University College London
 Department of Physics and Astronomy

2B21 Mathematical Methods in Physics \& Astronomy
Suggested Solutions for Problem Sheet M6 (2003-2004)

1. Inserting the ansatz $u(x, y)=X(x) \times Y(y)$ into the partial differential equation

$$
x \frac{\partial u}{\partial x}-y \frac{\partial u}{\partial y}=u
$$

leads to

$$
\begin{equation*}
\frac{x}{X} \frac{d X}{d x}=1+\frac{y}{Y} \frac{d Y}{d y} \tag{2}
\end{equation*}
$$

Since the left hand side is a function of x and the right of y, this means that they must both equal some separation constant α. We then obtain two ordinary differential equations

$$
\begin{align*}
& \frac{d X}{d x}=\alpha \frac{1}{x} X \\
& \frac{d Y}{d y}=(\alpha-1) \frac{1}{y} Y, \tag{1}
\end{align*}
$$

where α is as yet arbitrary.
The first equation can be written as

$$
\int \frac{d X}{X}=\alpha \int \frac{d x}{x}
$$

which may be integrated to give

$$
\ln \left(X / A_{\alpha}\right)=\alpha \ell n(x)
$$

where A_{α} is an arbitrary integration constant.
Taking exponential of both sides,

$$
X=A_{\alpha} x^{\alpha}
$$

The y equation is exactly the same except that α is replaced by $\alpha-1$ so that the solution is

$$
Y=B_{\alpha} y^{\alpha-1}
$$

The corresponding solution for $u(x, y)$ is

$$
u(x, y)=C_{\alpha} x^{\alpha} y^{\alpha-1}=C_{\alpha} x(x y)^{\alpha-1}
$$

where $C_{\alpha}=A_{\alpha} B_{\alpha}$ is the combined integration constant.

The most general solution to the differential equation is a linear superposition of such solutions:

$$
\begin{equation*}
u(x, y)=\sum_{\alpha} C_{\alpha} x^{\alpha} y^{\alpha-1} \tag{5}
\end{equation*}
$$

where the sum may actually be an integral over continuous values of α (though students would not be expected to stress this point).
On the line $y=x$ we have

$$
u(x, x)=\sum_{\alpha} C_{\alpha} x^{2 \alpha-1}=x+x^{3} .
$$

Hence $C_{1}=1$ and $C_{2}=1$ with all the other coefficients vanishing. Hence the specific solution is

$$
\begin{equation*}
u(x, y)=x+x^{2} y . \tag{2}
\end{equation*}
$$

2. Assume that a solution of the equation

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r} V(r, \theta)\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}} V(r, \theta)=0
$$

exists in the form

$$
V(r, \theta)=R(r) \times \Theta(\theta) .
$$

Straightforward differentiating then leads to

$$
\frac{\Theta}{r} \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\frac{R}{r^{2}} \frac{d^{2} \Theta}{d \theta^{2}}=0 .
$$

Dividing through by $R \Theta$, multiplying up by r^{2}, and taking one term over to the other side, the equation separates as

$$
\begin{equation*}
r \frac{1}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)=-\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}} \tag{1}
\end{equation*}
$$

Since the LHS is a function only of r and the RHS of θ, they must both be equal to some separation constant which we put equal to $+n^{2}$. This then yields two ordinary differential equations

$$
\begin{gather*}
r \frac{d}{d r}\left(r \frac{d R}{d r}\right)=n^{2} R \\
\frac{d^{2} \Theta}{d \theta^{2}}+n^{2} \Theta=0 \tag{1}
\end{gather*}
$$

The most general solution of the θ equation is

$$
\begin{equation*}
\Theta=C_{n} \cos n \theta+D_{n} \sin n \theta . \tag{1}
\end{equation*}
$$

Now, in order that $V(r, \theta)$ be single-valued as $\theta \rightarrow \theta+2 \pi, n$ must be an integer.
Turning to the R equation, if $n=0$ we must solve

$$
\begin{equation*}
\frac{d}{d r}\left(r \frac{d R}{d r}\right)=0 \Rightarrow r \frac{d R}{d r}=B \quad \Rightarrow \quad R=A+B \ln r . \tag{1}
\end{equation*}
$$

Otherwise, look for a solution of the form $R=r^{\alpha}$. This is possible if

$$
\alpha^{2} r^{\alpha}=n^{2} r^{\alpha} \Rightarrow \alpha= \pm n .
$$

The general solution then is

$$
\begin{equation*}
R=C r^{n}+\frac{D}{r^{n}} . \tag{1}
\end{equation*}
$$

Putting everything together,

$$
\begin{equation*}
V(r, \theta)=A+B \ell n r+\sum_{n=1}^{\infty}\left(C_{n} r^{n}+\frac{D_{n}}{r^{n}}\right)\left(E_{n} \cos n \theta+F_{n} \sin n \theta\right) . \tag{1}
\end{equation*}
$$

In order to avoid divergent terms in the region $r \leq a$, we must have $B=0$ and $D_{n}=0$, so that

$$
\begin{equation*}
V(r, \theta)=A+\sum_{n=1}^{\infty} C_{n} r^{n}\left(E_{n} \cos n \theta+F_{n} \sin n \theta\right) . \tag{1}
\end{equation*}
$$

Now at $r=a$ the potential is of the form $V_{0} \cos \theta$, so that $A=0, F_{n}=0$, and $E_{n}=0$ unless $n=1$ when $C_{1} E_{1}=V_{0} / a$. Hence for $r \leq a$,

$$
\begin{equation*}
V(r, \theta)=V_{0}\left(\frac{r}{a}\right) . \tag{1}
\end{equation*}
$$

Similarly in the region where $r \geq a$ we require $B=0$ and $C_{n}=0$. Matching the boundary conditions at $r=a$ then leads to

$$
\begin{equation*}
V(r, \theta)=V_{0}\left(\frac{a}{r}\right), \quad(r \geq a) . \tag{1}
\end{equation*}
$$

