University College London

Department of Physics and Astronomy

2B21 Mathematical Methods in Physics \& Astronomy

Suggested Solutions for Problem Sheet M5 (2003-2004)

1. Rewrite the equation in the form

$$
\frac{d y}{y}=2 \frac{x^{3}}{1+x^{2}}=2 x-2 \frac{x}{1+x^{2}}
$$

which can be integrated to give

$$
\begin{equation*}
\ln (y)=x^{2}-\ln \left(1+x^{2}\right)+C . \tag{2}
\end{equation*}
$$

The boundary condition that $y=1$ when $x=0$ means that the integration constant $C=0$, and so the solution is

$$
\begin{equation*}
y=\left(1+x^{2}\right)^{-1} e^{x^{2}} . \tag{2}
\end{equation*}
$$

Look now for a solution of the form

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n+k} \\
y^{\prime} & =\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k-1}
\end{aligned}
$$

with $a_{0} \neq 0$. Inserting this into

$$
\left(1+x^{2}\right) \frac{d y}{d x}=2 x^{3} y
$$

we find

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k-1}+\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k+1}=2 \sum_{n=0}^{\infty} a_{n} x^{n+k+3} . \tag{1}
\end{equation*}
$$

The lowest power of x comes from the first term with $n=0$. Hence $a_{0} k=0$ but, since $a_{0} \neq 0$, the indicial equation gives $k=0$ as the unique solution. Therefore

$$
\sum_{n=1}^{\infty} a_{n} n x^{n-1}+\sum_{n=1}^{\infty} a_{n} n x^{n+1}=2 \sum_{n=0}^{\infty} a_{n} x^{n+3} .
$$

The only x^{0} term only exists in the first sum, which means that $a_{1}=0$ and in general all the odd coefficients vanish. There is an x^{1} term also only in the first sum so the coefficient $a_{2}=0$ as well.
Now change the dummy index n so that one sees the same power of x in all three sums:

$$
\sum_{n=-3}^{\infty} a_{n+4}(n+4) x^{n+3}+\sum_{n=-1}^{\infty} a_{n+2}(n+2) x^{n+3}=2 \sum_{n=0}^{\infty} a_{n} x^{n+3}
$$

which leads to the recurrence relation

$$
(n+4) a_{n+4}+(n+2) a_{n+2}=2 a_{n} .
$$

We have proved that $a_{2}=0$ and, since $y=1$ when $x=0$, we know that $a_{0}=1$. Putting $n=0$ into the recurrence relation, we find that $a_{4}=\frac{1}{2}$ and so $y \approx 1+\frac{1}{2} x^{4}+O\left(x^{6}\right)$.
Expanding the two factors in the exact solution as power series,

$$
y \approx\left(1-x^{2}+x^{4}+O\left(x^{6}\right)\right)\left(1+x^{2}+\frac{1}{2} x^{4}+O\left(x^{6}\right)\right) \approx 1+\frac{1}{2} x^{4}+O\left(x^{6}\right)
$$

which agrees with the earlier result.
2. Look for a solution of the second order differential equation

$$
\left(2 x+x^{2}\right) \frac{d^{2} y}{d x^{2}}+(1+x) \frac{d y}{d x}-p^{2} y=0
$$

in the form

$$
\begin{align*}
y & =\sum_{n=0}^{\infty} a_{n} x^{n+k} \\
y^{\prime} & =\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k-1}, \\
y^{\prime \prime} & =\sum_{n=0}^{\infty} a_{n}(n+k)(n+k-1) x^{n+k-2} . \tag{1}
\end{align*}
$$

Inserting these into the equation, we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty} 2 a_{n}(n+k)(n+k-1) x^{n+k-1}+\sum_{n=0}^{\infty} a_{n}(n+k)(n+k-1) x^{n+k} \\
& +\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k-1}+\sum_{n=0}^{\infty} a_{n}(n+k) x^{n+k}-p^{2} \sum_{n=0}^{\infty} a_{n} x^{n+k}=0 . \tag{1}
\end{align*}
$$

Grouping like powers together, this simplifies to

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(n+k)(2 n+2 k-1) x^{n+k-1}+\sum_{n=0}^{\infty} a_{n}\left[(n+k)^{2}-p^{2}\right] x^{n+k}=0 . \tag{2}
\end{equation*}
$$

If this is to be true for a range of values of x, it must be true power by power in x. The lowest power comes from $n=0$ in the first term. Since there is no x^{k-1} power in the second term, we demand that

$$
a_{0} k(2 k-1)=0 .
$$

However, by definition, $a_{0} \neq 0$ so that $k=0$ or $k=\frac{1}{2}$.
To get the recurrence relation, change the dummy index so that we have the same powers of x everywhere by putting $n \rightarrow n+1$ in the first term:

$$
\begin{equation*}
\sum_{n=-1}^{\infty} a_{n+1}(n+k+1)(2 n+2 k+1) x^{n+k}+\sum_{n=0}^{\infty} a_{n}\left[(n+k)^{2}-p^{2}\right] x^{n+k}=0 . \tag{2}
\end{equation*}
$$

This gives us immediately the recurrence relation:

$$
\frac{a_{n+1}}{a_{n}}=-\frac{(n+k)^{2}-p^{2}}{(n+k+1)(2 n+2 k+1)},
$$

with $k=0$ or $k=\frac{1}{2}$.
The series converges if, when $n \rightarrow \infty$,

$$
\begin{equation*}
\left|\frac{a_{n+1} x^{n+1}}{a_{n} x^{n}}\right|=\left|\frac{a_{n+1}}{a_{n}}\right||x|<1 . \tag{1}
\end{equation*}
$$

This means that

$$
\left|\frac{(n+k)^{2}-p^{2}}{(n+k+1)(2 n+2 k+1)}\right||x| \rightarrow \frac{1}{2}|x|<1,
$$

i.e. $|x|<2$.

On the other hand, if p is a positive integer the recurrence relation tells us for the $k=0$ solution that

$$
\begin{equation*}
\frac{a_{p+1}}{a_{p}}=-\frac{\left(p^{2}-p^{2}\right)}{(p+1)(2 p+1)}=0 . \tag{2}
\end{equation*}
$$

Since there are only two terms in the recurrence relation, all subsequent a_{n} vanish and the series terminates to give the polynomial $T_{p}(x)$.
Given that $T_{p}(0)=1$, i.e. $a_{0}=1$, the recurrence relation leads to $a_{1}=p^{2} a_{0}=$ p^{2} so that, to order x, the $k=0$ solution is

$$
\begin{equation*}
T_{p}(x) \approx 1+p^{2} x \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
2 T_{p}(x) T_{q}(x) \approx 2\left(1+p^{2} x\right)\left(1+q^{2} x\right) \approx 2+2\left(p^{2}+q^{2}\right) x \tag{1}
\end{equation*}
$$

Looking at the other side,

$$
\begin{gather*}
T_{p+q}(x)+T_{p-q}(x) \approx 1+(p+q)^{2} x+1+(p-q)^{2} x \\
=2+\left(p^{2}+2 p q+q^{2}\right) x+\left(p^{2}-2 p q+q^{2}\right) x=2+2\left(p^{2}+q^{2}\right) x . \tag{1}
\end{gather*}
$$

Thus the identity is satisfied at least to first order in x.

