University College London

Department of Physics and Astronomy

2B21 Mathematical Methods in Physics \& Astronomy
Suggested Solutions for Problem Sheet M3 (2003-2004)

1. To order ε^{2},

$$
\begin{equation*}
\ln (\underline{I}+\varepsilon \underline{A}) \approx \varepsilon \underline{A}-\frac{1}{2}(\varepsilon \underline{A})^{2} . \tag{2}
\end{equation*}
$$

Taking the trace

$$
\operatorname{tr}\{\ln (\underline{I}+\varepsilon \underline{A})\} \approx \varepsilon \operatorname{tr}(\underline{A})-\frac{1}{2} \varepsilon^{2} \operatorname{tr}\left(\underline{A}^{2}\right) .
$$

Note that the right hand side is now a scalar.
The final step

$$
\begin{gather*}
|\underline{I}+\varepsilon \underline{A}|=\exp [\operatorname{tr}\{\ln (\underline{I}+\varepsilon \underline{A})\}] \approx 1+\varepsilon \operatorname{tr}(\underline{A})-\frac{1}{2} \varepsilon^{2} \operatorname{tr}\left(\underline{A}^{2}\right)+\frac{1}{2}\left(\varepsilon \operatorname{tr}(\underline{A})-\frac{1}{2} \varepsilon^{2} \operatorname{tr}\left(\underline{A}^{2}\right)\right)^{2} \\
=1+\varepsilon \operatorname{tr}(\underline{A})+\frac{1}{2} \varepsilon^{2}\left[(\operatorname{tr} \underline{A})^{2}-\operatorname{tr}\left(\underline{A}^{2}\right)\right]+0\left(\varepsilon^{3}\right) . \tag{2}
\end{gather*}
$$

For the matrix

$$
\begin{gathered}
\underline{A}=\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right), \quad \underline{A}^{2}=\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)\left(\begin{array}{cc}
1 & i \\
i & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 2 i \\
2 i & 0
\end{array}\right) . \\
\operatorname{tr}(\underline{A})=2, \quad \operatorname{tr}\left(\underline{A}^{2}\right)=0 .
\end{gathered}
$$

Therefore

$$
|\underline{I}+\varepsilon \underline{A}| \approx 1+2 \varepsilon+\frac{1}{2} \varepsilon^{2}[4-0]=1+2 \varepsilon+2 \varepsilon^{2} .
$$

Working out the determinant explicitly,

$$
|\underline{I}+\varepsilon \underline{A}|=\left|\begin{array}{rr}
1+\varepsilon & i \varepsilon \tag{2}\\
i \varepsilon & 1+\varepsilon
\end{array}\right|=(1+\varepsilon)^{2}+\varepsilon^{2}=1+2 \varepsilon+2 \varepsilon^{2} .
$$

The theorem can be used for any size matrix, even infinite!
2. The eigenvalues are given by

$$
\left|\begin{array}{cc}
-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right|=\lambda^{2}-2 \lambda-1=0
$$

which has solutions $\lambda_{1}=1+\sqrt{2}$ and $\lambda_{2}=1-\sqrt{2}$.

$$
\underline{A}^{2}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 2 \\
2 & 4
\end{array}\right)=\underline{I}+2 \underline{A} .
$$

Using this result,

$$
\begin{gather*}
\underline{A}^{4}=\underline{A}^{2} \underline{A}^{2}=(\underline{I}+2 \underline{A})(\underline{I}+2 \underline{A})=\underline{I}+4 \underline{A}+4 \underline{A}^{2} \\
=\underline{I}+4 \underline{A}+4 \underline{I}+8 \underline{A}=5 \underline{I}+12 \underline{A} . \tag{2}
\end{gather*}
$$

Similarly,

$$
\begin{gather*}
\underline{A}^{8}=\underline{A}^{4} \underline{A}^{4}=(5 \underline{I}+12 \underline{A})(5 \underline{I}+12 \underline{A})=25 \underline{I}+120 \underline{A}+144 \underline{A}^{2} \\
=25 \underline{I}+120 \underline{A}+144 \underline{I}+288 \underline{A}=169 \underline{I}+408 \underline{A} . \tag{1}
\end{gather*}
$$

With the definition, $t_{2}=6^{1 / 2} \approx 2.4495, t_{4}=34^{1 / 4} \approx 2.4147, t_{8}=954^{1 / 8} \approx$ $2.4142 \approx 1+\sqrt{2}=\lambda_{1}$.

To see why this happens, we need to use two results. Firstly, if the eigenvalues of a matrix \underline{A} are λ_{1} and λ_{2}, then the eigenvalues of the matrix \underline{A}^{n} are λ_{1}^{n} and λ_{2}^{n}. [The proof uses $\underline{A}=\underline{R}^{-1} \underline{\Lambda} \underline{R}$ multiplied together n times.]
Secondly, the trace of a matrix is equal to the sum of its eigenvalues. This means that

$$
\operatorname{tr}\left\{\underline{A}^{n}\right\}=\lambda_{1}^{n}+\lambda_{2}^{n} .
$$

But $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$, so that the second term above is negligible as $n \rightarrow \infty$. Thus

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(t_{n}\right)=\left(\lambda_{1}^{n}\right)^{1 / n}=\lambda_{1} . \tag{3}
\end{equation*}
$$

3. The proof is very similar to that for Hermitian matrices. Let

$$
\underline{A} \underline{x}_{i}=\lambda_{i} \underline{x}_{i} .
$$

Taking the Hermitian conjugate,

$$
\begin{equation*}
\underline{x}_{i}^{\dagger} \underline{A}^{\dagger}=\lambda_{i}^{*} \underline{x}_{i}^{\dagger}=-\underline{x}_{i}^{\dagger} \underline{A} . \tag{2}
\end{equation*}
$$

Multiplying the first equation on the left by $\underline{x}_{i}^{\dagger}$ and the second on the right by \underline{x}_{i}, we get

$$
\begin{align*}
\underline{x}_{i}^{\dagger} \underline{A} \underline{x}_{i} & =\quad \lambda_{i} \underline{x}_{i}^{\dagger} \underline{x}_{i}, \\
\underline{x}_{i}^{\dagger} \underline{A}_{i} & =-\lambda_{i}^{*} \underline{x}_{i}^{\dagger} \underline{x}_{i} . \tag{1}
\end{align*}
$$

Adding the two

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{i}^{*}\right) \underline{x}_{i}^{\dagger} \underline{x}_{i}=0 . \tag{1}
\end{equation*}
$$

Unless the eigenvectors have zero norm, this means that the real part of the eigenvalue has to vanish.
Proofs which rely on $i \underline{H}$ being Hermitian and then use the theorem about Hermitian matrices give only $\mathbf{3}$ marks.
For the given matrix,

$$
\begin{gathered}
\left|\begin{array}{ccc}
-\lambda & 1+i & i \\
-1+i & -\lambda & 1-i \\
i & -1-i & -\lambda
\end{array}\right|=0 \\
=-\lambda\left(\lambda^{2}+2\right)-(1+i)(\lambda(1-i)-i(1-i))+i(2+\lambda i)=-\lambda^{3}-5 \lambda+4 i .
\end{gathered}
$$

We are given that $\lambda=i$ is one solution. To get the others we must factorise the expression as

$$
-\lambda^{3}-5 \lambda+4 i=-(\lambda-i)\left(\lambda^{2}+\lambda i+4\right)=0 .
$$

The other two solutions are therefore

$$
\lambda=[-i \pm \sqrt{-1-16}] / 2=i[-1 \pm \sqrt{17}] / 2 .
$$

These also are pure imaginary roots, as required by the theorem.

