TKP Revision Notes

NB. The following is a review of the seven sets of lecture notes that
are available on the web. Those full notes take up 259 pages and
cover the course material in great detail. This review is
supplementary to the full notes and should be used with those notes,
the weekly exercises and their solutions (also available on the web)
for revision purposes.

1. Introduction & Temperature.

Internal Energy, Zeroth law of thermodynamics, Temperature scales and Gas
scale. Functions of state, state variables. Ideal gas system, equation of state.

Equations of state and internal energy
For an ideal monatomic gas it is relatively straightforward to demonstrate that the
internal energy, U is related to pressure and volume by;

pv = 2y u=3py
3 2

Internal energy for an ideal gas (no potential energy interactions) is the sum of all of the
Kinetic energies of the constituent atoms

N
U= X Emv%
n=02

From equipartition of energy considerations, for a single atom the average kinetic
energy is

KE = Lmy? = 3kgT
2 2

Recall % kgT per degree of freedom

For a collection of N atoms

3
U =—NkgT
2 B

PV = NKkgT =nRT

In the above n is the number of moles of a substance forming the system being
described.

The above include several equations of state. The EoS specifies the relation between
state_variables or functions of state such as P, V and T of which (any) two are
independent variables the other being a dependent variable.

It is to be noted that if a process occurs where the temperature remains constant

throughout the process then dU = % NkgdT = %anT =0 ie. if the temperature is held

constant throughout any change in state (change in P or V in the gas paradigm) then
there is no change in internal energy.



i) For an isothermal process the internal energy remains unchanged.

i) The change in internal energy in going from one equilibrium state to
another is a constant irrespective of how the change in state was
effected. This is because the internal energy is a state variable.

iii) If a system is taken around a closed cycle there is no change in
internal energy. This also follows from the fact that the internal energy
is a state variable.

The Zeroth Law
The temperature introduced above is the absolute temperature and needs careful
definition beginning with the zeroth law.

The zeroth law of thermodynamics is simply stated;
If system A is in equilibrium with system B and system A is in equilibrium with
system C then it follows that system B is in equilibrium with system C.

This is important for thermometry as temperature is defined for thermal equilibrium and
system A would be the thermometer in the above telling us whether or not system A and
C have a common temperature.

Thermometry
Empirical temperature scales involve an observable that is different for different
equilibrium states

Ty = 273.16(LJ
X1p

X is a thermometric property (there are many) and Xvp is the value of that property at a
fixed point (usually the triple point of water). The value 273.16 is there for historical
reasons that sought to align the Kelvin scale (above) with the Celsius scale.

An ideal gas provides a perfect thermometric property as we see by the equation of
state. Either pressure or volume is held constant and the other varies linearly with
temperature if the gas is ideal. It is easiest to hold volume constant and a constant
volume gas thermometer gives temeprature by measuring P and using this as the
thermometric property in the previous equation

P
Toas = 273.16{—]
Prp

The gas will approximate more closely an ideal gas as it becomes more dilute reducing
any potential interactions and so the accurate definition of the gas temperature is

Teas = 273.16 limit (ij
Pre -0\ Prp

The Celsius scale has two fixed points, the boiling and freezing points of water defined
as 100 C and 0 C respectively. The other requirement of the Celsius scale (that follows
directly) is that there are 100 subdivisions between the ice and boiling points.

Ty (OC)=1OO{&j

steam — X ice



In defining the Kelvin (absolute) scale using the gas thermometer it was decided to keep
100 degrees between the ice and boiling points. This lead to the appearance of the
number 273.16.

2. Partial Differentials.

Chain rule, reciprocal and cyclical relations, perfect differentials.
In thermodynamics we are dealing with systems that are described by several
independent variables and dependent variables. Eg. for a gas we have the
variables/physical quantities P, V and T and an equation of state describing the
relationship amongst them. Two of these will be independent variables whilst the other
will be a dependent variable depending on the problem we are trying to solve. Similarly
we have U and many other variables. Other systems will have other variables and
equations of state describing the relationship amongst them. To work mathematically in
this circumstance we need to use the language of partial differentials and its rules and
relations fully described in the coursenotes.
The chain rule.
If z = z(x, y) is a function which depends on two independent variables, x and y

dz(x,y) dz dy

dx dy dx

The reciprocal relation.
Eg, When there are three variables, P, V, T to be considered

(ﬂj __1 (ﬂ) __1 (ﬂj __1
B A A
aT )y T Jp T
Taking the ideal gas equation of state for 1 mole PV =RT
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etc.

The cyclical relation.
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An easy way to remember this relation is to take the following row of variables

/ E/

Taking the ideal gas equation of state for 1 mole PV = RT
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Perfect Differentials.

A differential is said to be perfect if when carrying out a path integral from an initial to
final state it’s value is independent of path. A test for the perfect differential as follows;
Suppose z = z(X, y) is a function which depends on two independent variables, x and y.

dz=(gj dx+(@J dy
OX y o )y

dz =a(x,y)dx +b(x,y)dy
For dz to be a perfect differential requires by definition that

0°1 B 0°1

O0yox  Oxoy
implying

oa(x,y) ob(x,y)

oy OX

If

oa db

—_ i —_—
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Then the differential is imperfect and the integral of dz depends on the path. z is not a function
of state.
Example; An ideal monatomic gas

3

U=>PV
2
(i) duzﬁyj dP+(@j dV:E(VdP+PdV)
P )\ oV Jp 2
a:EV b:EP
2 2
fa_3_0b_3
N 2 P 2

dU is a perfect differential and U is a state function
(i) dwW = -PdV

First law dQ = dU —aw :g(VdP+PdV)+ PdV :ngP +%Pdv

a:EV sz
2 2

P



oa_3_ 0ob_5
ov 2 oP 2
dQ is not a perfect differential and Q is not a state function.
3. Heat & First Law.

Work, heat and first law. Isothermal and adiabatic processes. Calculations of heat
and work flows on a PV indicator diagram.

Work

An ideal gas (later a real gas) is taken as the paradigm that illustrates much of the course
and the operations of thermodynamics and its laws. We have internal energy and the
equation of state in various forms already and now need to define work to continue. To
define work we consider a gas being compressed or expanded. With an infinitesimal
change in volume it is straightforward to show tah the infinitesimal work €W is given

by

dW = —PdV

W is not a state variable and and as such the work done in expanding or compressing a
gas depends on how exactly the_process is carried out and not on the ammount of
expansion/compression hence the line through the d of dW to remind us of this. dW is
an example of an imperfect differential.

Sign convention;

Work done on the gas, compression, is counted as positive.

Work done by the gas, expansion, is counted as negative.

Noting the negative sign in the equation for @W we can see that this sign convention is
reflected there.

The course focussed on four primary processes involving expansion/compression;
) Isochoric processes where volume remained constant while P and T
were allowed to vary.

i) Isobaric processes where pressure remained constant while V and T
were allowed to vary.

iii) Isothermal processes where temperature remained constant while V
and P were allowed to vary.

iv) Adiabatic processes where P, VV and T were allowed to vary but the
system was isolated and there was no energy (heat ) allowed to enter or leave during the
process.

These processes were dealt with in detail in lectures and in the coursenotes using PV
f Vs

diagrams and finding AW = [ éW =— [ PdV =0
i v,



The most important step in carrying out such integrals for the four processes is to write
the pressure P as a function of V something that differs for each process. This is done in
detail in the coursenotes but is as follows.

) Isochoric processes; dV = 0 and
Vs
AW =— [ PdV =0
Vi
i) Isobaric processes dP=0 and
Vi Vi
AW =— [ PAV =—P [dV =PV -V;)
Vi Vi
iii) Isothermal processes dT =0

Using the equation of state and the fact that T is a constant, P = n\F;_T and

Vi Viav Vi
AW =— [ PdV =—nRT | - = —nRT In{V¢ —V;)=-nRT In—
v, v, V Vi
I I
Iv) Adiabatic processes need the concept of heat in order to be addressed

along with the first law, dU =dQ + dW =dQ — PdV
It will be shown later that in an adiabatic process where €¢Q =0

PV7” = const

Where vy is the ratio of specific heat capacities y = CV

o and will depend on whether
the gas is monatomic, diatomic etc.

We return to this later but for now

Vi Vi
AW =~ [ PdV =—const | v _ const x ;/(\/f_(7+1) —Vi_(7+1))
7 v; V7

AW = 7PiVi76/f_(7+l) _Vi—(7+1))

First Law of Thermodynamics

Sticking with the paradigm of the ideal gas. The work done on/by a gas depends on the
details of the process and not on the initial and final values of the state variables (eg P
and V). But if we go from any equilibrium state (P;, Vi) to any other (Ps ,Vs) in any
process other than an isothermal process the internal energy will change by an amount

AU =%(vaf ~PV;)

This depends only on the initial and final states and is independent of the process
because U is a state variable. However, the work done, AW , will differ depending on
the process therefore we cannot write

AU =AW
as a general statement of energy conservation. The concept of heat is thus required and
introduced into physics and The First Law returns energy balance to thermodynamics by
taking into account the heat evolved in a process.

AU = AQ + AW dU = 6Q + dW
6



Where AQ is the heat absorbed or expelled by the system and as AW is path dependent
then so to must AQ be.

Heat

To find the heat absorbed or expelled by the system in any process we must use the First
Law and calculations of AU and AW for the process of interest and then use the First
Law AQ = AU — AW .

Sign convention;

Heat absorbed the gas is counted as positive.

Heat expelled by the gas is counted as negative.

Adiabatic processes
In an adiabatic process there is no heat introduced to or extracted from the system under
consideration, ie.

AQ =0 = AU=AW and dU=6W =  dU=-PdV

But the equation of state U :gPV = du = %(Pdv +VdP)=—-Pdv  for an
adiabatic process

3vdp = -2 pav
2 2

5
tap 5Vfav P (Vi)3
[—=->]— = Inf — [+ In| — = const

PtV =RV” =const = PV’

For any equilibrium state (P,V) along a path on a PV diagram that represents an
adiabatic process. y = % for a monatomic gas where the state equation U =§PV

applies. Using the equation of state PV =nRT the adiabatic rule can be expressed as

V71 = const
or as

PL7T7 = const

Diatomic gases will have a slightly modified equation of state because there are more
degrees of freedom (ways in which energy may be taken up) available to those
molecules.

Heat Capacities
The introduction/abstraction of an ammount of heat, AQ , into/from a system will be

accompanied by a temperature rise/drop, AT and a quantity, the heat capacity may be
defined as




C = limit AQ = L)
AT >0AT  dT

It is defined when the change in temperature is a reversible one, that is to say at each
intermediate temperature the new state is an equilibrium state obeying the state
equation. In this case the input or output of heat will always raise or lower the
temperature by the same amount. The value of the heat capacity will depend on the type
of process in which the heat was transferred in one further way
Constant volume heat capacity when the volume of the system is held constant

Cy = limit ﬂ
AT —>0AT

V =const

At constant volume the First Law gives dU =dQ — PdV =dQ = AU =AQ
And in terms of state variables only we may express the constant volume heat capacity

as,
V =const aT \Y 2

Where the equation of state for a monatomic gas, U = g PV = %nRT , Was used.

.. A
Cy = I|m|t—U
AT >0 AT

Constant pressure heat capacity is defined when the heat is transferred whilst holding
the pressure constant

. . A
Cp = I|m|t—Q
AT >0 AT |p_const

Tp proceed further a new state function, Enthalpy is defined

H=U+PV
and
dH =dU + PdV +VdP =dU + PdV =dQ

Allowing a definition of the heat capacity at constant pressure in terms of state variables

alone
P=const P

H=U<+PV =PV 4PV =2pV = 2nRT
2 2 2

o[ H) i
oT Jp 2

A ..
CP: I|m|t@: ||m|t£
AT >0 AT AT -0 AT

We see that y = A = C%v from the adiabatic law.

It should be noted that all of the above only applies to a monatomic gas, (no potential,

rotational or vibrational contributions to U) where U :gPV = gnRT .

Diatomic gases

Rigid diatomic gases have extra degrees of freedom as the molecule may rotate in two
mutually orthoganal directions about the axis joining the atoms. This changes the
equation of state




U:EnRT:EPV = H=U+PV=ZPV
2 2 2

With a change to the expressions for the heat capacities

CV :(a_uj —EnR

a2
and
oT Jp 2

The adiabatic law becomes
C
7 7 P
PfoA = P,Vié = const = PV %V

Non-Rigid diatomic gases have two further degrees of freedom as they may vibrate
about the axis joining the atoms as well as rotate. The two extra degrees of freedom
represent kinetic energy of vibration and potential energy

U='nrT =Lpv =  H=U+PV=2py
2 2 2

CV Z(a—uj :ZnR
ot )y 2

oT Jp 2

9 9 C%
PsV{7 =RV; " =const=PV / ™V

and

The adiabatic law becomes

The Van der Waals gas
The best representation of a non ideal gas (one with potential interactions between the
atoms/molecules is with the equation of state;

2
(P +”—2""J(v —nb)=nRT

Y
The pressure is modified with a term to account for these interactions and the volume
term is modified to account for the fact that in a non-dilute gas the atoms themselves
take up a volume thus reducing the free volume for the atoms of the system to move
freely in.

The internal energy of the Van der Waals gas may be found as

3 n2a

Uygw =—=nRT -—=
vaw =5 Y
The heat capacity at constant volume

Cy (VAW ) = (aUa%j _3mr
\Y

An adiabatic law for the VVan der Waals gas as

3
T %2 (V —nb) = const
NB This is done in detail in the coursenotes.

9



4. Engines.

Heat Engine, Heat Pump and Refrigerator. Simple schematic diagrams with heat
and work flows. Efficiency. Carnot engine.

In taking a fluid around a closed cycle on a PV diagram

(i The internal energy is unchanged, AU =0

(i) The work done on/by the system depends on the details of the path taken. In a
clockwise cycle work is done by the system whereas the same cycle counter
clockwise results in work done on the system.

(iti)  The heat flow into/from the system depends on the details of the path taken. In
a clockwise cycle heat flows into the system whereas the same cycle counter
clockwise results in heat flowing from the system.

(iv) From the first law, AQ = -AW

Ta

Qu

Q2

T2

Engine Refrigerator Heat
Pump

Heat Engines and Efficiencies
The efficiency of either an engine, refrigerator or heat pump may be defined in twords
as

What we get out

= efficiency = figure of merit=
7 y="g What we put in

i Engine: _ What we want out W
’ TE =" What we put in  Q

From the diagram and the firstlaw = W =Q; — Q>

10



W -, @

e Q Q Q

What we want out _ Qp
What we put in W

i) Refrigerator; 7g =

From the diagram and the firstlaw = W =Q; — Q>

77R=&= % __1
W oQ-Q @,
Q2

What we want out _ Qp
What we put in W

1) Heat Pump; 7npp =

W Q-Q Q0 7
QL
Ideal Engines and Carnot Cycle
Looking at the efficiency of an engine 7g =1—% we answer the question “what form
1

of engine will give the greatest efficiency”?

We need a cycle that will minimise the heat rejected to the low temperature reservoir,
Q, at the same time maximising the heat into the system as extracted from the hot
reservoir, Q; . Carnot recognised that this would be a cycle in which any heat flows
should take place with little or no temperature differences ie. the heat flows must be
reversible.

To achieve this he proposed a cycle composed of an isothermal expansion of the system
at the temperature of the hot reservoir T, with heat transfer to the system from the
reservoir with no temperature difference and an isothermal compression of this system
at the temperature of the cold reservoir with heat transfer to that reservoir from the
system at T,. The two isotherms are joined by two adiabatic processes (no heat flow)
taking the expanded substance from the high to the low temperature and taking the
compressed substance from the low temperature to the high temperature.

11



The Carnot

Cycle
P Q:
Isotherm, T4
Adiabatic, Adiabatic,
To > T1 T1 —> Tz

Isotherm,T»

v

Carnot’s system leads to two statements about the ideal engine;

i) Any Carnot cycle running between two heat reservoirs at temperatures T; and T,
will have a greater efficiency than any other cycle running between those same two
temperatures.

i) The efficiency of any Carnot engine running between the same two heat
reservoirs at temperatures T, and T, will be the same irrespective of the material from
which the system is composed or its size. le. the efficiency of the Carnot engine
depends only upon the temperatures of the two reservoirs.

Absolute Thermodynamic Temperature Scale
Kelvin realised that he could used the Carnot statements to define an absolute
temperatuer scale independent of any system, material etc.

Q)

nc =+i——
Q

Independent of the material of the system and dependent only upon the temperatures of the

two reservoirs.

Therefore define the thermodynamic temperature, 0 , by

%
_Zzﬁzl_nc
& Q
Fix the scale factor by defining HTriple Point =273.16 and @ is then an absolute

(thermodynamic) temperature scale.

It is straightforward to demonstrate, by analysing the Carnot cycle, that 8 = T, -

1@ 0 T
E Q 2 T

Ideal refrigerators and heat pumps may be defined around the Carnot cycle and have
efficiencies

12



TCR =W Qq-Q T-T, T,
T
% 1 1
NMCHp =1, = = = =
W Q-Q T-T, ; T2 ncg
T

NB.
) For an engine to have 100% efficiency the low temperatuer reservoir must be at
absolute zero.
i) If the reservoir temperatures are very close then the heat pump and refrigerator

efficiencies become very large, in fact much greater than 1 but the engine efficiency

becomes very small approaching zero. The same is true of non-Carnot systems.

Second Law of Thermodynamics
First given in the form of empirical statements;

(1) The Kelvin-Planck Statement: It is impossible to devise a device
that , operating in a cycle, produces no other effect than the extraction of heat from a
single body (a reservoir) with the production of an equivalent amount of work.

Heat cannot be converted into work with 100% efficiency.

(i)  The Clausius Statement: It is impossible to devise a device that ,
operating in a cycle, produces no other effect than the transfer of heat from a cooler
to a hotter body (reservoir).

Heat cannot flow spontaneously from a colder to a hotter body.

Both statements while seemingly different propositions concerning heat and work are
equivalent and both statements of the Second Law.

5. Entropy.

Clausius inequality. Entropy as a new function of state. Boltzmann’s
microscopic description of entropy. Entropy calculations.

Clausius Ineguality
From the Carnot cycle analysis we have

QA _ T QA _Q
Q Ty h T

Clausius considered an arbitrary thermodynamic system undergoing a cycle including
both heat flow and work processes and constraining all of the heat flows to be from a
reversible Carnot engine operating from a hot reservoir at temperature Ty . The arbitrary
system at temperature T is supplied incremental heat JQ(T) at that temperature by the
Carnot engine at the same time causing the system to do incremental work dWsys. This
will involve the Carnot engine extracting incremental heat &Q(To) from the reservoir
and doing incremental reversible work 6Wge, as shown in diagram. With reference to
the diagram

13
Reservoir at

To



It is important to note that dQ(To), dQ(T) and dW¢ are cyclical quantities wrt the Carnot
engine but they are incremental quantities wrt the system and many Carnot engines drive
a complete cycle of the system.

1. dQ(Ty) is the heat received from the reservoir by the Carnot engine during
one or more complete cycles of the Carnot engine.
2. dQ(T) is the heat rejected in one or more complete cycles of the Carnot engine

consistent with constraints set by the requirements of the Carnot cycle,
dQ(Tp) _ dQ(T)

To T
3. dWc¢ is the work performed in one or more complete cycles by the Carnot
engine consistent with constraints set by the requirements of the Carnot cycle,
dWe =dQ(To)-dQ(T)
4. dWsys is the increment of work performed by the system as it executes a cycle
For the Carnot engine we use the first law to obtain;

dW¢ —dQ(Tp)+dQ(T)=0

and

Eliminating dQ(Ty) to obtain

14



dWe = (TT—O —1de(T)

The net work of the combined system and Carnot engine for one complete cycle is;
Wnet = $dWe +  §dWgys
System System
cycle cycle

The second term on the RHS relates to dQ(T) via the first law applied to the system alone

§ dWSys = f’ dQ (T )
System System
cycle cycle

Make substitutions to obtain

W= §|[-sjiom)]+_joom)

System System
cycle cycle
Which simplifies to
dQ(T
Wnet = To f’ —T( )
System
cycle

If Wyt is positive we have a compound system that violates the Kelvin-Planck statement
ie.a device would exist whose sole effect is the exchange of heat with a single reservoir
and the creation of an equivalent amount of work.

If Wyet IS negative or zero no principles are violated as we can always convert work
completely to heat as did Joule in his experiments demonstrating the first law.

le.

do(T
Wnet =To ¢ # <0
System
cycle

This is The Clausius Inequality

Whenever a system executes a complete cyclic process the integral of @% around the

cycle is less than or equal to zero.
Ty is positive and the Clausius Inequality is usually stated as

{) dQ_(T) <0
System T
cycle

For a reversible system cycle which we can go around the cycle in either sense with only
the sign of the heat flow changing we have

anticlockwise T clockwise T
Therefore
§ WQr _ REVERSIBLE
Cycle T
and

15



8Q

§? <0 IRREVERSIBLE
Note that the quantity d?—R is behaving exactly as a state function where its integral
over a cycle sums to zero, cfU,H,Pand V
Entropy
To see the significance of d?—R we consider 4
an arbitrary closed reversible cycle and go from upper path

an initial state i to a final state f via either the upper
or lower paths as shown in the diagram opposite.

Around the cycle we have f
i f P '

de_R = dQr + | dQr _ 0 |

T fupper iIower
or lower path

. vV >

deg 1 dog T dog
foRee SR R
liower fupper Iupper

T dQg T dog
==

. T .
lower lupper

The path integral of d?—Rfrom an initial to a final equilibrium state is independent

of the path taken (or process used) unlike the path integral of dQg . The quantity d?—R

again displays the property associated with a function of state and is called Entropy

ds = IR
T

f
S¢ —Sj =4S = IdQ_R
i T
While the state function, S has a unique value for a particular equilibrium state it should
be noted that the above defines only entropy difference

Example. Ideal gas

First Law states dU =€dQr — PdV

It follows that

dsS :&:d—U+EdV
T T T

We already have an equation of state

16



3 P_nR

U==-PV PV =nRT —
2 T V
dsS =§an—T+an—V=a(V,T )dT +b(V,T)dV
2 T \Y
with

3nR nR

a=—— b=—

2T V

We see that V and T are the natural variables of S and we can test to find if S is a perfect
differential,

oa_ o (3R g D _ 0 (R
oV oV \ 2T or  oT\V

therefore
ca_ob
oV oT

and dS is therefore a perfect differential.

Because V and T are the natural variables of S we can write

ds{ﬁj dT +(§j dv = SR yr MRy
V T

oT oV 2T Vv
(@j _3MR — S=§nRInT+f(V)
oT N 2T 2
and
(ﬁj _ R = S=nRInV +g(T)
ov)r V

Both of these together give

S(V,T)= %nR INT +nRInV + const

Examples of entropy change
i) Water at temperature T left in garden (ie heat reservoir) to warm up to ambient
temperature, T,

"dQg

|
The final temperature is T, and in between T and T, the temperature in the integral
changes continuously. Also we know that dQg =+Cpmyy,odT

Tadr T
48 =CpMp,0 [ = =CpMH,0 |09e?a
T

S¢ —S; =4S =

i) Water at temperature T placed in a freezer to cool down to -T¢

17



fdQg

[

Needs to be done in three parts first water cooling to 0 C followed by ice formation and
finally ice cooling to -T¢

AS =

273.15 | m TE
AS — CPHZOmH o j- d_T+ H20—>IC€ Hzo +CI|3cemH o J. d_T
2 T T 273.15 2 273.15 T

27315 lH,051ceMH,0

T
ce F
+ +Ccpom lo

T 273.15 P MH,0 19Fe

273.15

A4S = cgzomHzo loge

i) We may be asked to find the entropy change of the garden (universe) in

pti)
4=
Ta
Where 4Q = —¢/2%m(T, —T)
H,0
S m(Ty - T)

Ta
Note the signs for AQ where it is positive for heat absorbed and negative for heat given
up. In parts i) and iii) whethere the heat is absorbed by the water or the ambient depends
on whether T < T, and the way the calculation is set up incorporates this with the correct
sign for AQ.

Note also that there is no reason why ASgargen = 4SH,0 @s entropy is not a conserved

quantity but it will either be conserved or increased in an isolated system undergoing
thermodynamic processes where it is conserved in the case of reversible processes. In
other words; ASNet = ASGarden + 4SH,0 20 in all processes. This is another way of

stating the Second Law of Thermodynamics.
Iv) Water with mass m; at T1 is mixed with water of mass m; at T, and the
mixing takes place adiabatically. Calculate the entropy change

We need to begin by calculating the final temperature, T and this we do by recognising
that in adiabatic mixing there is no net heat flow

AQ +4Qy =mycp (T =Ty )+ macp(Ts T, )=0
AQ +4Qy =mycp (T =Ty )+ mycp(Ts T, )=0
myTy +m,Ty)

Tt =(
m; + My
Now we find AS as the sum of two entropy changes AS; plus AS, calculated as

previously
T T T T
AS=cp|m jd—T+m2 jd—T =Cp mlloge—f+m2Ioge—f
T T T, T T T,
1 2

18



This is an example of entropy of mixing. Note in the above example that if T, = T, then
both equal Trand then AS=0

V) Joule free expansion

Previously we had
S(V,T) :gnR INT +nRInV + const
And therefore

T v
AS =S¢ -8 :gRIn—f+ RInV—f

There is no heat flow and no work done (walls are adiabatic and rigid ) and therefore no
change in internal energy or temperature.

AS:RIni/l:RIn2>0

The entropy has increased with no heat flow.

There are many examples of calculating entropy changes in the lecture notes and in the
coursework/solutions on the website. In every example for an isolated system we find

ASNet 20
Where the equality only holds for reversible changes.

This is another statement of the Second Law.
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i) Clausius Inequality and Second Law

reversibl

We consider a cycle with an irreversible path from an initial state, i, to a final state, f,
followed by an reversible path back from f to i
The Clausius inequality states

f i
§d'Q=J'd'Q+J'dQR <0
Text iText f T

NB. When we use the Clausius inequality we distinguish between reversible and
irreversible processes and the temperature used in the inequality. If the process is
irreversible then the temperature is that of the external source supplying the heat to
the system, Tex , Whereas in the case of a reversible process Text = Tsys = T and no
distinction is made. Recall that in the definition of dS based around this it is
reversible heat flows that are the basis of the definition!

It follows from the above that

f i f
J'dQ S_J‘dQR :J'dQR :Sf _Si = AS
i Text f T i T
Whence for any change between equilibrium states i and f
f
AS > a@Q : ds > aQ (Irreversible change)
i 'ext Text
f
AS = d(_?—R ds = d?—R (Reversible change)

[
If we consider a thermally isolated system with AQ = 0 then clearly from the above
inequality it follows that

AS >0 dS>0 (Thermally isolated system)
and for a reversible change
AS =0 dS=0 (Reversible change in thermally isolated system)

Again the statement; for a system taken in isolation (the universe), the sum of the
entropy changes of all the parts is such that A4S > 0. This is an equivalent statement to
the Clausius inequality.
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In summary;

1) The entropy of a thermally isolated system can only increase or
remain constant.
2) Spontaneous changes in isolated systems lead to an increase in

entropy.

3) In a thermally isolated system, S will tend to the maximum
value possible

4) In a totally isolated system, S will tend to the maximum

possible value at fixed U ie. U will remain constant.

These are all;
ENTROPY STATEMENTS OF
THE SECOND LAW OF THERMODYNAMICS

ASUniverse >0

This expression of the second law is related (of course) to the two statements by
Clausius and by Kelvin and Planck.

a) Kelvin’s statement was that heat could not be converted into work with 100%
efficiency, or equivalently that some heat must always be ejected as waste from the
engine into a cold reservoir.

We can relate this to the form of the second law given by the inequality by asking what
happens to entropy if we can convert heat to work with no waste heat being rejected to a
cold reservoir. The heat has come from a hot body and therefore involves a decrease

S = i = _Q <0
T T
in the entropy of that body. The work performed of itself has no effect on the entropy of

the system or universe and the second law as an inequality is violated, entropy has been
reduced. The Kelvin-Planck is therefore equivalent to the inequality.

A

b) Clausius’ statement that heat could not flow spontaneously from a colder to a
hotter body can be related to the new entropic second law by imagining the scenario,
breaking Clausius’ statement, where a glass of water is placed in a warm oven and ice
forms spontaneously as the colder body, the water , loses heat to the warmer body, the
oven. The water as it cools loses heat and will see a decrease in its entropy

CJdQ . AQ
Th,o  Th,o
whilst the warmer oven receiving the heat will see an increase in its entropy of

jdQ _ 4Q

ASH,0 =

We see immediately that the occurrence of the temperature in the denominator of these
expressions means that the same amount of heat has transferred from the water and to the
oven and yet the change in entropy is much larger for the colder water than it is for the
warmer oven and
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AQ AQ AQ(TH ,0 —Toven ] <0

ASuniverse == — ———— =

Toven TH,0 Th,0Toven
The second law in its entropic form is again violated. Heat cannot therefore leave a colder
body and flow to a hotter body as this will inevitable lead to a decrease in entropy in
contravention of the entropic forms of the second law.

c) Engines and the waste heat.
We can see now that the “waste” heat rejected into the cold reservoir in any real engine is
N d
absolutely necessary as it raised that body’s entropy by an amount A4S = I_l_—Q = % such
2 2

that

QA Q

ASynivese =~ +7— >0
1 T2

le the entropy is increased and because the heat came from a hot body and was rejected
to a colder body, from our measure of entropy where the temperature of the body
appears in the denominator, this allows a smaller amount of heat Q, < Q; to be rejected to
the colder body but still for there to be a greater entropy increase to allow full compliance
with the second law and yet leave some energy, Q1 — Q, from the hot body to be available
to perform useful work, W.

The Thermodynamic ldentity.

With the definition of entropy

ds = IR
T

We recognise that we can write dQ in a form involving only state functions
dQ =TdS

This allows the First Law to be written in terms of state functions only. For example we
have for a gas

dU =TdS - PdV
This is known as the Thermodynamic ldentity.

All differentials in this identity are now perfect differentials, independent of path!

dU =TdS - PdV :(Qj ds +(ﬂ) dv
&s )y YA

This tells us that U can be described using only the variables S and V ie. U = U(S, V) with
S and V being a pair of natural variables that specify the behaviour of the internal energy.
Furthermore we can from the previous equation that

@ @)
S )y oV s

Or alternatively
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dsziduidvz(ﬁj dm(@j av
T T oU )y oV )y
Implying that S can be specified completely through the variables U and V ie. S = S(U, V)

This allows us to write;

(3 -2 (Z) -
ouj) T )y, T

There are many examples of using the p-artial differential of some thermodynamic
function with respect to its natural variables to obtain expressions for other
thermodynamic functions a practice that is frequently very useful.

Using the entropic version of heat flow we can obtain equations for the heat capacities
at constant volume or pressure

Cy = limit (“Q—Rj _ limit [Ej =T(§j =( oS j

Cp = |imit(ﬂJ _ |imit(ﬁj :T[ﬁJ :( cs J

By measuring either Cy or Cp we may determine S by integration.

Microscopic Interpretation of Entropy

Ludwig Boltzmann was the first to give a microscopic explanation of entropy as follows;
Entropy is a measure of the MICROSCOPIC probability of finding the system
under study in a given MACROSCOPIC equilibrium state.

By probability we mean here a number that is proportional to the number of distinct
ways a system can arrange itself microscopically to achieve a particular macroscopic
equilibrium state.

and

S(U,V)=kgIn(U,V)

Q is the number of microscopic arrangements that will give the macroscopic arrangement
that it is specified for and for a gas

v N 3 N
position = [(AT)?’] QMomentumn = [(Z;m)z }

S is an extensive variable and we can add entropies to find an overall entropy eg.

SNet = Sposition T SMomentum

SNet = I(B (In -QPosition +1In QMomentum ) = kB In -QPosition-QMomentum

This property of the extensivity of S can be applied in many ways eg when mixing two
substances we may find the entropy of each and add to find the overall entropy.
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The Carnot Cycle on a T-S diagram

We may represent the Carnot cycle (or any other) on a T-S diagram as shown above
where the isotherms are horizontal lines and the adiabats where no heat is absorbed
must be vertical lines of constant entropy or isentropes.

The area inside the rectangle representing the Carnot cycle on a T — S diagram is

S2 Sy
Tl de +T2 de =Q1—Q2 = ATAS
S1 S2

By application of the first law and the fact that over a cycle AU = 0 the area is also the net
work done ie. it is the total heat absorbed..

Consideration of the T-S diagram for a Carnot engine also allows us to obtain the Carnot
form of the efficiency straight away by simple calculation of areas

W ATAS Ty-T, | Tp
Q T4S T T

e

6. Photons & Paramagnets

Photon gas and equation of state. Planck radiation distribution, Stefans
law and Wiens law. Paramagnets and work. Curies law.

Thermodynamics of Photons

The following equations all apply to photons

p= % =hk (de Broglie) E=hv (Planck)

E = pc (Einstein) V|=c (Einstein )
Using these we can find



For an ideal monatomic gas the equation of state can be written in the form

PV :%<5.\7>:§U (Ideal Gas)

All photons have the same momentum (if the radiation is monopchromatic) and the
average is no longer necessary. Thus for photons this equation of state, using what we
have so far derived hecomes

PV = % E-= %U (Photon Gas)

Or we can define an energy density, u = % and have for the pressure,

P= %u (Photon Gas)

We are interested in the radiation field in a cavity that is in thermal equilibrium at ba
temperature T. Generally the radiation in a cavity is spread across all wavelengths and
thus

o0
u= ju,da

0
In equilibrium u, must be isotropic (equal numbers of photons at any given
wavelength travelling in any given direction) just as in a material gas where the
molecules will have an isotropic distribution due to many random collisions with the
walls. This means that it is also the case that u; must be independent of the wall
material. (See coursenotes) The only property of a cavity that u,; can depend on is the
temperature, T

uz =u,(T).
And therefore from this it follows that

o0
u=Judi=u(T)
0
According to an argument by Boltzmann the cavity radiation can be treated like a P-V-T
system and therefore the thermodynamic identity may be used;
dU =TdS - PdVv
U(T)=u(T NV =  dU=d(u(T)V)=TdS - Pdv

We can use the equation of state P = %u

d(u(T V) =Tds —%U(T v
Rearranging
TdS = (udv +u/VdT)+%udV (u/ = d—“j

dT
u’ 4u
dS=|—V [dT +(——}dv
T 3T
T and V are the natural variables of S as found previously for a gas and the above

equation is in the form;
dS =a(V,T)dT +b(V,T )dV
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2 2
dS is a perfect differential, therefore, s—sza—b ie. ( 0°S _ 0°S J

oT’ oVoT — oTeV
ofu v o auy_4jui(T) u
vl T T oT\3T) 3] T T2
u_au’ 4w
T 3T 372
/
ilu _4u N u/:4£:d_“
3T 372 T dT
du _,dT
u T

Integrating
Inu=4InT +const = In(T4) + const

U
u(T)=AT* ==
(T) v

/
ds =| LTy lor +(f@jdv ~ 4ATAVdT + 2 AT 3av
T 3 T 3

Again using T and V as natural variables of S we may write
ds = (ﬁj dT + [@J dv
aT )y NV )t
4

(ﬁj =4AT?  integratewrt T =  S=_"ATNV + (V)
T v 3

And

(éj _ 4 aT3 integrate wrt V = S=£AT3V+9(T)
N Jr 3 3

The only consistent solution to these two forms of S is
S :%AT3V + const

If we require that at T = 0, S = 0 then we require that const = 0.

s=2atdy 52> T3
3 Y,
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Defining some properties of the walls of the cavity as follows;
(i) a; 1S the spectral absorptivity of the surface of the wall at temperature T
(i) o;dA the fraction of incident energy that is absorbed by the surface between
Aand A +dA..
(iii) ¢, is the spectral emissivity of the surface at temperature T
(iv)  gdAis the energy emitted per unit area per second by the surface between A
and 4+ dA.

The number of particles in a gas of density n striking unit area of the wall in unit time is
given by

1

=n(v

n(v)
where for photons the mean speed (v) =c¢

The energy absorbed per unit area per second in the wavelength interval (1, A + dA4) is
therefore

c c
Eaps(2)=a, (Z n, Ezdﬂj Eaps(4)=a, 2Uad4

In equilibrium the energy absorbed is equal to the energy emitted and thus
al%Uldﬂzé‘ldﬂ

& c
~A = —u(T)
a, 4

The quotient on the left hand side, “2_is a universal function of 2 and T irrespective of
ay

the material of the surface. This is known as Kirchoff’s Law.

A black body is one where all of the radiation falling on it is absorbed, af'a‘:kb‘)dy =1

C
gblackbody _ Zul(T )

y)
' blackbody c c CA_4
£ dA=—=fu,(T)dA=—u(T)=—T
(I) y) 4 (f) /1( ) 4 (T) 4
Total energy emitted is
ETot =0T 4 The Stefan Boltzmann law

o= % —5.67x10"8Wm~2K ~* is the Stefan constant

It also follows that

u(T)= AT* :%GT“

and

s =2 ardy — 10973y
3 3c
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zhc 1 87 1
2 el NC = =) hy
exp( )—1 exp| —— -1
/IkBT p KT
The first bracket is the density of states, the second bracket is the Bose Einstein
distribution function describing the probability of occupation of a bosonoc state at

energy E =hvand the third bracketb is the energy of a single photon
Stefan’s constant is given by

uy(T)=2 «(hv)

3 27r5ké
15h3¢2

O

Thermodynamics of Paramagnets

|0o

equivalent to

An electron with its intrinsic spin is considered as a small magnet with dipole moment

€ 9.97x10~24 Am?2
2mg

Thermodynamics is concerned with a body containing many of these dipoles and their
alignment in an applied magnetic field éo
In the applied field the dipole acquires an energy

u= —rﬁe (] éo
Giving a sample containing many of theses small dipoles an overall magnetic moment,
M, described by

me:

M

Bm = #o 3~ = #oM
And thus a total field exists

B=Bo+Bm =Bo+,u0|\/|
Here M is the magnetic moment per unit volume.
The work done on the paramagnetic system by the external applied field can be shown
to be

dW = +Bod M
Note the sign
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Using this we may write down the first law for a paramagnet with a fixed volume if we
compare for a gas where we had the thermodynamic identity

dU =TdS - PdV

For the paramagnet in comparison we have;

dU =TdS + Bod M/

Curies Law and Equation of State
M is is proportional to the applied field at low applied fields and
Bm= /JOM = ZmBO
Where the quantity yy is the magnetic susceptibility. Experimentally down to low
temperatures

G

Zm:?

Known as Curie’s Law

where C'is Curie’s constant specific to a given material.
We can then write

G ﬂoT
Ho T 0 0 (‘CVJ

Where the latter is the equation of state of a paramagnetic system at low temperatures.
Specific heat capacities may be defined for a paramagnet

Cg, = dQr - Td_S =T (@j
dr Bg =const dr B =const ot Bg

Cum = daQr - Td_S - (ﬁj
dr M=const dT M=const ot M

How these heat capacities depend on T and V take a simple form as the applied field, By
, tends to zero.

Vb
CBO(T,BO)IBozo=CBO(T,0)=T—2

This is Schottky’s Law
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Paramagnetic Cooling

Isothermal

Step 1 =2
S(T,Bo) Bo#0

- Adiabatic
Step2=3

R

Tt Ti

The basic principles of adiabatic cooling can be shown on a S-T diagram. It can be
shown that S(T) has the form indicated. The entropy of a paramagnet is determined by
the degree of randomness of the spins. At low temperatures in a small magnetic field the
spins align with the field and the entropy decreases. As temperature is raised the spins
become disaligned and the entropy saturates when the spins are completely random. At
a higher applied magnetic field the same arguments hold except that it requires a higher
temperature to randomise the spins.

6. Maxwell Relations, Phase Changes & Third Law.

How to find the natural variables of a function of state. How to obtain
new relationships amongst thermodynamic variables. New state
variables, G, F and H. Clausius Clapeyron equation. The Third Law of
Thermodynamics.

State Functions, Natural Variables and Maxwell Relations

There are two more state functions that need to be introduced, in introducing them the
idea of natural variables is reenforced and the properties of perfect differentials used to
obtain Thermodynamic relations known as Maxwell Relations illustrated.

The Gibbs Free Energy
The Gibbs function or Gibbs free energy for a fluid is

G=U-TS+PV

The incremental of G is
dG =dU —-TdS — SdT + PdV +VdP

But from the First Law in the form of the Thermodynamic ldentity we have
dU —-TdS =-PdV
SO

dG =-SdT +VdP
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Any change in G depends only on changes in T and P which are the natural variables
of G

G=G(T,P)

Using the natural variables of G to write the incremental dG as

dez(@j dT +(§j dp
o o P )

By comparing again the coefficients of the increments of the natural variables in the two

equations
-5, ®
T Jp oP )¢

These are expressions for the thermodynamic parameters, S and V in terms of partial
differentials of the Gibbs function wrt one of its natural variables!

By making use of the properties of perfect differentials we may write,

o'c _o'6 i(@ji[ﬁj
oToP  oPaT oT \ oP oP\ oT

Using the expressions for S and V found previously we are able to write

Lol (&),

This is known as a Maxwell Relation

Six simple steps to get from the definition of a Thermodynamic state function to a
Maxwell relation via thew Thermodynamic ldentity.

The significance of the Gibbs Free Energy lies in situations where pressure and
temperature are held constant. In such a circumstance in a closed system

dG =-SdT +VdP =0

The equilibrium condition for a system held at constant pressure and temperature
is that the Gibbs free energy should be a minimum.

Equivalently any changes in the system will be such as to reduce G or to leave it
unchanged.

The Helmholtz Free Energy
) Definition.
The Helmholtz free energy for a fluid is

F=U-TS

i) The incremental of F is
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dF =dU -TdS —SdT

iii) From Thermodynamic Identity we have

dU —-TdS =-PdV
o)
dF =-SdT — PdV
Iv) Natural Variables of F
Any change in F depends only on changes in T and V which are the natural variables of
F

F=F(,\V)

Using the natural variables of G to write the incremental dG as

dF:(QEJ dT+(§EJ v
ot A N )

V) Comparing incrementals
By comparing again the coefficients of the increments of the natural variables in the two
equations
SZ{EE) pz{éij
aT ly oV )t

These are expressions for the thermodynamic parameters, S and P in terms of partial
differentials of the Helmholtz free energy wrt one of its natural variables!

vi) Finding the Maxwell Relation

By making use of the properties of perfect differentials we may write,

°F_F _ o(oF\_o(oF
oToVv  oVoT oT \ oV oV \ oT

Using the expressions for S and V found previously we are able to write

), (&),

This is another Maxwell Relation

The significance of the Helmholtz Free Energy lies in situations where volume and
temperature are held constant. In such a circumstance in a closed system

dF = -SdT —PdV =0

The equilibrium condition for a system held at constant volume and temperature is
that the Helmholtz free energy should be a minimum.

Equivalently any changes in the system will be such as to reduce F or to leave it
unchanged.
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Enthalpy
We can also remind ourselves at this stage of an earlier state function, Enthalpy, H and

go through the same procedures to obtain expressions for thermodynamic quantities and
another Maxwell relation.
i) Definition.

i)
H=U-PV
i) Incremental
dH =dU + PdV +VdP
iii) From the Thermodynamic ldentity dU — PdV =TdS

dH =TdS +VdP

Iv) The Enthalpy H has natural variables S and P and therefore

dH =(@J d5+(ﬁj dp
&5 )p > P )g

V) Comparing with the incremental

() v-(2)
a5 Jp oP Js

vi) And the Maxwell relation

(G_Vj _ (8_Tj
oS )p \ 0P g
Gibbs Free Enerqgy, Phase Changes and Clausius Clapeyron equation.

A substance eg. the fluid in our PVT system paradigm will exisit in phases other than
that of a gas where at low temperatures and high pressures the intermolecular
interactions may cause the fluid to change from gas to liquid or gas/liquid to solid. Such
phase changes are described on PVT diagrams with phase boundaries and the changes
that occur in crossing the phase boundary. Consider that the substance has a total mass

M and it co-exists in two phases eg. vapour phase and liquid phase. As we change phase
(by altering P, V or T) conservbation of mass requires;

M :MV+MI:constant

If gV and g- be the Gibbs functions per unit mass or specific Gibbs function for each phase
G=M ?gv M IgI
The condition for equilibrium at fixed P and T is that the Gibbs function must be

minimized ie. dG =0
dG =d(M7g¥” +MmLgL)
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dG=g”(T,PYIM " + gL (T,P)dM*

Conservation of mass requires
dM =dM 7 +dm* =0 = dM 7 =—dm £

Giving
dG = (97 - gz)jM 7 ~0 forany dm"

We then have the equilibrium condition for the co-existence of the phases that
g’ (T,P)=g™(T,P)

along the liquid/vapour co-existence line in the P-V diagram and similarly
g™ (T,P)=g>(T,P)

and
g7’ (T,P)=g>(T,P)

Along the other phase coexistence lines.

The g(T,P) are three different functions and the above condition is only true along the
co-existence lines and furthermore at the triple point;

g’ (T,P)=g*(T,P)=g>(T,P)
For first order phase changes eg. the liquid-vapour transition, the liquid-solid transition,

the transition is accompanied by a change in density and also in a latent heat. Sticking
with the Liquid-Vapour transition

g (T+dT,P+dP)=g” (T +dT,P+dP)

Using Taylor’s theorem
Z Z 7 7
g LT P)+| O ar | 9| dps = g” (TP +| | AT+ | dp+ ..
oT b oP T oT b oP T

s & I Va
oT oT oP oP
P P T T
Using the thermodynamic relations;
aT Jp aT Jp

(%) ~(3)
oP J); oP )5

dT(s? - SI)= dP(v? —VI’)

dP s7 st

a1 P T
Taking a fixed quantity of matter from the vapour state to the liquid state in a phase
transition will involve an increase in order with an accompanying decrease in entropy.

AQRr =TAS = —Latent Heat - L3,
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AQp =Tas =l 7
Where [ ., Is the latent heat of condensation (vapour to liquid) per unit mass and the
minus sign ensures that the change in entropy is negative as required.

NB. Latent heats are usually given as positive quantities and thought needs to be
given as to what sign is needed.

7 _[?—Ji

I_7_
=

S

Therefore
aP [y 1
aT (v —v%)

This is the Clausius Clapeyron equation.

For changes from liquid to vapour or from solid to vapour the following simplification
is possible;
v/ >> V" and it is a good approximation to treat the vapour as an ideal gas. Consider 1
mole and let ly_, and v¥ be the latent heat and volume per mole.
kT
P

dP Ly lpgP
dT  RT 2/ RT 2
P
lv_. can be taken as a constant over a small temperature/pressure range

dp ar
P RT?

=[7W—>I

Integrating 1
INP =~ _, 7+ — +const
RT

nP_ . 1f1_ 1
P ERIT T,

which becomes

Lyoz

To
Where Py and T, are any known pressure, temperature pair along the liquid-vapor curve.
The same approximations can be used for the solid-vapour transition.

The equation can be re-written
[
P= PO exp— M l_i
R T Ty

Describing the co-existence curve

Where const = InPy +

At the triple point; 1

1
NPrp = (o g —2 +Cp =Ly —>4C
Prp VT RTrp L o >7s RTrp 2
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The Third Law of Thermodynamics
The third law of thermodynamics attempts (among other things) to give information
about the entropy at absolute zero, S(0).

S (S, ) )
ot )y \ainT )y oT Jo LoInT Jp
S(T)= fCTVdT S(T) =jCT—PdT

S might be found by making the integral into a definite integral

T CV T CV
S(T)-S(Ty)=[ —dT = S(T)=S(Tp)+ | —dT
T. T . T
0 0
In other words S(T) can be obtained to some arbitrary constant S(To) and we could make
the reference temperature T, absolute zero.
There are at least 4 statements that describe the Third Law;
(i) Macroscopic Statement.

It is impossible to reduce the temperature of a macroscopic system to absolute zero in
a finite number of steps or processes.

(i) Nernst Statement or Nernst heat theorem (1906)
The entropy difference between two distinct equilibrium states of a substance tends to
zero at absolute zero.

(iii)  Planck Statement (1911)
The entropy of all perfect crystals is the same at absolute zero and may be taken as
zero.

(iv) Simon Statement.
The entropy component from each aspect of a system which is in internal
thermodynamic equilibrium tends separately, to zero at absolute zero.

The third law carries with it a number of consequences;

a) Specific Heat Capacity tends to zeroas T — 0.
AINT —» -0 as T — 0 so it is essential that Cyy — 0 in order that AS — 0.

b) Thermal expansion goes to zero at low temperatures.

1(oV 1(0S
=—| = therefore =——| =
p V(@ij p V(@PJT

Where the Maxwell relation (a—vj = —(éj was used
aT Jp oP )1

However the Nernst formulation tells us that entropy change A4S — 0 as T — 0 therefore
implying that # —0 as T — 0.

C) Curies Law breaks down at low temperature.
The Curie law states
_¢
£ 7
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The third law carries the implication that (aa?sj — 0 at low temperatures. This is
0/71
incompatible with the Curie law

d) Ideal gases are a fictionat T =0

The ideal monatomic gas has been used over and over to act as the paradigm system

allowing very useful results to be obtained. One of those results has already been

destroyed by the third law at absolute zero namely the finding that Cp —Cy, =R for 1

mole of gas. We have seen that both heat capacities go to zero negating this result.

Further problems arise for the ideal gas when we consider the entropy of an ideal gas
S=Cy InT +RInV +const

As T — 0, using this equation, we find S = -0 clearly in contradiction to the third law.

e) First order phase changes
The Clausius Clapeyron equation for the coexistence line of two phases is

dP _s'-st 4
dT VV _VL AV
As T — 0, according to the Nernst statement, As — 0. This implies that as T — 0,

j—_Fl_) — Oie. for a coexistence curve that extends to T = 0 the slope must vanish at T = 0.

7. Kinetic Theory

Maxwell Boltzmann velocity distribution, speed distribution, Mean
speed, root mean square speed and most probable speed. Diffusion,
effusion, mean free path.
The Kinetic part of the course was concerned with the motions of collections of large numbers
of molecules, their statistical nature and their effects in terms of macroscopic observables.
Our first example of this was the the relationship between pressure, volume and internal

energy for a monatomic gas, U =§PV using simple concepts from kinetic theory, that is by

considering the collision and consequent momentum change of a gas molecule with the wall
of its container as the source of the pressure of the gas.

This was followed by showing that the internal energy which is the sum of the kinetic
energies of the constituent atoms is given by

U=Sim2 = U =N3<mv2> = U=NkgT
=02 2 2
This is a resuklt of the equipartition theorem where there is on average %kBT per degree of
freedom with three translational degrees of freedom for a monatomic gas.
This was used with the equation of state U = g PV to obtain a further equation of state

PV = NkgT =nRT
N is the total number of molecules, n= %A is the number of moles of the gas and

R = N kg is the molar gas constant.
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Maxwell Boltzmann Velocity and Speed Distributions.
An elegant argument given in full in the course and coursenotes gives the probability that a

particular molecule/atom has a velocity v as

3
b m A mv?
f(v):Aexp{—Emvz}:(zﬂk T] exp{— ok T]
B B

The Maxwell-Boltzmann Velocity Distribution

We obtained this velocity distribution by using the following physics;

(i) A simple application of detailed balance
(i)  The conservation laws, specifically conservation of energy

(ili)  Time reversal and rotational symmetry of Newton’s laws.

%mv2 =E and we may see the Maxwell-Boltzmann distribution in terms of the

probability that a molecule has an energy, E

P(E)« exp(— kB%J

The exponential factor is known as the Boltzmann factor or the Boltzmann-Gibbs
factor

Maxwell Boltzmann Velocity Distribution at T, 2T and 4T

—MB 2T
—MB 4T
—MBT

f(v)

Velocity (arb units)
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The Maxwell-Boltzmann velocity distribution is a Gaussian function of the type

y= Aexp(—

(x=xo)

2

2
J as shown above.
o

We may want to know the speed distribution which doesn’t concern itself with direction and
which can be derived from the velocity distribution as

% 2

m 2, mv
veexp| —

T} [ ZkBTj

The Speed Distribution.

Normalised Speed Distribution at T, 2T and 4T

0.25 -

0.2 -

0.15 -

0.1 -

0.05 4

Vm

—_—2T
—A4T

Speed (arb units)

The question “what is the velocity of a typical gas molecule in a gas at a particular

temperature”

(i)

(i)

(iii)

may be answered in sseveral possible ways as follows;
The root mean square velocity might be given, vims. This we have

seen previously when obtaining the relation between temperature,
Kinetic energy and internal energy.

T [keT . [keT
Vo _,/<v >_,/—m =173 B~

We might also give the mean speed v defined as

V= ij(v)dv:W/Sk—BT :1.591/kB—T
0 Zm m

Finally we could offer the_most probable speed, vy, , which is the

value of v at which P(v) has its maximum.
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Particle flux colliding with wall
The flux or number of particles hitting unit area in unit time is given by

@:lnvzin 8k_BT
4 4\ m

where n is the number density.
If the gas is an ideal gas with the usual equation of state, PV = NkgT (nR = Nkg) then

_N_ P
V kgT
o L, [BkeT ___ P

4\ zm  J2xmkgT

Colliding with other molecules (mean free path). A

The trajectory of a particular molecule in a dilute gas is made up of a series of straight line
segments interrupted after some length, I, by collision, resulting in change of direction. The

actual distance traveled, £ =3[ is considerably greater than the actual distance traversed in
i

real space.
An average distance traveled between collisions, A4, called the mean free path is defined as
N
> L
A=d_
N

where N is the number of segments and |; is the length of free flight on segment i. A depends on
the size of the molecules or on the range of the forces between them, ie they present an area to
other molecules within which, if the other molecule trespasses it can be deemed to have
collided (felt the influence) of the other molecule. The molecule sweeps out a cylinder with a
geometric cross section area,

oG — 7232.
The tube length in a time t will be approximately vt giving a total volume

V = O'th
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The molecule will encounter nV other molecules where n is the number density of molecules
giving a number of collisions
NC = nO'GVt

The number of collisions per distance traveled is then

Nc

vt
The distance traveled between collisions is the mean free path, A, and is equal to the inverse of
this

=Nog

ao_
Nog

More accurately use the velocity distribution function to take some account of the
motion of the target spheres then the mean free path is given by;

1
A=
\/EHO'G
An alternative description of the collision process defines the collision frequency, v ,
where 1. is the number of collisions suffered per second

v
Ve =—= \/EnO'CV
A
or a scattering time zs where
ot A1
S Ve 2 \/EI’]O'(:V

Molecular Effusion
The concept of mean free path may break down in circumstances where the gas is restricted to
movement in structures whose characteristic dimensions are smaller than the mean free path.
eg. a narrow pipe. It is necessary in such circumstances to drop the concept of mean
behaviours such as the mean free path and develop other microscopic models. Such a regime
is called the Knudsen regime and may occur in certain common circumstances where it is the
mean free path that is unusually large rather than a structure that is particularly small eg.

(i) A increases as the molecular number density decreases and therefore a high

vacuum system will always go through a Knudsen regime when the vacuum
is good enough.

(i)  The mean free path will also become very large as mean velocity is greatly
reduced as is the case at low temperatures and systems such as those

involving liquid Helium and its vapour will pass through a Knudsen regime.
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T1 T2

P. P2

ng \/ nz
A

Molecular effusion occurs where two chambers are connected by a narrow pipe as shown
above. The thermodynamic criteria for thermal equilibrium between the two chambers is that
temperatures and pressures must be equal, Ty =T, and P, =P,. If there were a pressure
difference between the two chambers the gas in the pipe would undergo molecular collisions
more frequently from the high pressure side than the low pressure side and a resultant force
would exist on the gas in the pipe leading to a pressure driven flow from high to low pressure
tending to equalize the pressures. Equilibrium will be determined by the equality of molecular
flux onto either end of the pipe and we may use our expressions for the flux to find

anle: —n2\72A

m_Vvo_ [Tz

np v \Ty
oruse p =Nkl _ nkgT to rewrite

nfy _ P

oo Py
And thus

h_ I

P, \Ts

We can write an expression for the number of molecules of species i that impinge on the
hole from inside the box and escape through the hole in a time, t using our previously
derived expression

NF = @; x Axt:%niVitA
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Ny

Consider two molecular species in a box with a small hole in it of dimensions smaller
than the mean free path.

The expression for the mean speed, vV = 1/&(% may be used to find the ratio of two

types of molecule that have escaped in time t as

N [ma
NS ng\mg

The fraction of each species that have escaped is

NE_; N3 mp_ o [mp
=T = =T

Ny np \mM m
fl/: ma

f2 mq

Negligible depletion of the molecular densities inside the chamber has been assumed ie.
n; does not change substantially with time.
If molecular species 1 is lighter than molecular species 2 then clearly

And

and vice versa.

Lord Rayleigh and Ramsay used this effect in 1895 to isolate Argon from the atmosphere for
whose discovery they shared the Nobel prize. The most well known use of effusion separation
was to separate the light fissionable isotope of Uranium, Uyss from the more common and
heavier isotope, Uysg
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Free path distributions
There is the mean free path but the_distribution of free paths may also be useful. By making

some simple assumptions the number of free paths of length [ may be found N ([ )
(i) N ([)— N ([ + d[) is proportional to the distance d /.

(i) N([)—N([+d[) is proportional to N(Z4, the number of particles that

started in the interval (£, +d[).

We may express these two assumptions mathematically as

N()-N( +dl)=CN(()dl C = constant
N([+d[)—N([)_dN([)__
dl Codl CN(E)
dN(L) ~Cdl
N(()

With boundary condition N(4 = Np at /= 0 this has a simple solution
N(L)=Ngexp(-C[)

N([%o is the fraction of particles which have a free path greater than or equal to | .

alternatively N([%o =exp(—C/()is the probability that a particle which has just

undergone a collision will survive a free flight of at least distance £.

identifying P(Jd/as the proportion of sample particles starting at | = 0 which suffer their first
collision between | and | + dI.

p(C )l = N([)—ll\\ll([+d[):CN([)d[

0 No

Hence the probability distribution is simply

P(()=CeCl
To determine the constant C note that the mean free path, 4, is the average free path and

therefore by definition of P(()
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Mean Square Displacement & Diffusion Coefficient

A particle colliding with other particles as it moves under the effects of a potential (eg.
gravitational, electrostatic) will travel a distance in real space far less than the actual
distance it has travelled.

M

/
i\

The above shows a particle undergoing a random walk in n segments i of length £ . After n
steps/collisions it has moved a distance R, in real space from its starting position.
Using vector notation explicitly

Iin=[?1+f2+f3+f4+ ...... +fn

To evaluate the vector sum we find the mean square displacement <|Rn |2>

(Ref? )= (Ra - Ra) = ({61 gt L} (G4 L 4 L3 )

Using
<[i -[j>:<[i[j cos¢9>:0

Gi-6i)=]i?)

—

<|Rn|2> simplifies to

(Ral?) = (4 +16a 416 + ot ) =)

<\[\2> =(r?)- z[ZP([)d[ _ % (220
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<\[\2> = ((2)=Te2p( )l =272
0
The mean square displacement is then
(Raf?) =202
We can convert the number of collisions, n, to the more useful parameter, the time elapsed, t,

with g = —, the scattering time being the time between collisions.

<>

(Ral? ) =202 ~ 202~ 6Dt

where the diffusion coefficient D is defined as

The Diffusion equation (Fick’s Law)

Diffusion is a process whereby particles (or energy as heat etc.) move from a high
concentration region to that of lower concentration due to an imbalance in the flux at an
interface from two opposite directions. The flux impinging on a surface is

Ajv
z=0

/1]\7
z=0

The net flux in the positive z direction is the difference between the second and the first

of these
2 0z

This is known as Fick’s law.

J :Env
4

With the crossing surface atz =0

1 1 on
Flux fromright = —n(A )W =—|[ n(0)+—
ght = (1) 4(( )+

Flux from left :ln(—/l)vzl n(O)—a—n
4 4 0z

__po
z=0 0z

Here D = %\7/1 whereas previously D = %\7/1
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NB. The earlier form is the correct one

The rate of change of particle density is

on__9;
ot 0z
And using Fick’s law
on(zt) D 82n(z,t)
ot 022

This is the Diffusion equation in 1 dimension

This may be generalised to 3D

w:_vw] =DV?n(x,y,z,t)

This is the Diffusion equation in 3 dimensions

Heat Conduction and Fouriers Equation
Diffusion of energy (heat) may be treated in the same way

oT(z,t)
0z
Is Fouriers Law

3
K= 1n\7/1(§k3j = ln/1‘/8k—'3-rk,3 =ni 2—TkBA
3 2 2 zm zm

Is the thermal conductivity

J,(zt)=—x

x 3 5 7 ] ]
—=—nk —nkr or —nkg for diatomic gases.
D 2 B g BT o "B g

aT(zt) _ 5n 8°T(2.t)

ot 622
Is the heat equation
with
ph_-_%_
PCp
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