UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M4 (2003-2004)
Solutions to be handed in on Tuesday 4 November 2003

1. A coupled dynamical system with two degrees of freedom, x_{1} and x_{2}, is described by the equations

$$
\begin{aligned}
& 2 \frac{d^{2} x_{1}}{d t^{2}}=-5 x_{1}+3 x_{2} \\
& 2 \frac{d^{2} x_{2}}{d t^{2}}=3 x_{1}-5 x_{2} .
\end{aligned}
$$

Use matrix techniques to diagonalise these equations and find the normal frequencies and modes.
At time $t=0$, the coordinates and velocities are given by

$$
x_{1}=0, x_{2}=2 a \quad \text { and } \frac{d x_{1}}{d t}=\frac{d x_{2}}{d t}=0 .
$$

Find x_{1} and x_{2} at later times.
2. Demonstrate that the eigenvalues λ of the Hermitian matrix

$$
\underline{A}=\left(\begin{array}{rrr}
1 & i & 3 i \\
-i & 1 & -3 \\
-3 i & -3 & -3
\end{array}\right)
$$

satisfy the characteristic equation

$$
\lambda^{3}+\lambda^{2}-24 \lambda+36=0 .
$$

Prove that one eigenvalue is $\lambda_{1}=2$ and find the other two solutions.
Verify in this case that:
(i) the trace of the matrix is equal to the sum of the eigenvalues, and
(ii) the determinant is equal to the product of the eigenvalues.

Find the three (complex) eigenvectors \underline{x}_{i}, normalised to have unit length, $\underline{x}_{i}^{\dagger} \underline{x}_{i}=1$, where the \dagger denotes Hermitian conjugation.

Prove that the eigenvectors are orthogonal,

$$
\underline{x}_{i}^{\dagger} \underline{x}_{j}=0 \text { for } i \neq j .
$$

