University College London

Department of Physics and Astronomy

2B21 Mathematical Methods in Physics \& Astronomy

Suggested Solutions for Problem Sheet M10 (2003-2004)

1. Stokes' theorem states that

$$
\int_{S} \operatorname{curl} \underline{A} \cdot \hat{n} d S=\int_{\gamma} \underline{A} \cdot d \underline{r}
$$

where the closed contour γ is along the boundary of the surface $S, d \underline{r}$ is a line element along γ, and \hat{n} is a unit vector normal to S whose direction is fixed by the motion of a right-handed screw rotated in the direction of γ. [No marks given here for this statement.]

By simple trigonometry on the figure, we see immediately that

$$
\begin{equation*}
\underline{\underline{\hat{e}}}_{\theta}=-\sin \theta \underline{\underline{\hat{e}}}_{x}+\cos \theta \underline{\underline{\hat{e}}}_{y} . \tag{2}
\end{equation*}
$$

For the specific problem, we are given that

$$
\underline{W}=(x+y) \underline{\hat{e}}_{x}+x y^{2} \underline{\underline{e}}_{y}+x^{2} \underline{\underline{e}}_{z} .
$$

Along (a) we have

$$
\begin{equation*}
I_{a}=\int_{0}^{1} \underline{W} \cdot \underline{d s}=\int_{0}^{1} x d x=\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{1}{2} \tag{2}
\end{equation*}
$$

On the circle of radius 1 , the infinitesimal length element is

$$
\begin{equation*}
\underline{d s}=\underline{\hat{e}}_{\theta} d \theta=\left(-\sin \theta \underline{\hat{e}}_{x}+\cos \theta \theta \underline{e}_{y}\right) d \theta \tag{1}
\end{equation*}
$$

so that

$$
\begin{align*}
I_{b} & =\int_{0}^{\pi / 2}\left[(\cos \theta+\sin \theta) \underline{\underline{e}}_{x}+\cos \theta \sin ^{2} \theta \theta \underline{\underline{e}}_{y}\right] \cdot\left(-\sin \theta \underline{\underline{e}}_{x}+\cos \theta \hat{\underline{e}}_{y}\right) d \theta \\
& =\int_{0}^{\pi / 2}\left[-\sin \theta \cos \theta-\sin ^{2} \theta+\sin ^{2} \theta \cos ^{2} \theta\right] d \theta \tag{2}
\end{align*}
$$

Now

$$
\begin{gathered}
\int_{0}^{\pi / 2} \sin \theta \cos \theta d \theta=\frac{1}{2} \int_{0}^{\pi / 2} \sin 2 \theta d \theta=-\left[\frac{1}{4} \cos 2 \theta\right]_{0}^{\pi / 2}=\frac{1}{2} \\
\int_{0}^{\pi / 2} \sin ^{2} \theta d \theta=\frac{1}{2} \int_{0}^{\pi / 2}[1-\cos 2 \theta] d \theta=\frac{1}{2}\left[\theta-\frac{1}{2} \sin 2 \theta\right]_{0}^{\pi / 2}=\frac{\pi}{4} \\
\int_{0}^{\pi / 2} \sin ^{2} \theta \cos ^{2} \theta d \theta=\frac{1}{4} \int_{0}^{\pi / 2} \sin ^{2} 2 \theta d \theta=\frac{1}{8} \int_{0}^{\pi / 2}[1-\cos 4 \theta] d \theta=\frac{\pi}{16}
\end{gathered}
$$

Hence

$$
\begin{equation*}
I_{b}=-\frac{1}{2}-\frac{\pi}{4}+\frac{\pi}{16}=-\frac{1}{2}-\frac{3 \pi}{16} \tag{3}
\end{equation*}
$$

The final integral is much simpler because $W_{y}=0$ on the last leg, which means that $I_{c}=0$.
Putting the terms together,

$$
\begin{equation*}
I=I_{a}+I_{b}+I_{c}=-\frac{3 \pi}{16} \tag{1}
\end{equation*}
$$

To check Stokes' theorem, we must first evaluate

$$
\nabla \times \underline{W}=\left|\begin{array}{ccc}
\frac{\hat{e}_{x}}{x} & \frac{\hat{e}_{y}}{y} & \frac{\hat{e}_{z}}{\partial} \tag{2}\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y & x y^{2} & x^{2}
\end{array}\right|=-2 x \underline{\hat{e}}_{y}+\left(y^{2}-1\right) \underline{e}_{z} .
$$

The normal to the surface is in the positive z-direction following the Stokes' theorem definition. Thus

$$
\begin{gather*}
\int(\nabla \times \underline{W}) \cdot \underline{d S}=\int_{0}^{1} r d r \int_{0}^{\pi / 2}\left(y^{2}-1\right) d \theta=\int_{0}^{1} r d r \int_{0}^{\pi / 2}\left(r^{2} \sin ^{2} \theta-1\right) d \theta \tag{1}\\
=\int_{0}^{1} r d r \int_{0}^{\pi / 2}\left[\frac{1}{2} r^{2}(1-\cos 2 \theta)-1\right] d \theta=\int_{0}^{1} r d r\left[\frac{1}{2} r^{2} \theta-\frac{1}{4} r^{2} \sin 2 \theta-\theta\right] \\
=\frac{\pi}{2} \int_{0}^{1} r d r\left[\frac{1}{2} r^{2}-1\right]=\frac{\pi}{2}\left[\frac{r^{4}}{8}-\frac{r^{2}}{4}\right]_{0}^{1}=-\frac{3 \pi}{16} \tag{3}
\end{gather*}
$$

Fortunately this agrees with the result of the line integral and so Stokes' theorem is valid in this case.
2. On the surface $x=0$, the outward normal $\hat{n}=-\underline{\hat{e}}_{x}$, and $\underline{F} \cdot \hat{n}=-z$. Now, integrating over the quadrant,

$$
\begin{equation*}
I_{x}=\int_{0}^{1}(-z) d z \int_{0}^{\sqrt{1-z^{2}}} d y=-\int_{0}^{1} z \sqrt{1-z^{2}} d z=\left.\frac{1}{3}\left(1-z^{2}\right)^{3 / 2}\right|_{0} ^{1}=-\frac{1}{3} \tag{3}
\end{equation*}
$$

On $z=0$ we get the same result $I_{z}=I_{x}$, whereas along $y=0$ the flux I_{y} vanishes.

On the curved surface,

$$
\hat{n}=\sin \theta \cos \phi \underline{\hat{e}}_{x}+\sin \theta \sin \phi \underline{\hat{e}}_{y}+\cos \theta \underline{\hat{e}}_{z}
$$

and

$$
\underline{F}=\cos \theta \underline{\hat{e}}_{x}+\sin \theta \sin \phi \underline{\hat{e}}_{y}+\sin \theta \cos \phi \underline{\hat{e}}_{z} .
$$

Hence

$$
\begin{equation*}
\underline{F} \cdot \hat{n}=2 \sin \theta \cos \theta \cos \phi+\sin ^{2} \theta \sin ^{2} \phi \tag{2}
\end{equation*}
$$

The flux through the curved surface

$$
\begin{align*}
I_{s}= & \int_{0}^{\pi / 2} \sin \theta d \theta \int_{0}^{\pi / 2} d \phi\left[2 \sin \theta \cos \theta \cos \phi+\sin ^{2} \theta \sin ^{2} \phi\right] \\
& =\int_{0}^{\pi / 2} \sin \theta d \theta\left[2 \sin \theta \cos \theta+\frac{\pi}{4} \sin ^{2} \theta\right] \\
= & {\left[\frac{2}{3} \sin ^{3} \theta\right]_{0}^{\pi / 2}-\frac{\pi}{4}\left[\cos \theta-\frac{1}{3} \cos ^{3} \theta\right]_{0}^{\pi / 2}=\frac{2}{3}+\frac{\pi}{6} } \tag{3}
\end{align*}
$$

The total flux

$$
\begin{equation*}
I=I_{x}+I_{y}+I_{z}+I_{s}=\frac{\pi}{6} . \tag{1}
\end{equation*}
$$

Now for the easy bit! The divergence of the vector

$$
\begin{equation*}
\nabla \cdot \underline{F}=1 \tag{2}
\end{equation*}
$$

Integrating this over the volume gives $\frac{1}{8}$ of the volume of the unit sphere, viz $\frac{1}{8} \frac{4 \pi}{3}=\frac{\pi}{6}$, as before, but with only 5% of the work.
NOTE The question should have specified the radius of the sphere by giving $x^{2}+y^{2}+z^{2}=1$. Any other radius chosen in answering the question would just scale the result. The marker therefore has to be sympathetic to all attempts to compensate for this error.

