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1. My favourite result in matrix theory is the following expression for the deter-
minant of the matrix I + ε A:

|I + ε A| = exp
[
tr
{
`n
(
I + ε A

)}]
.

Here A is any square matrix, I the corresponding unit matrix, and ε is a small
number. The logarithm is defined by its series expansion in powers of ε with
`n(I) = 0. The trace of a square matrix B, tr (B), is the sum of its diagonal
elements.

Show that to second order in ε

|I + ε A| = 1 + ε tr (A) + 1
2
ε2
[
(tr A)2 − tr (A2)

]
+ 0(ε3) . [6 marks]

Verify the theorem for the matrix A =

(
1 i
i 1

)
. [4 marks]

2. Find the eigenvalues of the matrix A =

(
0 1
1 2

)
. [2 marks]

Show that A2 = I + 2A and hence evaluate A4 and A8. [4 marks]

If tn is defined in terms of the trace of a matrix through

tn = [tr(An)]1/n ,

show that t2 ≈ 2.4495, t4 ≈ 2.4147, and t8 ≈ 2.4142. [3 marks]

Why does tn →
√

2 + 1 as n →∞? [3 marks]

3. Given that A is an anti-Hermitian matrix, A † = −A, show from first principles
that its eigenvalues are either purely imaginary or zero. [5 marks]

Verify this result for the following matrix, where one eigenvalue is λ = i,

A =

 0 1 + i i
−1 + i 0 1− i

i −1− i 0

 .
[5 marks]
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