UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M7 (2003-2004)
Solutions to be handed in on Tuesday 25 November 2003

1. The Legendre polynomials $P_{n}(x)$ satisfy the orthonormality relation

$$
\int_{-1}^{+1} P_{n}(x) P_{m}(x) d x=\delta_{n m}
$$

provided that n and m are non-negative integers.
Given that $P_{0}(x)=1, P_{1}(x)=x$, and $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$, show by explicit integration that the above relation is satisfied for $n, m \leq 2$.

Assuming that for $n=3$

$$
P_{3}(x)=a\left[x^{3}+b x^{2}+c x+d\right],
$$

use the orthogonality relation to find the coefficients b, c and d.

Use the normalisation integral above, OR OTHERWISE, determine the value of a.
2. The Laguerre polynomials $L_{n}(x)$ arise in the solution of the Schrödinger equation for the hydrogen atom. They may be defined by the generating function

$$
g(x, t)=\frac{\exp (-x t /(1-t))}{1-t}=\sum_{n=0}^{\infty} L_{n}(x) t^{n} .
$$

- By expanding the left hand side in powers of t, show that $L_{0}(x)=1$, $L_{1}(x)=1-x$, and $L_{2}(x)=\frac{1}{2}\left(x^{2}-4 x+2\right)$.
- By differentiating the generating function equation with respect to x and comparing powers of t, show that the polynomials satisfy the recurrence relation

$$
L_{n}(x)=L_{n}^{\prime}(x)-L_{n+1}^{\prime}(x) .
$$

- By multiplying the expansion of $g(x, t)$ by that for $g(x, u)$ and integrating, show that

$$
\int_{0}^{\infty} e^{-x} L_{n}(x) L_{m}(x)=\delta_{n m}
$$

