University College London

Department of Physics and Astronomy

2B21 Mathematical Methods in Physics \& Astronomy
Suggested Solutions for Problem Sheet M8 (2003-2004)

1. Using integration by parts

$$
\begin{aligned}
& I=\int \sin n x \sinh x d x=\int \sin n x d(\cosh x)=\sin n x \cosh x-n \int \cos n x \cosh x d x \\
& =\sin n x \cosh x-n \int \cos n x d(\sinh x)=\sin n x \cosh x-n \cos n x \sinh x-n^{2} I
\end{aligned}
$$

Hence

$$
\begin{equation*}
I=\frac{1}{1+n^{2}}[\cosh x \sin n x-n \cos n x \sinh x] . \tag{4}
\end{equation*}
$$

Alternative methods include writing the sin and sinh functions in terms of exponentials or using $\sinh (x)=-i \sin (i x)$, but both are significantly longer.
The sinh function

$$
f(x)=\sinh x
$$

in the interval $-\pi \leq x \leq \pi$, is clearly odd.
All the coefficients of the cosine terms in

$$
f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

must therefore vanish since the cosine function is even, i.e. $a_{n}=0$.
Turning to the sine coefficients,

$$
\begin{gather*}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sinh x \sin n x d x . \\
=\frac{1}{\pi}[\cosh x \sin n x-n \cos n x \sinh x]_{-\pi}^{+\pi}=\frac{2}{\pi} \sinh \pi(-1)^{n+1} \frac{n}{n^{2}+1} . \tag{3}
\end{gather*}
$$

The Fourier series is therefore

$$
\begin{equation*}
f(x)=\frac{2}{\pi} \sinh \pi \sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{2}+1} \sin n x . \tag{1}
\end{equation*}
$$

Parseval's theorem states that the average value of f^{2} is given by

$$
\begin{equation*}
<f^{2}(x)>=\frac{1}{2 \pi} \int_{-\pi}^{+\pi}[f(x)]^{2} d x=\left(\frac{a_{0}}{2}\right)^{2}+\frac{1}{2} \sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) . \tag{2}
\end{equation*}
$$

$$
\begin{gathered}
<f^{2}(x)>=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} \sinh ^{2} x d x=\frac{1}{4 \pi} \int_{-\pi}^{+\pi}(\cosh 2 x-1) \\
=\frac{1}{8 \pi}[\sinh 2 x-2 x]_{-\pi}^{+\pi}=\frac{1}{4 \pi}[\sinh 2 \pi-2 \pi]
\end{gathered}
$$

Parseval's identity then gives

$$
\frac{1}{4 \pi}[\sinh 2 \pi-2 \pi]=\frac{1}{2}\left(\frac{2 \sinh \pi}{\pi}\right)^{2} \sum_{n=1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}
$$

from which we get

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n^{2}}{\left(n^{2}+1\right)^{2}}=\frac{\pi}{8} \frac{(\sinh 2 \pi-2 \pi)}{\sinh ^{2} \pi} \tag{2}
\end{equation*}
$$

2. The required Fourier transform is the integral

$$
\begin{equation*}
g(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{+1} e^{-a x} e^{i \omega x} d x=\frac{1}{\sqrt{2 \pi}} \frac{1}{(a-i \omega)} . \tag{2}
\end{equation*}
$$

Parseval's theorem (for Fourier transforms) states that

$$
\begin{equation*}
\int_{-\infty}^{+\infty}|f(x)|^{2} d x=\int_{-\infty}^{+\infty}|g(\omega)|^{2} d \omega . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Now LHS }=\int_{0}^{\infty} e^{-2 a x} d x=\frac{1}{2 a} . \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { RHS }=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{1}{a^{2}+\omega^{2}}\left(\frac{d \omega}{d=}\right) \frac{1}{2 \pi a}\left[\tan ^{-1}\left(\frac{x}{a}\right)\right]_{-\infty}^{\infty}=\frac{1}{2 a} . \tag{3}
\end{equation*}
$$

Parseval's theorem survives!

