
TKP Revision Notes 
 
NB. The following is a review of the seven sets of lecture notes that 
are available on the web. Those full notes take up 259 pages and 
cover the course material in great detail. This review is 
supplementary to the full notes and should be used with those notes, 
the weekly exercises and their solutions (also available on the web) 
for revision purposes. 
 

1. Introduction & Temperature. 
 

Internal Energy, Zeroth law of thermodynamics, Temperature scales and Gas 
scale. Functions of state, state variables. Ideal gas system, equation of state. 
 
Equations of state and internal energy 
For an ideal monatomic gas it is relatively straightforward to demonstrate that the 
internal energy, U is related to pressure and volume by; 
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Internal energy for an ideal gas (no potential energy interactions) is the sum of all of the 
kinetic energies of the constituent atoms 
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From equipartition of energy considerations, for a single atom the average kinetic 
energy is 
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Recall TkB2
1  per degree of freedom 

For a collection of N atoms 
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In the above n is the number of moles of a substance forming the system being 
described. 
 
The above include several equations of state. The EoS specifies the relation between 
state variables or functions of state such as P, V and T of which (any) two are 
independent variables the other being a dependent variable. 
It is to be noted that if a process occurs where the temperature remains constant 

throughout the process then 0
2
3

2
3

=== nRdTdTNkdU B  ie. if the temperature is held 

constant throughout any change in state (change in P or V in the gas paradigm) then 
there is no change in internal energy.  
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i) For an isothermal process the internal energy remains unchanged. 
ii) The change in internal energy in going from one equilibrium state to 

another is a constant irrespective of how the change in state was 
effected. This is because the internal energy is a state variable. 

iii) If a system is taken around a closed cycle there is no change in 
internal energy. This also follows from the fact that the internal energy 
is a state variable.  

 
The Zeroth Law
The temperature introduced above is the absolute temperature and needs careful 
definition beginning with the zeroth law. 
 
The zeroth law of thermodynamics is simply stated; 
 If system A is in equilibrium with system B and system A is in equilibrium with 
system C then it follows that system B is in equilibrium with system C. 
 
This is important for thermometry as temperature is defined for thermal equilibrium and 
system A would be the thermometer in the above telling us whether or not system A and 
C have a common temperature. 
 
Thermometry
Empirical temperature scales involve an observable that is different for different 
equilibrium states 

    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

TP
X X

X.T 16273  

X is a thermometric property (there are many) and XTP is the value of that property at a 
fixed point (usually the triple point of water). The value 273.16 is there for historical 
reasons that sought to align the Kelvin scale (above) with the Celsius scale. 
An ideal gas provides a perfect thermometric property as we see by the equation of 
state. Either pressure or volume is held constant and the other varies linearly with 
temperature if the gas is ideal. It is easiest to hold volume constant and a constant 
volume gas thermometer gives temeprature by measuring P and using this as the 
thermometric property in the previous equation 
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The gas will approximate more closely an ideal gas as it becomes more dilute reducing 
any potential interactions and so the accurate definition of the gas temperature is  
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The Celsius scale has two fixed points, the boiling and freezing points of water defined 
as 100 C and 0 C respectively. The other requirement of the Celsius scale (that follows 
directly) is that there are 100 subdivisions between the ice and boiling points. 
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In defining the Kelvin (absolute) scale using the gas thermometer it was decided to keep 
100 degrees between the ice and boiling points. This lead to the appearance of the 
number 273.16. 
 

2. Partial Differentials. 
 

Chain rule, reciprocal and cyclical relations, perfect differentials. 
In thermodynamics we are dealing with systems that are described by several 
independent variables and dependent variables. Eg. for a gas we have the 
variables/physical quantities P, V and T and an equation of state describing the 
relationship amongst them. Two of these will be independent variables whilst the other 
will be a dependent variable depending on the problem we are trying to solve. Similarly 
we have U and many other variables. Other systems will have other variables and 
equations of state describing the relationship amongst them. To work mathematically in 
this circumstance we need to use the language of partial differentials and its rules and 
relations fully described in the coursenotes. 
The chain rule. 
If z = z(x, y) is a function which depends on two independent variables, x and y 
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The reciprocal relation. 
Eg, When there are three variables, P, V, T to be considered  
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Taking the ideal gas equation of state for 1 mole RTPV =  
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etc. 
 
The cyclical relation.
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An easy way to remember this relation is to take the following row of variables 

   T  P   V    T 
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Taking the ideal gas equation of state for 1 mole RTPV =  
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Perfect Differentials.
A differential is said to be perfect if when carrying out a path integral from an initial to 
final state it’s value is independent of path. A test for the perfect differential as follows; 
Suppose z = z(x, y) is a function which depends on two independent variables, x and y. 
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For dz to be a perfect differential requires by definition that 
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Then the differential is imperfect and the integral of dz depends on the path. z is not a function 
of state. 
Example; An ideal monatomic gas 
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dU is a perfect differential and U is a state function 
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dQ is not a perfect differential and Q is not a state function. 
 

3. Heat & First Law. 
 
Work, heat and first law. Isothermal and adiabatic processes. Calculations of heat 
and work flows on a PV indicator diagram. 
 
Work 
An ideal gas (later a real gas) is taken as the paradigm that illustrates much of the course 
and the operations of thermodynamics and its laws. We have internal energy and the 
equation of state in various forms already and now need to define work to continue. To 
define work we consider a gas being compressed or expanded. With an infinitesimal 
change in volume it is straightforward to show tah the infinitesimal work Wd is given 
by 
 

PdVWd −=  
 
 
W is not a state variable and and as such the work done in expanding or compressing a 
gas depends on how exactly the process is carried out and not on the ammount of 
expansion/compression hence the line through the d of Wd to remind us of this. Wd  is 
an example of an imperfect differential. 
 
Sign convention;  
Work done on the gas, compression, is counted as positive. 
Work done by the gas, expansion, is counted as negative. 
Noting the negative sign in the equation for Wd we can see that this sign convention is 
reflected there. 
 
The course focussed on four primary processes involving expansion/compression; 

i) Isochoric processes where volume remained constant while P and T 
were allowed to vary. 
 

ii) Isobaric processes where pressure remained constant while V and T 
were allowed to vary. 
 

iii) Isothermal processes where temperature remained constant while V 
and P were allowed to vary. 
 

iv) Adiabatic processes where P, V and T were allowed to vary but the 
system was isolated and there was no energy (heat ) allowed to enter or leave during the 
process. 
 
These processes were dealt with in detail in lectures and in the coursenotes using PV 

diagrams and finding 0=∫−=∫= PdVWdW
f
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V
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The most important step in carrying out such integrals for the four processes is to write 
the pressure P as a function of V something that differs for each process. This is done in 
detail in the coursenotes but is as follows. 
 

i) Isochoric processes; dV = 0 and  

0=∫−= PdVW
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ii) Isobaric processes dP=0 and  
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iii) Isothermal processes dT = 0  

Using the equation of state and the fact that T is a constant,
V

nRTP =  and 

  ( )
i

f
if

V

V

V

V V
V

nRTVVnRT
V
dVnRTPdVW

f

i

f

i

lnln −=−−=∫−=∫−=∆  

 
iv) Adiabatic processes need the concept of heat in order to be addressed 

along with the first law, PdVQdWdQddU −=+=  
It will be shown later that in an adiabatic process where 0=Qd  

constPV =γ  

 Where γ is the ratio of specific heat capacities 
V

P
c

c=γ  and will depend on whether 

the gas is monatomic, diatomic etc. 
We return to this later but for now 
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First Law of Thermodynamics 
Sticking with the paradigm of the ideal gas. The work done on/by a gas depends on the 
details of the process and not on the initial and final values of the state variables (eg P 
and V). But if we go from any equilibrium state (Pi, Vi) to any other (Pf ,Vf) in any 
process other than an isothermal process the internal energy will change by an amount  

    ( )iiff VPVPU −=
2
3∆  

This depends only on the initial and final states and is independent of the process 
because U is a state variable. However, the work done, W∆ , will differ depending on 
the process therefore we cannot write 
    WU ∆∆ =  
as a general statement of energy conservation. The concept of heat is thus required and 
introduced into physics and The First Law returns energy balance to thermodynamics by 
taking into account the heat evolved in a process. 
 
  WQU ∆∆∆ +=   WdQddU +=  

 6



 
Where Q∆ is the heat absorbed or expelled by the system and as W∆ is path dependent 
then so to must Q∆  be. 
 
Heat 
To find the heat absorbed or expelled by the system in any process we must use the First 
Law and calculations of U∆  and W∆ for the process of interest and then use the First 
Law WUQ ∆∆∆ −= . 
Sign convention;  
Heat absorbed the gas is counted as positive. 
Heat expelled by the gas is counted as negative. 
 
Adiabatic processes 
In an adiabatic process there is no heat introduced to or extracted from the system under 
consideration, ie.  

0=Q∆  ⇒ WU ∆∆ =   and  WddU =  ⇒  PdVdU −=
 

But the equation of state PVU
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For any equilibrium state (P,V) along a path on a PV diagram that represents an 

adiabatic process. 3
5=γ  for a monatomic  gas where the state equation PVU

2
3

=  

applies. Using the equation of state nRTPV =  the adiabatic rule can be expressed as 
 
     constTV =−1γ

or as 
     constTP =− γγ1

 
Diatomic gases will have a slightly modified equation of state because there are more 
degrees of freedom (ways in which energy may be taken up) available to those 
molecules. 
 
 
 
 
Heat Capacities 
The introduction/abstraction of an ammount of heat, Q∆  , into/from a system will be 
accompanied by a temperature rise/drop, T∆  and a quantity, the heat capacity may be 
defined as 
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It is defined when the change in temperature is a reversible one, that is to say at each 
intermediate temperature the new state is an equilibrium state obeying the state 
equation. In this case the input or output of heat will always raise or lower the 
temperature by the same amount. The value of the heat capacity will depend on the type 
of process in which the heat was transferred in one further way 
Constant volume heat capacity when the volume of the system is held constant 
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At constant volume the First Law gives dQPdVdQdU =−=  ⇒ QU ∆∆ =  
And in terms of state variables only we may express the constant volume heat capacity 
as; 
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Where the equation of state for a monatomic gas, nRTPVU
2
3

2
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== , was used. 

Constant pressure heat capacity is defined when the heat is transferred whilst holding 
the pressure constant 
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Tp proceed further a new state function, Enthalpy is defined 
 
    PVUH +=  
and 
    QdPdVdUVdPPdVdUdH =+=++=  
Allowing a definition of the heat capacity at constant pressure in terms of state variables 
alone 
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We see that 
V

P
C

C== 3
5γ  from the adiabatic law. 

It should be noted that all of the above only applies to a monatomic gas, (no potential, 

rotational or vibrational contributions to U) where  nRTPVU
2
3

2
3

== . 
Diatomic gases 
Rigid diatomic gases have extra degrees of freedom as the molecule may rotate in two 
mutually orthoganal directions about the axis joining the atoms. This changes the 
equation of state 
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With a change to the expressions for the heat capacities 
 

    nR
T
UC

V
V 2

5
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=  

and 

    nR
T
HC

P
P 2

7
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=  

The adiabatic law becomes 
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Non-Rigid diatomic gases have two further degrees of freedom as they may vibrate 
about the axis joining the atoms as well as rotate. The two extra degrees of freedom 
represent kinetic energy of vibration and potential energy 
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The Van der Waals gas 
The best representation of a non ideal gas (one with potential interactions between the 
atoms/molecules is with the equation of state; 
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The pressure is modified with a term to account for these interactions and the volume 
term is modified to account for the fact that in a non-dilute gas the atoms themselves 
take up a volume thus reducing the free volume for the atoms of the system to move 
freely in. 
The internal energy of the Van der Waals gas may be found as 
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The heat capacity at constant volume 
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An adiabatic law for the Van der Waals gas as 

    ( ) constnbVT =−2
3

 
NB This is done in detail in the coursenotes. 
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4. Engines. 
 

Heat Engine, Heat Pump and Refrigerator. Simple schematic diagrams with heat 
and work flows. Efficiency. Carnot engine. 
 
In taking a fluid around a closed cycle on a PV diagram 

 

(i) The internal energy is unchanged, ∆U = 0 

(ii) The work done on/by the system depends on the details of the path taken. In a 

clockwise cycle work is done by the system whereas the same cycle counter 

clockwise results in work done on the system. 

(iii) The heat flow into/from the system depends on the details of the path taken. In 

a clockwise cycle heat flows into the system whereas the same cycle counter 

clockwise results in heat flowing from the system. 

(iv) From the first law, ∆Q = -∆W 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Heat Engines and Efficiencies 
The efficiency of either an engine, refrigerator or heat pump may be defined in twords 
as 

inputweWhat
outgetweWhatmeritoffigureefficiency ===η  

 

Engine Refrigerator Heat 
Pump 
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i) Engine; 
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W
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From the diagram and the first law 21 QQW −=  
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ii) Refrigerator; 
W
Q
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From the diagram and the first law 21 QQW −=  
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iii) Heat Pump; 
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Ideal Engines and Carnot Cycle 

Looking at the efficiency of an engine 
1

21
Q
Q

E −=η  we answer the question “what form 

of engine will give the greatest efficiency”?  
We need a cycle that will minimise the heat rejected to the low temperature reservoir, 
Q2 at the same time maximising the heat into the system as extracted from the hot 
reservoir, Q1 . Carnot recognised that this would be a cycle in which any heat flows 
should take place with little or no temperature differences ie. the heat flows must be 
reversible.
To achieve this he proposed a cycle composed of an isothermal expansion of the system 
at the temperature of the hot reservoir T1 with heat transfer to the system from the 
reservoir with no temperature difference and an isothermal compression of this system 
at the temperature of the cold reservoir with heat transfer to that reservoir from the 
system at T2. The two isotherms are joined by two adiabatic processes (no heat flow) 
taking the expanded substance from the high to the low temperature and taking the 
compressed substance from the low temperature to the high temperature. 
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Carnot’s system leads to two statements about the ideal engine; 
i) Any Carnot cycle running between two heat reservoirs at temperatures T1 and T2 
will have a greater efficiency than any other cycle running between those same two 
temperatures. 
 
ii) The efficiency of any Carnot engine running between the same two heat 
reservoirs at temperatures T1 and T2 will be the same irrespective of the material from 
which the system is composed or its size. Ie. the efficiency of the Carnot engine 
depends only upon the temperatures of the two reservoirs. 
 
Absolute Thermodynamic Temperature Scale
Kelvin realised that he could used the Carnot statements to define an absolute 
temperatuer scale independent of any system, material etc. 

1

21
Q
Q

C −=η  

Independent of the material of the system and dependent only upon the temperatures of the 

two reservoirs. 

Therefore define the thermodynamic temperature, θ , by  
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Fix the scale factor by defining 16273.intPoTriple =θ  and θ is then an absolute 

(thermodynamic) temperature scale. 

It is straightforward to demonstrate, by analysing the Carnot cycle, that GasT≡θ . 
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Ideal refrigerators and heat pumps may be defined around the Carnot cycle and have 
efficiencies 

Q1

Q2

Adiabatic,  
T2 → T1

Isotherm,T2

Isotherm, T1

Adiabatic,  
T1 → T2

V

W

The Carnot 
Cycle 
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NB.  
i) For an engine to have 100% efficiency the low temperatuer reservoir must be at 
absolute zero. 
ii) If the reservoir temperatures are very close then the heat pump and refrigerator 

efficiencies become very large, in fact much greater than 1 but the engine efficiency 

becomes very small approaching zero. The same is true of non-Carnot systems. 

   
Second Law of Thermodynamics
First given in the form of empirical statements; 

(i) The Kelvin-Planck Statement: It is impossible to devise a device 
that , operating in a cycle, produces no other effect than the extraction of heat from a 
single body (a reservoir) with the production of an equivalent amount of work.  

Heat cannot be converted into work with 100% efficiency. 
 
(ii) The Clausius Statement: It is impossible to devise a device that , 

operating in a cycle, produces no other effect than the transfer of heat from a cooler 
to a hotter body (reservoir). 

Heat cannot flow spontaneously from a colder to a hotter body. 
 
Both statements while seemingly different propositions concerning heat and work are 
equivalent and both statements of the Second Law. 
 

5. Entropy. 
 

Clausius inequality. Entropy as a new function of state. Boltzmann’s 
microscopic description of entropy. Entropy calculations. 
 

Clausius Inequality 
From the Carnot cycle analysis we have 
 

2

1

2

1
T
T

Q
Q

=   ⇒  
2

2

1

1
T
Q

T
Q

=  

 
Clausius considered an arbitrary thermodynamic system undergoing a cycle including 
both heat flow and work processes and constraining all of the heat flows to be from a 
reversible Carnot engine operating from a hot reservoir at temperature T0 . The arbitrary 
system at temperature T is supplied incremental heat δQ(T) at that temperature by the 
Carnot engine at the same time causing the system to do incremental work δWSys. This 
will involve the Carnot engine extracting incremental heat δQ(T0) from the reservoir 
and doing incremental reversible work δWRev as shown in diagram. With reference to 
the diagram 
 

 13
Reservoir at 

T0



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is important to note that dQ(T0), dQ(T) and dWC are cyclical quantities wrt the Carnot 
engine but they are incremental quantities wrt the system and many Carnot engines drive 
a complete cycle of the system. 
 
1. dQ(T0) is the heat received from the reservoir by the Carnot engine during 
one or more complete cycles of the Carnot engine. 
2. dQ(T) is the heat rejected in one or more complete cycles of the Carnot engine 
consistent with constraints set by the requirements of the Carnot cycle, 

T
)T(dQ

T
)T(dQ
=

0

0  

3. dWC is the work performed in one or more complete cycles by the Carnot 
engine consistent with constraints set by the requirements of the Carnot cycle, 

)T(dQ)T(dQdWC −= 0  
4. dWSys is the increment of work performed by the system as it executes a cycle 
For the Carnot engine we use the first law to obtain; 
   ( ) ( ) 00 =+− TdQTdQdWC  
and 

   ( )
( )00 TdQ
TdQ

T
T

=  

 
Eliminating ( )0TdQ  to obtain 
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   ( )TdQ
T
TdWC ⎟

⎠
⎞

⎜
⎝
⎛ −= 10  

The net work of the combined system and Carnot engine for one complete cycle is;  
   ∫+∫=

cycle
System

Sys

cycle
System

CNet dWdWW  

The second term on the RHS relates to dQ(T) via the first law applied to the system alone 
   ( )∫ ∫=

cycle
System

cycle
System

Sys TdQdW  

Make substitutions to obtain 

   ( ) ( )∫+∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −=

cycle
System

cycle
System

Net TdQTdQ
T
TW 10  

Which simplifies to 

   ( )
∫=

cycle
System

Net T
TdQTW 0  

If WNet is positive we have a compound system that violates the Kelvin-Planck statement 
ie.a device would exist whose sole effect is the exchange of heat with a single reservoir 
and the creation of an equivalent amount of work. 
If WNet is negative or zero no principles are violated as we can always convert work 
completely to heat as did Joule in his experiments demonstrating the first law. 
Ie. 

    ( ) 00 ≤∫=

cycle
System

Net T
TdQTW  

This is The Clausius Inequality  
 

Whenever a system executes a complete cyclic process the integral of T
Qδ  around the 

cycle is less than or equal to zero. 
T0 is positive and the Clausius Inequality is usually stated as 
 

    ( ) 0≤∫

cycle
System T

TdQ  

 
For a reversible system cycle which we can go around the cycle in either sense with only 
the sign of the heat flow changing we have 
 

0≤∫
iseanticlockw

R
T

dQ   and 0≤∫
−

clockwise

R
T
dQ  

 
Therefore 

     0=∫
Cycle

R
T

dQ   REVERSIBLE 

and  
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     0<∫ T
Qd

   IRREVERSIBLE 

Note that the quantity 
T

dQR  is behaving exactly as a state function where its integral 

over a cycle sums to zero, cf U , H , P and V 
 
Entropy 

To see the significance of 
T

dQR  we consider 

an arbitrary closed reversible cycle and go from 
an initial state i to a final state f via either the upper 
or lower paths as shown in the diagram opposite. 
Around the cycle we have 

0=∫+∫=∫
f

i

R
i

f

RR

lowerupper
T

dQ
T

dQ
T

dQ  

or 

∫=∫−=∫
f

i

R
i

f

R
f

i

R

upperupperlower
T

dQ
T

dQ
T

dQ  

 

∫=∫
f

i

R
f

i

R

upperlower
T

dQ
T

dQ  

 

The path integral of 
T

dQR from an initial to a final equilibrium state is independent 

of the path taken (or process used) unlike the path integral of . The quantity RdQ
T

dQR  

again displays the property associated with a function of state and is called Entropy 
 

T
dQdS R=     

 

   ∫==−
f

i

R
if T

dQSSS ∆  

lower path 

upper path 

f 

i 
P

V 

While the state function, S has a unique value for a particular equilibrium state it should 
be noted that the above defines only entropy difference 
 
Example. Ideal gas 
 
First Law states  PdVQddU R −=  
 
It follows that 
 

dV
T
P

T
dU

T
QddS R +==  

We already have an equation of state 
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PVU
2
3

=   nRTPV =   
V
nR

T
P
=  

dV)T,V(bdT)T,V(a
V
dVnR

T
dTnRdS +=+=

2
3

 

with  

   
T
nRa
2
3

=    
V
nRb =  

We see that V and T are the natural variables of S and we can test to find if S is a perfect 
differential, 
 

0
2
3

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=
∂
∂

T
nR

VV
a     0=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=
∂
∂

V
nR

TT
b  

therefore 

T
b

V
a

∂
∂

=
∂
∂  

 
and dS is therefore a perfect differential. 
 
Because V and T are the natural variables of S we can write 
 

dV
V
nRdT

T
nRdV

V
SdT

T
SdS

TV
+=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
2
3  

 

T
nR

T
S

V 2
3

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂   ⇒  )V(fTlnnRS +=

2
3  

and  
 

V
nR

V
S

T
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂    ⇒  )T(gVlnnRS +=  

 
Both of these together give 
 

constVlnnRTlnnR)T,V(S ++=
2
3  

 
Examples of entropy change 
i) Water at temperature T left in garden (ie heat  reservoir) to warm up to ambient 
temperature, Ta  

∫==−
f

i

R
if T

dQSSS ∆  

The final temperature is Ta and in between T and Ta the temperature in the integral 
changes continuously. Also we know that dTmcdQ OHPR 2

+=  

T
T

mc
T
dTmcS a

eOHP
T

T
OHP

a
log

22
=∫=∆  

ii) Water at temperature T placed in a freezer to cool down to -TF 
 

 17



∫=
f

i

R
T

dQS∆  

Needs to be done in three parts first water cooling to 0 C followed by ice formation and 
finally ice cooling to -TF 

  ∫++∫= → FT
OH

Ice
P

OHIceOH

T
OH

OH
P T

dTmc
ml

T
dTmcS

15.273

15.273

2
22

2
2

15.273
∆  

 

 
15.273

log
15.273

15.273log
2

22
2

2 F
eOH

Ice
P

OHIceOH
eOH

OH
P

Tmc
ml

T
mcS ++=

→∆  

 
 iii) We may be asked to find the entropy change of the garden (universe) in 
pt i) 

     
aT
QS ∆∆ =  

Where  ( )TTmcQ a
OH

P −−= 2∆

     
( )
a

a
OH

P
T

TTmc
S

−
−=

2

∆  

Note the signs for ∆Q where it is positive for heat absorbed and negative for heat given 
up. In parts i) and iii) whethere the heat is absorbed by the water or the ambient depends 
on whether T < Ta and the way the calculation is set up incorporates this with the correct 
sign for ∆Q. 
 
Note also that there is no reason why OHGarden SS

2
∆∆ =  as entropy is not a conserved 

quantity but it will either be conserved or increased in an isolated system undergoing 
thermodynamic processes where it is conserved in the case of reversible processes. In 
other words; 0

2
≥+= OHGardenNet SSS ∆∆∆  in all processes. This is another way of 

stating the Second Law of Thermodynamics. 
 
 iv) Water with mass m1 at T1 is mixed with water of mass m2 at T2 and the 
mixing takes place adiabatically. Calculate the entropy change 
We need to begin by calculating the final temperature, Tf and this we do by recognising 
that in adiabatic mixing there is no net heat flow 
 
  ( ) ( ) 0221121 =−+−=+ TTcmTTcmQQ fPfP∆∆  
 
   ( ) ( ) 0221121 =−+−=+ TTcmTTcmQQ fPfP∆∆  
 

   
( )

21

2211
mm

TmTm
T f +

+
=  

Now we find ∆S as the sum of two entropy changes ∆S1 plus ∆S2 calculated as 
previously 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
∫+∫=

2
2

1
121 loglog

21
T
T

m
T
T

mc
T
dTm

T
dTmcS f

e
f

eP

T

T

T

T
P

ff
∆  
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This is an example of entropy of mixing. Note in the above example that if T1 = T2 then 
both equal Tf and then ∆S = 0 
 
 v) Joule free expansion 
 
 

2V VV

 
 
 
 
 
 
 
 
Previously we had 

   constVlnnRTlnnR)T,V(S ++=
2
3  

And therefore 

i

f

i

f
if V

V
lnR

T
T

lnRSSS +=−=
2
3∆  

 
There is no heat flow and no work done (walls are adiabatic and rigid ) and therefore no 
change in internal energy or temperature. 
 

   022
>== lnR

V
VlnRS∆  

The entropy has increased with no heat flow. 
 
There are many examples of calculating entropy changes in the lecture notes and in the 
coursework/solutions on the website. In every example for an isolated system we find 
 

0≥NetS∆  
 
Where the equality only holds for reversible changes.  
 
This is another statement of the Second Law. 
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i) Clausius Inequality and Second Law 
 
 

irreversible 

reversible f 

i 
V

P 

 
 
 
 
 
 
 
 
 
 
 
 
 
We consider a cycle with an irreversible path from an initial state, i, to a final state, f, 
followed by an reversible path back from f to i 
The Clausius inequality states 

    0≤∫+∫=∫
i

f

R
f

i extext T
Qd

T
Qd

T
Qd  

 
NB. When we use the Clausius inequality we distinguish between reversible and 
irreversible processes and the temperature used in the inequality. If the process is 
irreversible then the temperature is that of the external source supplying the heat to 
the system, Text , whereas in the case of a reversible process Text = TSys = T and no 
distinction is made. Recall that in the definition of dS based around this it is 
reversible heat flows that are the basis of  the definition! 
 
It follows from the above that 

SSS
T
Qd

T
Qd

T
Qd

if
f

i

R
i

f

R
f

i ext
∆=−=∫=∫−≤∫  

Whence for any change between equilibrium states i and f 

∫≥
f

i extT
dQS∆  , 

extT
dQdS ≥    (Irreversible change) 

∫=
f

i

R
T

dQS∆   
T

dQ
dS R=    (Reversible change) 

If we consider a thermally isolated system with ∆Q = 0 then clearly from the above 
inequality it follows that 

0≥S∆     (Thermally isolated system) 0≥dS
and for a reversible change 

0=S∆     (Reversible change in thermally isolated system) 0=dS
Again the statement; for a system taken in isolation (the universe), the sum of the 
entropy changes of all the parts is such that 0≥S∆ . This is an equivalent statement to 
the Clausius inequality. 
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In summary;  

 
1) The entropy of a thermally isolated system can only increase or 
remain constant. 
2) Spontaneous changes in isolated systems lead to an increase in 
entropy. 
3) In a thermally isolated system, S will tend to the maximum 
value possible 
4) In a totally isolated system, S will tend to the maximum 
possible value at fixed U ie. U will remain constant. 

 
 

These are all; 
ENTROPY STATEMENTS OF 
THE SECOND LAW OF THERMODYNAMICS 

 
∆SUniverse ≥ 0 

 
 
This expression of the second law is related (of course) to the two statements by 
Clausius  and by Kelvin and Planck. 
 
a) Kelvin’s statement was that heat could not be converted into work with 100% 
efficiency, or equivalently that some heat must always be ejected as waste from the 
engine into a cold reservoir.  
We can relate this to the form of the second law given by the inequality by asking what 
happens to entropy if we can convert heat to work with no waste heat being rejected to a 
cold reservoir. The heat has come from a hot body and therefore involves a decrease  

    0
1

1

1
<−=∫−=

T
Q

T
dQ

S∆   

in the entropy of that body. The work performed of itself has no effect on the entropy of 
the system or universe and the second law as an inequality is violated, entropy has been 
reduced. The Kelvin-Planck is therefore equivalent to the inequality. 
 
b) Clausius’ statement that heat could not flow spontaneously from a colder to a 
hotter body can be related to the new entropic second law by imagining the scenario, 
breaking Clausius’ statement, where a glass of water is placed in a warm oven and ice 
forms spontaneously as the colder body, the water , loses heat to the warmer body, the 
oven. The water as it cools loses heat and will see a decrease in its entropy  

OHOH
OH T

Q
T

dQS
22

2
∆∆ −=∫−=   

whilst the warmer oven receiving the heat will see an increase in its entropy of  

    
OvenOven

Oven T
Q

T
dQS

∆
∆ +=∫+= .  

We see immediately that the occurrence of the temperature in the denominator of these 
expressions means that the same amount of heat has transferred from the water and to the 
oven and yet the change in entropy is much larger for the colder water than it is for the 
warmer oven and  
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  0
2

2

2

<⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=−=

OvenOH

OvenOH

OHOven
Universe TT

TT
Q

T
Q

T
QS ∆∆∆∆  

The second law in its entropic form is again violated. Heat cannot therefore leave a colder 
body and flow to a hotter body as this will inevitable lead to a decrease in entropy in 
contravention of the entropic forms of the second law. 
 
c) Engines and the waste heat. 
We can see now that the “waste” heat rejected into the cold reservoir in any real engine is 

absolutely necessary as it raised that body’s entropy by an amount 
2

2

2 T
Q

T
dQ

S =∫=∆  such 

that  

   0
2

2

1

1 >+−=
T
Q

T
QSunivese∆  

 
Ie the entropy is increased and because the heat came from a hot body and was rejected 
to a colder body, from our measure of entropy where the temperature of the body 
appears in the denominator, this allows a smaller amount of heat Q2 < Q1 to be rejected to 
the colder body but still for there to be a greater entropy increase to allow full compliance 
with the second law and yet leave some energy, Q1 – Q2 from the hot body to be available 
to perform useful work, W. 
 
 
The Thermodynamic Identity. 
 
With the definition of entropy  

T
dQ

dS R=  

We recognise that we can write dQ in a form involving only state functions 
 
    TdSdQ =  
 
This allows the First Law to be written in terms of state functions only. For example we 
have for a gas 
 
    PdVTdSdU −=  

This is known as the Thermodynamic Identity. 
 
All differentials in this identity are now perfect differentials, independent of path! 

dV
V
UdS

S
UPdVTdSdU

SV
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=−=  

This tells us that U can be described using only the variables S and V ie. U = U(S, V) with 
S and V being a pair of natural variables that specify the behaviour of the internal energy. 
Furthermore we can from the previous equation that 
 

T
S
U

V
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂   P

V
U

S
−=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂  

Or alternatively 
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  dV
V
SdU

U
SdV

T
PdU

T
dS

UV
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=+=
1  

Implying that S can be specified completely through the variables U and V ie. S = S(U, V)  
This allows us to write; 

   
TU

S

V

1
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂    

T
P

V
S

U
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂  

There are many examples of using the p-artial differential of some thermodynamic 
function with respect to its natural variables to obtain expressions for other 
thermodynamic functions a practice that is frequently very useful. 
 
Using the entropic version of heat flow we can obtain equations for the heat capacities 
at constant volume or pressure 
 

VVVTV

R
T

V Tln
S

T
ST

T
STitlim

T
QitlimC ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

→→ ∆
∆

∆
∆

∆∆ 00
 

and 

PPPTP

R
T

P Tln
S

T
ST

T
STitlim

T
QitlimC ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛=⎟

⎠
⎞

⎜
⎝
⎛=

→→ ∆
∆

∆
∆

∆∆ 00
 

By measuring either CV or CP we may determine S by integration. 
Microscopic Interpretation of Entropy 
Ludwig Boltzmann was the first to give a microscopic explanation of entropy as follows; 
Entropy is a measure of the MICROSCOPIC probability of finding the system 
under study in a given MACROSCOPIC equilibrium state. 
By probability we mean here a number that is proportional to the number of distinct 
ways a system can arrange itself microscopically to achieve a particular macroscopic 
equilibrium state. 
 

S(U,V)=kBlnΩ(U,V) 
 
 
 
Ω is the number of microscopic arrangements that will give the macroscopic arrangement 
that it is specified for and for a gas 

( )

N

Position
X
V

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

3∆
Ω   

( )

N
rms

Momentumn
p

p
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= 3

3

∆
Ω  

 
S is an extensive variable and we can add entropies to find an overall entropy eg. 
 
  MomentumPositionNet SSS +=  
 
  ( ) MomentumPositionBMomentumPositionBNet kkS ΩΩΩΩ lnlnln =+=  
 
This property of the extensivity of S can be applied in many ways eg when mixing two 
substances we may find the entropy of each and add to find the overall entropy. 
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The Carnot Cycle on a T-S diagram 
 
 

T1

Q1

Q2

S2S1

T2

S

Isotherm, T1

adiabat 

Isotherm, T2

adiabat 

∆Q = ∆T∆S 

T 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We may represent the Carnot cycle (or any other) on a T-S diagram as shown above 
where the isotherms are horizontal lines and the adiabats where no heat is absorbed 
must be vertical lines of constant entropy or isentropes. 
The area inside the rectangle representing the Carnot cycle on a T – S diagram is  

  STQQdSTdST
S

S

S

S
∆∆=−=∫+∫ 2121

1

2

2

1

By application of the first law and the fact that over a cycle ∆U = 0 the area is also the net 
work done ie. it is the total heat absorbed.. 
Consideration of the T-S diagram for a Carnot engine also allows us to obtain the Carnot 
form of the efficiency straight away by simple calculation of areas 
 

   
1

2

1

21

11
1

T
T

T
TT

ST
ST

Q
W

E −=
−

===
∆
∆∆η  

 
 
6. Photons & Paramagnets 

 
Photon gas and equation of state. Planck radiation distribution, Stefans 
law and Wiens law. Paramagnets and work. Curies law. 

 
Thermodynamics of Photons 
 
The following equations all apply to photons 
 

 khp h==
λ

 (de Broglie )  νhE =  (Planck) 

  (Einstein)  pcE = cv =
r   (Einstein ) 

Using these we can find 

    Ec
c
Evp =⎟
⎠
⎞

⎜
⎝
⎛=•

rr  
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For an ideal monatomic gas the equation of state can be written in the form 
 

   UvpNPV
3
2

3
=•=

rr    (Ideal Gas) 
All photons have the same momentum (if the radiation is monopchromatic) and the 
average is no longer necessary. Thus for photons this equation of state, using what we 
have so far derived becomes 

   UENPV
3
1

3
==     (Photon Gas) 

Or we can define an energy density, V
Uu = and have for the pressure, 

 

    uP
3
1

=     (Photon Gas) 

 
We are interested in the radiation field in a cavity that is in thermal equilibrium at ba 
temperature T.  Generally the radiation in a cavity is spread across all wavelengths and 
thus 

     λλduu ∫=
∞

0
In equilibrium uλ must be isotropic (equal numbers of photons at any given 
wavelength travelling in any given direction) just as in a material gas where the 
molecules will have an isotropic distribution due to many random collisions with the 
walls. This means that it is also the case that uλ must be independent of the wall 
material. (See coursenotes) The only property of a cavity that uλ can depend on is the 
temperature, T 

)T(uu λλ = . 
And therefore from this it follows that 

     )T(uduu =∫=
∞

λλ
0

According to an argument by Boltzmann the cavity radiation can be treated like a P-V-T 
system and therefore the thermodynamic identity may be used; 
    PdVTdSdU −=  

V)T(u)T(U =   ⇒ ( ) PdVTdSV)T(uddU −==  

We can use the equation of state uP
3
1

=  

 

   ( ) dV)T(uTdSV)T(ud
3
1

−=  

Rearranging 

  ( ) udVVdTuudVTdS /
3
1

++=   ⎟
⎠
⎞

⎜
⎝
⎛ =

dT
duu /  

dV
T
udTV

T
udS

/
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

3
4  

T and V are the natural variables of S as found previously for a gas and the above 
equation is in the form; 
   dV)T,V(bdT)T,V(adS +=  
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dS is a perfect differential, therefore, 
T
b

V
a

∂
∂

=
∂
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Again using T and V as natural variables of S we may write 
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The only consistent solution to these two forms of S is 

    constVATS += 3
3
4  

 
If we require that at T = 0, S = 0 then we require that const = 0. 
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3
4

=    3T
V
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Defining some properties of the walls of the cavity as follows; 
(i) αλ is the spectral absorptivity of the surface of the wall at temperature T 
(ii) αλdλ the fraction of incident energy that is absorbed by the surface between 

λ and λ + dλ.. 
(iii) ελ is the spectral emissivity of the surface at temperature T 
(iv) ελdλ is the energy emitted per unit area per second by the surface between λ 

and λ + dλ. 
The number of particles in a gas of density n striking unit area of the wall in unit time is 
given by 

   vn
4
1    

where for photons the mean speed cv =  
The energy absorbed per unit area per second in the wavelength interval (λ , λ + dλ) is 
therefore 

( ) ⎟
⎠
⎞

⎜
⎝
⎛= λαλ λλλ dEncEabs 4

 ( ) λαλ λλ ducEabs 4
=  

 
In equilibrium the energy absorbed is equal to the energy emitted and thus 

    λελα λλλ dduc
=

4
 

    )T(uc
λ

λ

λ
α
ε

4
=  

The quotient on the left hand side, 
λ

λ
α
ε

 is a universal function of λ and T irrespective of 

the material of the surface. This is known as Kirchoff’s Law.
A black body is one where all of the radiation falling on it is absorbed,  1=Blackbody

λα

    )T(ucblackbody
λλε 4

=  

4

00 444
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∞∞
λλε λλ  

Total energy emitted is  
 

4TTot σε =   The Stefan Boltzmann law 
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−−−×== KWm.cAσ  is the Stefan constant 

It also follows that 
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The first bracket is the density of states, the second bracket is the Bose Einstein 
distribution function describing the probability of occupation of a bosonoc state at 
energy νhE = and the third bracketb is the energy of a single photon 
Stefan’s constant is given by 

     23
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Thermodynamics of Paramagnets 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

equivalent to 

i 

i 
a 

B 

m 

|m| = ia

 
An electron with its intrinsic spin is considered as a small magnet with dipole moment  

22410279
2

Am.
m
em

e
e

−×==
hr  

Thermodynamics is concerned with a body containing many of these dipoles and their 
alignment in an applied magnetic field 0B

r
 

In the applied field the dipole acquires an energy 

0Bmu e
rr

•−=  
Giving a sample containing many of theses small dipoles an overall magnetic moment, 
M, described by  

M
V

Bm 00 µµ ==
M  

And thus a total field exists 
   MBBBB m 000 µ+=+=  
Here M is the magnetic moment per unit volume. 
The work done on the paramagnetic system by the external applied field can be shown 
to be 

dW = +B0dM 
Note the sign 
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Using this we may write down the first law for a paramagnet with a fixed volume if we 
compare for a gas where we had the thermodynamic identity 
 
   dU = TdS – PdV 
 
For the paramagnet in comparison we have;  
 
 
   dU = TdS + B0dM 
 
Curies Law and Equation of State 
M is is proportional to the applied field at low applied fields and 
  Bm = µ0M = χmB0

Where the quantity χm is the magnetic susceptibility. Experimentally down to low 
temperatures 

Tm
C

=χ  

Known as Curie’s Law  
 
where C is Curie’s constant specific to a given material. 
We can then write 

00M B
T
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=µ    M⎟
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V
T

B
C

0
0

µ
 

 
Where the latter is the equation of state of a paramagnetic system at low temperatures. 
Specific heat capacities may be defined for a paramagnet  
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How these heat capacities depend on T and V take a simple form as the applied field, B0 
, tends to zero. 
 

   200 0
000 T

Vb),T(C)B,T(C BBB ===  

 
This is Schottky’s Law
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Paramagnetic Cooling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The basic principles of adiabatic cooling can be shown on a S-T diagram. It can be 
shown that S(T) has the form indicated. The entropy of a paramagnet is determined by 
the degree of randomness of the spins. At low temperatures in a small magnetic field the 
spins align with the field and the entropy decreases. As temperature is raised the spins 
become disaligned and the entropy saturates when the spins are completely random. At 
a higher applied magnetic field the same arguments hold except that it requires a higher 
temperature to randomise the spins. 
 

6. Maxwell Relations, Phase Changes & Third Law. 
 

How to find the natural variables of a function of state. How to obtain 
new relationships amongst thermodynamic variables. New state 
variables, G, F and H. Clausius Clapeyron equation. The Third Law of 
Thermodynamics. 

 
State Functions, Natural Variables and Maxwell Relations 
There are two more state functions that need to be introduced,  in introducing them the 
idea of natural variables is reenforced and the properties of perfect differentials used to 
obtain Thermodynamic relations known as Maxwell Relations illustrated. 
 
The Gibbs Free Energy 
The Gibbs function or Gibbs free energy for a fluid is  
 
    PVTSUG +−=  
 
The incremental of G is 

TiTf
T

B0 ≈ 0 

Isothermal 
Step 1 ⇒2 

Adiabatic 
Step 2 ⇒ 3 

B0 ≠ 0 S(T,B0) 

    VdPPdVSdTTdSdUdG ++−−=  
 
But from the First Law in the form of the Thermodynamic Identity we have 
 
    PdVTdSdU −=−  
so 
    VdPSdTdG +−=  
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Any change in G depends only on changes in T and P which are the natural variables 
of G  
    ( )PTGG ,=  
 
Using the natural variables of G to write the incremental dG as 
 

    dP
P
GdT

T
GdG

TP
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  

 
By comparing again the coefficients of the increments of the natural variables in the two 
equations 
 

   
PT

GS ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=    
TP

GV ⎟
⎠
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⎜
⎝
⎛
∂
∂

=  

 
These are expressions for the thermodynamic parameters, S and V in terms of partial 
differentials of the Gibbs function wrt one of its natural variables! 
 
By making use of the properties of  perfect differentials we may write, 
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G
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G
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Using the expressions for S and V found previously we are able to write  
 

   
PT T

V
P
S

⎟
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⎞

⎜
⎝
⎛
∂
∂
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This is known as a Maxwell Relation 
 
Six simple steps to get from the definition of a Thermodynamic state function to a 
Maxwell relation via thew Thermodynamic Identity. 
 
The significance of the Gibbs Free Energy lies in situations where pressure and 
temperature are held constant. In such a circumstance in a closed system 
 

0=+−= VdPSdTdG  
 
The equilibrium condition for a system held at constant pressure and temperature 
is that the Gibbs free energy should be a minimum.  
Equivalently any changes in the system will be such as to reduce G or to leave it 
unchanged. 
 
The Helmholtz Free Energy 
i) Definition. 
The Helmholtz free energy for a fluid is  
 
    TSUF −=  
 
ii) The incremental of F is 
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    SdTTdSdUdF −−=  
 
iii) From Thermodynamic Identity we have 
 
    PdVTdSdU −=−  
so 
    PdVSdTdF −−=  
iv) Natural Variables of F 
Any change in F depends only on changes in T and V which are the natural variables of 
F  
    ( )VTFF ,=  
 
Using the natural variables of G to write the incremental dG as 
 

    dV
V
FdT

T
FdF
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⎛
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=  

v) Comparing incrementals
By comparing again the coefficients of the increments of the natural variables in the two 
equations 
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These are expressions for the thermodynamic parameters, S and P in terms of partial 
differentials of the Helmholtz free energy wrt one of its natural variables! 
vi) Finding the Maxwell Relation 
By making use of the properties of  perfect differentials we may write, 
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Using the expressions for S and V found previously we are able to write  
 

    
TV V

S
T
P

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂    

This is another Maxwell Relation 
 
The significance of the Helmholtz Free Energy lies in situations where volume and 
temperature are held constant. In such a circumstance in a closed system 
 

0=−−= PdVSdTdF  
 
The equilibrium condition for a system held at constant volume and temperature is 
that the Helmholtz free energy should be a minimum.  
Equivalently any changes in the system will be such as to reduce F or to leave it 
unchanged. 
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Enthalpy 
We can also remind ourselves at this stage of an earlier state function, Enthalpy, H and 
go through the same procedures to obtain expressions for thermodynamic quantities and 
another Maxwell relation. 

i) Definition. 
ii)  

   PVUH −=  
 
ii) Incremental 
   VdPPdVdUdH ++=  
 
iii) From the Thermodynamic Identity  TdSPdVdU =−  
 
   VdPTdSdH +=  
 
iv) The Enthalpy H has natural variables S and P and therefore 
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v) Comparing with the incremental 
 

   
PS

HT ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=   
SP

HV ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=  

 
vi) And the Maxwell relation 
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Gibbs Free Energy, Phase Changes and Clausius Clapeyron equation. 
A substance eg. the fluid in our PVT system paradigm will exisit in phases other than 
that of a gas where at low temperatures and high pressures the intermolecular 
interactions may cause the fluid to change from gas to liquid or gas/liquid to solid. Such 
phase changes are described on PVT diagrams with phase boundaries and the changes 
that occur in crossing the phase boundary. Consider that the substance has a total mass 
M and it co-exists in two phases eg. vapour phase and liquid phase. As we change phase 
(by altering P, V or T) conservbation of mass requires; 

ttanconsMMM =+= LV  
 
If gV and gL be the Gibbs functions per unit mass or specific Gibbs function for each phase 

LLVV gMgMG +=  
 
The condition for equilibrium at fixed P and T is that the Gibbs function must be 
minimized ie. dG = 0  
    )gMgM(ddG LLVV +=
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    LLVV dM)P,T(gdM)P,T(gdG +=
 
Conservation of mass requires 
   ⇒   0=+= LV dMdMdM LV dMdM −=
Giving 
   ( ) 0=−= VLV dMggdG  for any dMV

We then have the equilibrium condition for the co-existence of the phases that 
      )P,T(g)P,T(g LV =
along the liquid/vapour co-existence line in the P-V diagram and similarly 
    )P,T(g)P,T(g SL =
and 
    )P,T(g)P,T(g SV =
Along the other phase coexistence lines. 
The g(T,P) are three different functions and the above condition is only true along the 
co-existence lines and furthermore at the triple point; 
    )P,T(g)P,T(g)P,T(g SLV ==
For first order phase changes eg. the liquid-vapour transition, the liquid-solid transition, 
the transition is accompanied by a change in density and also in a latent heat. Sticking 
with the Liquid-Vapour transition 
 
    )dPP,dTT(g)dPP,dTT(g ++=++ VL

Using Taylor’s theorem 
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Using the thermodynamic relations; 
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Taking a fixed quantity of matter from the vapour state to the liquid state in a phase 
transition will involve an increase in order with an accompanying decrease in entropy. 
 
  LV →−== L-HeatLatentSTQR ∆∆  
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  LV →−== lsTQR ∆∆  
Where l 

VL
 is the latent heat of condensation (vapour to liquid) per unit mass and the 

minus sign ensures that the change in entropy is negative as required. 
NB. Latent heats are usually given as positive quantities and thought needs to be 
given as to what sign is needed. 
 

  
T

ss LVVL →−=−
l  

Therefore 

    
)vv(TdT

dP
LV

LV

−
= →l

 

This is the Clausius Clapeyron equation.
 
For changes from liquid to vapour or from solid to vapour the following simplification 
is possible; 
vV >> vL and it is a good approximation to treat the vapour as an ideal gas. Consider 1 
mole and let lV→L and vV be the latent heat and volume per mole. 

    
P

RTv =V  

 

    22 RT

P

P
RTdT

dP LVLV →→ ==
ll

 

lV→L can be taken as a constant over a small temperature/pressure range 
 

2RT
dT

P
dP

LV →= l  

Integrating 

    const
RT
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1

LVl  

which becomes 
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Where const = 
0

0 T
Pln LV →+

l
 

Where P0 and T0 are any known pressure, temperature pair along the liquid-vapor curve. 
The same approximations can be used for the solid-vapour transition. 
The equation can be re-written 
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Describing the co-existence curve 
 
At the triple point; 

  21
11 C
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C
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TPTP
TP +−=+−= →→ SVLV ll  
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The Third Law of Thermodynamics 
The third law of thermodynamics attempts (among other things) to give information 
about the entropy at absolute zero, S(0). 
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S might be found by making the integral into a definite integral 
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C
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In other words S(T) can be obtained to some arbitrary constant S(T0) and we could make 
the reference temperature T0 absolute zero. 
There are at least 4 statements that describe the Third Law; 

(i) Macroscopic Statement. 
It is impossible to reduce the temperature of a macroscopic system to absolute zero in 
a finite number of steps or  processes. 
 

(ii) Nernst Statement or Nernst heat theorem (1906) 
The entropy difference between two distinct equilibrium states of a substance tends to 
zero at absolute zero.  
 

(iii) Planck Statement (1911) 
The entropy of all perfect crystals is the same at absolute zero and may be taken as 
zero. 
 

(iv) Simon Statement. 
The entropy component from each aspect of a system which is in internal 
thermodynamic equilibrium tends separately, to zero at absolute zero. 
 
The third law carries with it a number of consequences; 
 
a) Specific Heat Capacity tends to zero as T → 0. 
∆lnT → -∞ as T → 0 so it is essential that CV → 0 in order that ∆S → 0. 
 
b) Thermal expansion goes to zero at low temperatures. 
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Where the Maxwell relation 
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However the Nernst formulation tells us that entropy change ∆S → 0 as T → 0 therefore 
implying that 0→β  as T → 0. 
 
c) Curies Law breaks down at low temperature. 
The Curie law states  

    
T
C

=χ  
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The third law carries the implication that 0
0

→⎟⎟
⎠

⎞
⎜⎜
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∂
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TB
S  at low temperatures. This is 

incompatible with the Curie law 
 
 
d) Ideal gases are a fiction at T = 0 
The ideal monatomic gas has been used over and over to act as the paradigm system 
allowing very useful results to be obtained. One of those results has already been 
destroyed by the third law at absolute zero namely the finding that  for 1 
mole of gas. We have seen that both heat capacities go to zero negating this result. 
Further problems arise for the ideal gas when we consider the entropy of an ideal gas 

RCC VP =−

   constVlnRTlnCS V ++=  
As T → 0, using this equation, we find S = -∞ clearly in contradiction to the third law. 
 
e) First order phase changes 
The Clausius Clapeyron equation for the coexistence line of two phases is  

v
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As T → 0, according to the Nernst statement, ∆s → 0. This implies that as T → 0, 

0→
dT
dP ie. for a coexistence curve that extends to T = 0 the slope must vanish at T = 0. 

 
 

7. Kinetic Theory 
 
Maxwell Boltzmann velocity distribution, speed distribution, Mean 
speed, root mean square speed and most probable speed. Diffusion, 
effusion, mean free path. 

The Kinetic part of the course was concerned with the motions of collections of large numbers 
of molecules, their statistical nature and their effects in terms of macroscopic observables. 
Our first example of this was the the relationship between pressure, volume and internal 

energy for a monatomic gas, PVU
2
3

=  using simple concepts from kinetic theory, that is by 

considering the collision and consequent momentum change of a gas molecule with the wall 
of its container as the source of the pressure of the gas. 
This was followed by showing that the internal energy which is the sum of the kinetic 
energies of the constituent atoms is given by 

 2

0 2
1

n
N

n
mvU ∑=

=
 ⇒ 2

2
1 mvNU =  ⇒ TkNU B2

3
=   

This is a resuklt of the equipartition theorem where there is on average TkB2
1  per degree of 

freedom with three translational degrees of freedom for a monatomic gas. 

This was used with the equation of state PVU
2
3

=  to obtain a further equation of state 

    nRTTNkPV B ==  

N is the total number of molecules, 
AN

Nn =  is the number of moles of the gas and 

BAkNR =  is the molar gas constant. 
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Maxwell Boltzmann Velocity and Speed Distributions. 
An elegant argument given in full in the course and coursenotes gives the probability that a 
particular molecule/atom has a velocity v as 
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The Maxwell-Boltzmann Velocity Distribution 

 

 

We obtained this velocity distribution by using the following physics; 

 

(i) A simple application of detailed balance 

(ii) The conservation laws, specifically conservation of energy 

(iii) Time reversal and rotational symmetry of Newton’s laws. 

Emv =2
2
1  and we may see the Maxwell-Boltzmann distribution in terms of the 

probability that a molecule has an energy, E 
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The exponential factor is known as the Boltzmann factor or the Boltzmann-Gibbs 

factor 

Maxwell Boltzmann Velocity Distribution at T, 2T and 4T
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The Maxwell-Boltzmann velocity distribution is a Gaussian function of the type 

( )
⎟
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⎛ −
−= 2

2
0

σ

xx
expAy  as shown above. 

We may want to know the speed distribution which doesn’t concern itself with direction and 
which can be derived from the velocity distribution as 
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The Speed Distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Normalised Speed Distribution at T, 2T and 4T
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The question “what is the velocity of a typical gas molecule in a gas at a particular 
temperature” may be answered in sseveral possible ways as follows; 
 

(i) The root mean square velocity might be given, vrms. This we have 
seen previously when obtaining the relation between temperature, 
kinetic energy and internal energy. 

 

m
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m
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rms 73132 ===  

 
(ii) We might also give the mean speed v  defined as 
 

m
Tk.

m
Tkdv)v(vPv BB 5918

0
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π
 

 
(iii) Finally we could offer the most probable speed, vm , which is the 

value of v at which P(v) has its maximum.  
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Particle flux colliding with wall 
The flux or number of particles hitting unit area in unit time is given by 
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where n is the number density. 
If the gas is an ideal gas with the usual equation of state, PV = NkBT (nR = NkB) then 

    
Tk

P
V
Nn

B
==  

    
Tmk

P
m

Tkn
B

B
ππ

Φ
2

8
4
1

==  

Colliding with other molecules (mean free path). 
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The trajectory of a particular molecule in a dilute gas is made up of a series of straight line 
segments interrupted after some length, l, by collision, resulting in change of direction. The 
actual distance traveled, is considerably greater than the actual distance traversed in 

real space.  

∑=
i
lL

An average distance traveled between collisions, λ, called the mean free path is defined as 

    
N

N

i
i∑

=
l

λ  

where N is the number of segments and li is the length of free flight on segment i. λ depends on 
the size of the molecules or on the range of the forces between them, ie they present an area to 
other molecules within which, if the other molecule trespasses it can be deemed to have 
collided (felt the influence) of the other molecule. The molecule sweeps out a cylinder with a 
geometric cross section area,  

σG = πa2.  
The tube length in a time t will be approximately tv giving a total volume  
   tvV Gσ=  
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The molecule will encounter nV other molecules where n is the number density of molecules 
giving a number of collisions 
   tvnN GC σ=  
The number of collisions per distance traveled is then 

   G
C n
tv

N σ=  

The distance traveled between collisions is the mean free path, λ, and is equal to the inverse of 
this 

   
Gnσ

λ 1
=  

 
More accurately use the velocity distribution function to take some account of the 
motion of the target spheres then the mean free path is given by; 

   
Gnσ

λ
2

1
=  

An alternative description of the collision process defines the collision frequency, νC , 
where νC is the number of collisions suffered per second  
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or a scattering time τS where 
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Molecular Effusion 
The concept of mean free path may break down in circumstances where the gas is restricted to 
movement in structures whose characteristic dimensions are smaller than the mean free path. 
eg. a narrow pipe. It is necessary in such circumstances to drop the concept of mean 
behaviours such as the mean free path and develop other microscopic models. Such a regime 
is called the Knudsen regime and may occur in certain common circumstances where it is the 
mean free path that is unusually large rather than a structure that is particularly small eg. 

(i) λ increases as the molecular number density decreases and therefore a high 

vacuum system will always go through a Knudsen regime when the vacuum 

is good enough.  

(ii) The mean free path will also become very large as mean velocity is greatly 

reduced as is the case at low temperatures and systems such as those 

involving liquid Helium and its vapour will pass through a Knudsen regime. 
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Molecular effusion occurs where two chambers are connected by a narrow pipe as shown 
above. The thermodynamic criteria for thermal equilibrium between the two chambers is that 
temperatures and pressures must be equal, 21 TT =  and 21 PP = . If there were a pressure 
difference between the two chambers the gas in the pipe would undergo molecular collisions 
more frequently from the high pressure side than the low pressure side and a resultant force 
would exist on the gas in the pipe leading to a pressure driven flow from high to low pressure 
tending to equalize the pressures. Equilibrium will be determined by the equality of molecular 
flux onto either end of the pipe and we may use our expressions for the flux to find 
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B ==  to rewrite 
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And thus 
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We can write an expression for the number of molecules of species i that impinge on the 
hole from inside the box and escape through the hole in a time, t using our previously 
derived expression 
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1
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Consider two molecular species in a box with a small hole in it of dimensions smaller 
than the mean free path. 

The expression for the mean speed, 
m

Tkv B
π

8
=  may be used to find the ratio of two 

types of molecule that have escaped in time t as 
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The fraction of each species that have escaped is 
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And 
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Negligible depletion of the molecular densities inside the chamber has been assumed ie. 
ni does not change substantially with time. 
If molecular species 1 is lighter than molecular species 2 then clearly 
 

    1
2

1 >
f
f  

and vice versa. 
Lord Rayleigh and Ramsay used this effect in 1895 to isolate Argon from the atmosphere for 
whose discovery they shared the Nobel prize. The most well known use of effusion separation 
was to separate the light fissionable isotope of Uranium, U235 from the more common and 
heavier isotope, U238
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Free path distributions 
There is the mean free path but the distribution of free paths may also be useful. By making 
some simple assumptions the number of free paths of length l may be found  ( )lN

(i)  is proportional to the distance dl . ( ) ( )lll dNN +−

(ii)  is proportional to N(l), the number of particles that 

started in the interval 

( ) ( )lll dNN +−

( )lll d, + . 

We may express these two assumptions mathematically as 
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With boundary condition N(l) = N0 at l = 0 this has a simple solution 

    )Cexp(N)(N ll −= 0

0N
)(N l  is the fraction of particles which have a free path greater than or equal to l . 

alternatively )Cexp(N
)(N ll −=

0
is the probability that a particle which has just 

undergone a collision will survive a free flight of at least distance l.. 
identifying P(l)dl as the proportion of sample particles starting at l = 0 which suffer their first 
collision between l and l + dl. 
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Hence the probability distribution is simply  

   ll CCe)(P −=
To determine the constant C note that the mean free path, λ, is the average free path and 

therefore by definition of  )(lP
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Mean Square Displacement & Diffusion Coefficient 
A particle colliding with other particles as it moves under the effects of a potential (eg. 
gravitational, electrostatic) will travel a distance in real space far less than the actual 
distance it has travelled. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The above shows a particle undergoing a random walk in n segments i of length li . After n 
steps/collisions it has moved a distance Rn in real space from its starting position. 
Using vector notation explicitly 
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To evaluate the vector sum we find the mean square displacement 2
nR  
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The mean square displacement is then 

    22 2 λnRn =  

We can convert the number of collisions, n , to the more useful parameter, the time elapsed, t, 
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with 
vS
λτ = , the scattering time being the time between collisions. 
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where the diffusion coefficient D is defined as 
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The Diffusion equation (Fick’s Law) 
Diffusion is a process whereby particles (or energy as heat etc.) move from a high 
concentration region to that of lower concentration due to an imbalance in the flux at an 
interface from two opposite directions. The flux impinging on a surface is  
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With the crossing surface at z = 0  

  Flux from right v
z
n)(nv)(n

z
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+==
=
λλ

0
0

4
1

4
1  

  Flux from left v
z
n)(nv)(n

z
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=−=
=
λλ

0
0

4
1

4
1  

The net flux in the positive z direction is the difference between the second and the first 
of these  
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This is known as Fick’s law.
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NB. The earlier form is the correct one 
 
The rate of change of particle density is 
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And using Fick’s law 
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  This is the Diffusion equation in 1 dimension 
 
This may be generalised to 3D 
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  This is the Diffusion equation in 3 dimensions 
 
 
Heat Conduction and Fouriers Equation 
Diffusion of energy (heat) may be treated in the same way 
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   Is the thermal conductivity 
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   Is the heat equation 
with 
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