UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M2 (2003-2004)
Solutions to be handed in on Tuesday 21 October 2003

1. The equations

$$
\begin{array}{ll}
x_{2}=\frac{1}{\sqrt{2}}\left(x_{1}-z_{1}\right) & x_{3}=\frac{1}{\sqrt{2}}\left(y_{2}-z_{2}\right), \\
y_{2}=\frac{1}{2}\left(x_{1}+\sqrt{2} y_{1}+z_{1}\right) & y_{3}=-\frac{1}{2}\left(\sqrt{2} x_{2}+y_{2}+z_{2}\right), \\
z_{2}=\frac{1}{2}\left(x_{1}-\sqrt{2} y_{1}+z_{1}\right) & z_{3}=\frac{1}{2}\left(-\sqrt{2} x_{2}+y_{2}+z_{2}\right)
\end{array}
$$

represent rotations in three dimensions. Use matrix techniques to express the components of \underline{r}_{3} in terms of those of \underline{r}_{1}.
What does the resultant single transformation represent geometrically?
2. Use Cramer's rule to solve the simultaneous equations

$$
\begin{aligned}
3 x_{1}-2 x_{2}-x_{3} & =4, \\
2 x_{1}+x_{2}+2 x_{3} & =10, \\
x_{1}+3 x_{2}-4 x_{3} & =5
\end{aligned}
$$

to find the values of x_{1}, x_{2}, and x_{3}.
3. The matrices $\underline{A}, \underline{B}$, and \underline{D} are related by $\underline{D}=\underline{A} \underline{B}$. Given that

$$
\underline{A}=\left(\begin{array}{lll}
1 & 3 & 1 \\
1 & 1 & 2 \\
3 & 3 & 2
\end{array}\right) \quad \text { and } \quad \underline{D}=\left(\begin{array}{rrr}
10 & -6 & 6 \\
9 & -6 & 5 \\
15 & -10 & 11
\end{array}\right)
$$

evaluate \underline{A}^{-1}.
Hence derive the value of \underline{B}.

