a box escape from that box via a hole whose 
diameter is less than a mean free path. 

 
iii) The number of molecules escaping will be determined by the rate of 

collision of particles with the holes. This is given by the particle flux 
multiplied by the mean speed 

 

    
m

TknvnN B
π

8
4
1

4
1

=∝  

 
The percentage of escaped He atoms is given by 
 

100100 ×
+

=×
+

A
A

He
He

He
He

AHe

He

m
n

m
n

m
n

nn
n  

 
 
 

100100 ×
+

=×
+ HeAAHe

AHe

AHe

He
mnmn

mn
nn

n  
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Now dividing top and bottom by Hem  
 

100100 ×
+

=×
+

AHe
AHe

He
AHe

AHe

He

nm
mn

m
mn

nn
n  

 
Divide top and bottom by nHe
 

100100 ×
+

=×
+

He
A

He
A

He
A

AHe

He

n
n

m
m

m
m

nn
n  

 
From data given 
 

1634
40 .m

m
He

A ==   and  ` 910
90 == .
.

n
n

He
A  

 
Therefore the percentage of escaped He atoms is 
 

%%.
.

.
nn

n

AHe

He 269825100
9163

163100 ≈=×
+

=×
+
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