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SECTION A:

Answer ALL questions in Section A.

A1 State the Zeroth Law of Thermodynamics. [2]
A2 Explain briefly how an empirical temperature scale is conventionally defined using

an electrical resistance as the thermometric property. [2]
A3 Explain briefly how the ideal gas temperature scale is defined. [2]

A4 Molecules of CO2 (molecular weight 44 amu) in the Martian atmosphere have
a mean kinetic energy of 0.0285 eV. Assuming the atmosphere to be in thermal
equilibrium, estimate its ideal gas temperature. Calculate the root mean squared
speed of the CO2 molecules. What is the root mean squared speed of the nitrogen
molecules in this atmosphere (N2, molecular weight 28 amu)? [5]

A5 State the First Law of Thermodynamics for a system undergoing an infinitesimal
change. Explain clearly any notations or conventions used. [5]

A6 How is work done on a gas during a reversible process related to an area in a
P − V diagram? [2]

A7 State the equation of state for an ideal gas. What is the change in internal
energy of an ideal gas during an isothermal process? [2]

A8 Define what is meant respectively by an isobaric process, an isochoric process
and an adiabatic process. [3]

A9 A system consists of gas contained in a cylinder fitted with a frictionless piston.
The gas is taken between states a, b, c as shown on the P − V diagram below
where the process c → a is an adiabatic process.

P

V

c

a b

During the process a → b, 150 J of heat flow into the gas which does 60 J of work
on its surroundings. What is the internal energy change of the gas during a → b?

[3]

A10 During the process b → c, the gas loses 108 J of heat to its surroundings. What
is the internal energy change of the gas during b → c? [3]

A11 What is the work done on the gas during the adiabatic process c → a? [4]
A12 For a particular ideal diatomic gas the internal energy is given by U = 7

2
PV .

Using the infinitesimal form of the First Law, or otherwise, show that during an
adiabatic change the gas will obey a relation of the form

PV γ = constant ,

and derive the value of the constant γ. [5]

A13 How is the adiabatic constant γ related to the heat capacities of the gas? [2]
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SECTION B:

Answer TWO questions only from this Section.

B1 (a)
i) State the Second Law of Thermodynamics in the form due to Clausius.

[3]
ii) A heat pump takes in work W , removes heat Q2 from a cold source and delivers

heat Q1 to a higher temperature reservoir. Give the definition of the figure of
merit for the heat pump and express it entirely in terms of the heat flows Q1 and
Q2.

[3]
iii) An ideal heat pump has a figure of merit ηHP = 10. It removes heat from a low

temperature source at the rate of 9 kW. What is the rate of work required to
drive the heat pump and what is the rate at which heat is delivered to the high
temperature output reservoir? [4]

(b) An engine is constructed with one mole of an ideal diatomic gas as the working
substance for which the internal energy is U = 5

2
PV and the adiabatic constant γ has

the value γ = 7

5
. It operates reversibly in a cycle 1 → 2 → 3 → 1. The process 1 → 2

is an isochoric process at volume V1 during which the pressure increases from P1 to
P2 and heat Q1 is absorbed. The process 2 → 3 is an adiabatic expansion back to
the initial pressure P1 and volume V3. The process 3 → 1 is an isobaric compression
during which heat Q2 is ejected and the working substance returns to its initial state.

i) Sketch the engine cycle in a P − V diagram. [3]
ii) By applying the First Law to the processes 1 → 2 and 3 → 1, obtain expressions

for the heat flows Q1 and Q2 in terms of the pressures P1 and P2 and the volumes
V1, V3 corresponding respectively to the states 1, 2, 3. [4]

iii) Show that the efficiency of this engine can be expressed solely in terms of the
pressure ratio p = P2/P1 as

ηE = 1 −
7

5

p5/7 − 1

p − 1
.

[5]

(c) The engine in (b) is designed so that V1 = 0.0001 m3, V3 = 0.001 m3, and P1 = 1 atm.

i) Calculate the pressure ratio p. [2]
ii) Calculate the engine efficiency ηE . [2]

iii) Calculate the work produced by this engine in one cycle. [4]
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B2 (a)
i) State the entropy form of the Second law of Thermodynamics for thermally

isolated systems. [3]

ii) Describe briefly Boltzmann’s microscopic interpretation of the entropy. [3]

(b) A bucket containing 3 kg of water at a temperature of 15 ◦C is placed outside in
winter on a cold day when the ambient temperature is −5 ◦C.
i) Ignoring evaporation, describe the final equilibrium state. [1]

ii) Using information from the data sheet and neglecting evaporation, calculate the
entropy change of the water between its initial state and its final equilibrium
state.

[6]
iii) Calculate the entropy change of the surrounding environment. [3]

iv) Stating appropriate criteria, show whether or not the Second Law of Thermo-
dynamics is obeyed in the processes above. [2]

(c) The thermodynamic identity for a fluid system has the form dU = TdS − PdV .

i) A diatomic ideal gas has internal energy U = 5

2
PV and obeys the equation of

state PV = NkBT . It undergoes a process taking it from initial equilibrium state
T1, V1 to a final equilibrium state T2, V2. Use the thermodynamic identity to
show that the entropy change of the gas may be expressed as

[5]

∆S = S2 − S1 =
5

2
NkB ln

(

T2

T1

)

+ NkB ln

(

V2

V1

)

.

ii) Describe briefly the Joule free expansion experiment. What function of state is
constant during such a process? [3]

iii) The ideal gas in i) undergoes a Joule free expansion with final volume V2 = 3V1.
What is the entropy change of the gas? Explain how this entropy change is
consistent with Boltzmann’s interpretation in (a)(ii) above.

[4]

Please turn to the next page

4



TKP

B3 (a) For a simple fluid, the thermodynamic identity has the form dU = TdS − PdV .

i) The Helmholtz free energy F and the Gibbs function G for this system are defined
by F = U−TS and G = U−TS+PV . Using the thermodynamic identity to evaluate
the infinitesimal changes dF and dG, derive the following Maxwell relations [6]

(

∂S

∂V

)

T

=

(

∂P

∂T

)

V

,

(

∂S

∂P

)

T

= −

(

∂V

∂T

)

P

.

ii) Use the thermodynamic identity to show that the heat capacity at constant
volume of the system, CV , can be expressed as [2]

CV =

(

∂U

∂T

)

V

= T

(

∂S

∂T

)

V

.

iii) Use the thermodynamic identity and an appropriate Maxwell relation to show
that

[3]

(

∂U

∂V

)

T

= T

(

∂P

∂T

)

V

− P .

iv) For n moles of a monatomic van der Waals gas the heat capacity CV is the same
as for an ideal gas

CV =

(

∂U

∂T

)

V

=
3

2
nR ,

while the equation of state is

(P +
n2a

V 2
)(V − nb) = nRT ,

where a and b are constants. Derive an expression for the internal energy U(T, V )
of the van der Waals gas. [7]

(b) Simple substances can exist in three phases. Sketch the phase diagram of such
a material in a P − T plot, labelling the vapour, liquid and solid phase regions.
Explain briefly what are the critical point and the triple point and label them on
your diagram.

[6]

(c) The Clausius-Clapeyron equation for the slope of the liquid-vapour co-existence
curve may be written as

dP

dT
=

`LV

T (vV − vL)
,

where the superscripts L and V refer to liquid and vapour phases respectively, v
denotes the volume per mole of material and `LV is the latent heat of vaporisation
per mole.

i) Treating the vapour as an ideal gas, assuming that `LV is constant and that
vV >> vL, show that for two points P0, T0 and P1, T1 on the co-existence curve [6]

ln

(

P1

P0

)

= −
`LV

R

(

1

T1

−
1

T0

)

.
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B4 (a)

Explain briefly what is meant by cavity radiation. What determines its temperature?
[2]

Cavity radiation can be regarded as a photon gas, a P −V −T system whose internal
energy is related to its pressure and volume by U = 3PV . Moreover, the energy
density, u = U/V , depends only on the temperature of the gas as

u(T ) =
4σ

c
T 4 ,

where σ and c are universal constants, given on the data sheet.

i) Calculate the pressure of the cosmic background radiation whose temperature is
about 2.7 K. [3]

ii) Calculate the temperature of a photon gas whose pressure is 1 atm. [3]

(b) Using the thermodynamic identity, dU = TdS−PdV , and the information in (a), prove
that the entropy of cavity radiation has the form [8]

S =
16σ

3c
T 3V + constant .

A photon gas at temperature T1 and volume V1 is expanded reversibly and adiabat-
ically to volume V2 = 64 V1 and final temperature T2. What is the final temperature
T2? [2]

(c) Define the mean free path λ of a molecule in a gas. [1]
i) The mean free path may be estimated approximately by the expression

λ ≈
1

nσ
.

Explain what n and σ are. [2]

ii) Explain what is meant by effusion of a gas through a small aperture. [2]

iii) A gas in equilibrium at temperature T consists of 10% helium atoms (atomic
weight 4 amu) and 90% argon atoms (atomic weight 40 amu). The mixture is
held in a container with a porous wall surrounded by an evacuated chamber.
Assuming that effusion occurs through the porous wall, estimate the percentage
of helium atoms in the escaped gas mixture in the outside chamber. [7]

d You may use the following without proof.

In a gas in equilibrium the number of molecules per second striking unit area of a
bounding wall is given by 1

4
nv. The mean speed v is given as v =

√

8kBT/πm. c

END OF EXAM - R. B. JONES
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DATA SHEET

1 amu = 1.66× 10−27 kg

1 eV = 1.60× 10−19 J

NA = Avogadro number = 6.02× 1023 mol−1

c = Speed of light in vacuum = 3.00× 108 m s−1

kB = Boltzmann constant = 1.38× 10−23 J K−1 = 8.63× 10−5 eV K−1

R = Gas constant = 8.31 J mol−1 K−1

Ts = Ice point of water = 273.15 K

Ps = Atmospheric pressure = 1 atm = 1.01× 105 Pa

σ = Stefan− Boltzmann constant = 5.67× 10−8 W m−2 K−4

cP = Specific heat of water at constant pressure

= 4.2× 103 J kg−1 K−1

cice
P = Specific heat of ice at constant pressure = 2.1 × 103 J kg−1 K−1

`SL = Latent heat of melting ice = 3.33× 105 J kg−1

`LV = Latent heat of evaporating water = 2.26× 106 J kg−1
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