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1. The Legendre polynomials Pn(x) satisfy the orthonormality relation∫ +1

−1
Pn(x) Pm(x) dx = δnm ,

provided that n and m are non-negative integers.

Given that P0(x) = 1, P1(x) = x, and P2(x) = 1
2
(3x2 − 1), show by explicit

integration that the above relation is satisfied for n, m ≤ 2. [7 marks]

Assuming that for n = 3

P3(x) = a [x3 + bx2 + cx + d] ,

use the orthogonality relation to find the coefficients b, c and d. [4 marks]

Use the normalisation integral above, OR OTHERWISE, determine the value
of a. [3 marks]

2. The Laguerre polynomials Ln(x) arise in the solution of the Schrödinger equa-
tion for the hydrogen atom. They may be defined by the generating function

g(x, t) =
exp (−xt/(1− t))

1− t
=

∞∑
n=0

Ln(x) tn .

• By expanding the left hand side in powers of t, show that L0(x) = 1,
L1(x) = 1− x, and L2(x) = 1

2
(x2 − 4x + 2). [3 marks]

• By differentiating the generating function equation with respect to x and
comparing powers of t, show that the polynomials satisfy the recurrence
relation

Ln(x) = L′n(x)− L′n+1(x) . [4 marks]

• By multiplying the expansion of g(x, t) by that for g(x, u) and integrating,
show that ∫ ∞

0
e−xLn(x) Lm(x) = δnm . [6 marks]
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