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1. Rewrite the equation in the form

dy

y
= 2

x3

1 + x2
= 2x− 2

x

1 + x2
,

which can be integrated to give

`n(y) = x2 − `n(1 + x2) + C . [2]

The boundary condition that y = 1 when x = 0 means that the integration
constant C = 0, and so the solution is

y = (1 + x2)−1 ex2 · [2]

Look now for a solution of the form

y =
∞∑

n=0

an xn+k ,

y′ =
∞∑

n=0

an(n + k) xn+k−1 ,

with a0 6= 0. Inserting this into

(1 + x2)
dy

dx
= 2x3y ,

we find
∞∑

n=0

an(n + k) xn+k−1 +
∞∑

n=0

an(n + k) xn+k+1 = 2
∞∑

n=0

an xn+k+3 . [1]

The lowest power of x comes from the first term with n = 0. Hence a0k = 0
but, since a0 6= 0, the indicial equation gives k = 0 as the unique solution. [1]
Therefore ∞∑

n=1

ann xn−1 +
∞∑

n=1

ann xn+1 = 2
∞∑

n=0

an xn+3 .

The only x0 term only exists in the first sum, which means that a1 = 0 and
in general all the odd coefficients vanish. There is an x1 term also only in the
first sum so the coefficient a2 = 0 as well. [2]

Now change the dummy index n so that one sees the same power of x in all
three sums:

∞∑
n=−3

an+4(n + 4) xn+3 +
∞∑

n=−1

an+2(n + 2) xn+3 = 2
∞∑

n=0

an xn+3 ,
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which leads to the recurrence relation

(n + 4)an+4 + (n + 2)an+2 = 2an . [2]

We have proved that a2 = 0 and, since y = 1 when x = 0, we know that
a0 = 1. Putting n = 0 into the recurrence relation, we find that a4 = 1

2
and so

y ≈ 1 + 1
2
x4 + O(x6). [2]

Expanding the two factors in the exact solution as power series,

y ≈
(
1− x2 + x4 + O(x6)

) (
1 + x2 + 1

2
x4 + O(x6)

)
≈ 1 + 1

2
x4 + O(x6) , [2]

which agrees with the earlier result.
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2. Look for a solution of the second order differential equation

(2x + x2)
d2y

dx2
+ (1 + x)

dy

dx
− p2y = 0

in the form

y =
∞∑

n=0

an xn+k ,

y′ =
∞∑

n=0

an(n + k) xn+k−1 ,

y′′ =
∞∑

n=0

an(n + k)(n + k − 1) xn+k−2 . [1]

Inserting these into the equation, we obtain

∞∑
n=0

2an(n + k)(n + k − 1) xn+k−1 +
∞∑

n=0

an(n + k)(n + k − 1) xn+k

+
∞∑

n=0

an(n + k) xn+k−1 +
∞∑

n=0

an(n + k) xn+k − p2
∞∑

n=0

an xn+k = 0 . [1]

Grouping like powers together, this simplifies to

∞∑
n=0

an (n + k)(2n + 2k − 1) xn+k−1 +
∞∑

n=0

an

[
(n + k)2 − p2

]
xn+k = 0 . [2]

If this is to be true for a range of values of x, it must be true power by power
in x. The lowest power comes from n = 0 in the first term. Since there is no
xk−1 power in the second term, we demand that

a0 k(2k − 1) = 0 .

However, by definition, a0 6= 0 so that k = 0 or k = 1
2
. [2]

To get the recurrence relation, change the dummy index so that we have the
same powers of x everywhere by putting n → n + 1 in the first term:

∞∑
n=−1

an+1 (n + k + 1)(2n + 2k + 1) xn+k +
∞∑

n=0

an

[
(n + k)2 − p2

]
xn+k = 0 . [2]

This gives us immediately the recurrence relation:
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an+1

an

= − (n + k)2 − p2

(n + k + 1)(2n + 2k + 1)
,

[2]
with k = 0 or k = 1

2
.

The series converges if, when n →∞,∣∣∣∣∣an+1x
n+1

anxn

∣∣∣∣∣ =
∣∣∣∣an+1

an

∣∣∣∣ |x| < 1 . [1]

This means that ∣∣∣∣∣ (n + k)2 − p2

(n + k + 1)(2n + 2k + 1)

∣∣∣∣∣ |x| → 1
2
|x| < 1 ,

i.e. |x| < 2. [2]

On the other hand, if p is a positive integer the recurrence relation tells us for
the k = 0 solution that

ap+1

ap

= − (p2 − p2)

(p + 1)(2p + 1)
= 0 . [2]

Since there are only two terms in the recurrence relation, all subsequent an

vanish and the series terminates to give the polynomial Tp(x). [1]

Given that Tp(0) = 1, i.e. a0 = 1, the recurrence relation leads to a1 = p2 a0 =
p2 so that, to order x, the k = 0 solution is

Tp(x) ≈ 1 + p2 x . [2]

Therefore

2Tp(x) Tq(x) ≈ 2(1 + p2x)(1 + q2x) ≈ 2 + 2(p2 + q2)x . [1]

Looking at the other side,

Tp+q(x) + Tp−q(x) ≈ 1 + (p + q)2x + 1 + (p− q)2x

= 2 + (p2 + 2pq + q2)x + (p2 − 2pq + q2)x = 2 + 2(p2 + q2)x . [1]

Thus the identity is satisfied at least to first order in x.
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