UNIVERSITY COLLEGE LONDON DEPARTMENT OF PHYSICS AND ASTRONOMY

2B21 MATHEMATICAL METHODS IN PHYSICS AND ASTRONOMY

Problem Sheet M1 (2003-2004)
Solutions to be handed in on Tuesday 14 October 2003

1. Solve the simultaneous equations $y_{1}=x_{1}+2 x_{2}$ and $y_{2}=3 x_{1}+4 x_{2}$ for x_{1} and x_{2}. Putting both sets of equations in matrix form,

$$
\underline{y}=\underline{A} \underline{x} \text { and } \underline{x}=\underline{B} \underline{y},
$$

write down the 2×2 matrices \underline{A} and \underline{B}. Show that $\underline{A} \underline{B}=\underline{I}=\underline{B} \underline{A}$, where \underline{I} is the 2×2 unit matrix.
2. Evaluate the 4×4 determinant

$$
\Delta=\left|\begin{array}{llll}
2 & 1 & 0 & 3 \\
1 & 0 & 3 & 2 \\
0 & 3 & 2 & 1 \\
3 & 2 & 1 & 0
\end{array}\right|
$$

by either expanding by the first row or by taking linear combinations to reduce the size of the determinant.
3. For the 3×3 matrices

$$
\underline{A}=\left(\begin{array}{rrr}
1 & -1 & 1 \\
-3 & 2 & -1 \\
-2 & 1 & 0
\end{array}\right) \quad \text { and } \quad \underline{B}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
1 & 2 & 3
\end{array}\right)
$$

evaluate the products $\underline{C}=\underline{A} \underline{B}$ and $\underline{D}=\underline{B} \underline{A}$.
Show that, although $\underline{C} \neq \underline{D}$, the determinants of \underline{C} and \underline{D} are both equal to the product of the determinants of \underline{A} and \underline{B}.
Show also that the sums of the diagonal elements of \underline{C} and \underline{D} are the same.
[4 marks]
[2 marks]

Some evidence of working is required. Examination calculators will NOT be able to handle determinants and matrices!

