UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M3 (2003-2004)
Solutions to be handed in on Tuesday 28 October 2003

1. My favourite result in matrix theory is the following expression for the determinant of the matrix $\underline{I}+\varepsilon \underline{A}$:

$$
|\underline{I}+\varepsilon \underline{A}|=\exp [\operatorname{tr}\{\ln (\underline{I}+\varepsilon \underline{A})\}] .
$$

Here \underline{A} is any square matrix, \underline{I} the corresponding unit matrix, and ε is a small number. The logarithm is defined by its series expansion in powers of ε with $\ln (\underline{I})=\underline{0}$. The trace of a square matrix $\underline{B}, \operatorname{tr}(\underline{B})$, is the sum of its diagonal elements.
Show that to second order in ε

$$
|\underline{I}+\varepsilon \underline{A}|=1+\varepsilon \operatorname{tr}(\underline{A})+\frac{1}{2} \varepsilon^{2}\left[(\operatorname{tr} \underline{A})^{2}-\operatorname{tr}\left(\underline{A}^{2}\right)\right]+0\left(\varepsilon^{3}\right) .
$$

Verify the theorem for the matrix $\underline{A}=\left(\begin{array}{cc}1 & i \\ i & 1\end{array}\right)$.
2. Find the eigenvalues of the matrix $\underline{A}=\left(\begin{array}{ll}0 & 1 \\ 1 & 2\end{array}\right)$.

Show that $\underline{A}^{2}=\underline{I}+2 \underline{A}$ and hence evaluate \underline{A}^{4} and \underline{A}^{8}.
If t_{n} is defined in terms of the trace of a matrix through

$$
t_{n}=\left[\operatorname{tr}\left(\underline{A}^{n}\right)\right]^{1 / n},
$$

show that $t_{2} \approx 2.4495, t_{4} \approx 2.4147$, and $t_{8} \approx 2.4142$.
Why does $t_{n} \rightarrow \sqrt{2}+1$ as $n \rightarrow \infty$?
3. Given that \underline{A} is an anti-Hermitian matrix, $\underline{A}^{\dagger}=-\underline{A}$, show from first principles that its eigenvalues are either purely imaginary or zero.
Verify this result for the following matrix, where one eigenvalue is $\lambda=i$,

$$
\underline{A}=\left(\begin{array}{ccc}
0 & 1+i & i \\
-1+i & 0 & 1-i \\
i & -1-i & 0
\end{array}\right) .
$$

